Skip to main content

Research Repository

Advanced Search

Dr Matthieu Cartigny's Outputs (3)

Time-lapse surveys reveal patterns and processes of erosion by exceptionally powerful turbidity currents that flush submarine canyons: A case study of the Congo Canyon (2024)
Journal Article
Ruffell, S. C., Talling, P. J., Baker, M. L., Pope, E. L., Heijnen, M. S., Jacinto, R. S., Cartigny, M. J., Simmons, S. M., Clare, M. A., Heerema, C. J., McGhee, C., Hage, S., Hasenhündl, M., & Parsons, D. R. (2024). Time-lapse surveys reveal patterns and processes of erosion by exceptionally powerful turbidity currents that flush submarine canyons: A case study of the Congo Canyon. Geomorphology, 463, Article 109350. https://doi.org/10.1016/j.geomorph.2024.109350

The largest canyons on Earth occur on the seafloor, and seabed sediment flows called turbidity currents play a key role in carving these submarine canyons. However, the processes by which turbidity currents erode submarine canyons are very poorly doc... Read More about Time-lapse surveys reveal patterns and processes of erosion by exceptionally powerful turbidity currents that flush submarine canyons: A case study of the Congo Canyon.

Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel (2024)
Journal Article
Hasenhündl, M., Talling, P. J., Pope, E. L., Baker, M. L., Heijnen, M. S., Ruffell, S. C., …Cartigny, M. J. B. (2024). Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel. Frontiers in Earth Science, 12, Article 1381019. https://doi.org/10.3389/feart.2024.1381019

Submarine canyons and channels are globally important pathways for sediment, organic carbon, nutrients and pollutants to the deep sea, and they form the largest sediment accumulations on Earth. However, studying these remote submarine systems compreh... Read More about Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel.

Benthic biology influences sedimentation in submarine channel bends: Coupling of biology, sedimentation and flow (2024)
Journal Article
Azpiroz‐Zabala, M., Sumner, E. J., Cartigny, M. J. B., Peakall, J., Clare, M., Darby, S. E., …Johnson, J. (2024). Benthic biology influences sedimentation in submarine channel bends: Coupling of biology, sedimentation and flow. Depositional Record, 10(1), 159-175. https://doi.org/10.1002/dep2.265

Submarine channels are key features for the transport of flow and nutrients into deep water. Previous studies of their morphology and channel evolution have treated these systems as abiotic, and therefore assume that physical processes are solely res... Read More about Benthic biology influences sedimentation in submarine channel bends: Coupling of biology, sedimentation and flow.