Skip to main content

Research Repository

Advanced Search

Professor Anthony Yeates' Outputs (4)

Automated driving for global non-potential simulations of the solar corona (2022)
Journal Article
Yeates, A., & Bhowmik, P. (2022). Automated driving for global non-potential simulations of the solar corona. Astrophysical Journal, 935(1), Article 13. https://doi.org/10.3847/1538-4357/ac7de4

We describe a new automated technique for active region emergence in coronal magnetic field models, based on the inversion of the electric field locally from a single line-of-sight magnetogram for each region. The technique preserves the arbitrary sh... Read More about Automated driving for global non-potential simulations of the solar corona.

Eruptivity Criteria for Two-dimensional Magnetic Flux Ropes in the Solar Corona (2022)
Journal Article
Rice, O. E., & Yeates, A. R. (2022). Eruptivity Criteria for Two-dimensional Magnetic Flux Ropes in the Solar Corona. Frontiers in Astronomy and Space Sciences, 9, Article 849135. https://doi.org/10.3389/fspas.2022.849135

We apply the magneto-frictional approach to investigate which quantity or quantities can best predict the loss of equilibrium of a translationally-invariant magnetic flux rope. The flux rope is produced self-consistently by flux cancellation combined... Read More about Eruptivity Criteria for Two-dimensional Magnetic Flux Ropes in the Solar Corona.

Exploring the Origin of Stealth Coronal Mass Ejections with Magnetofrictional Simulations (2022)
Journal Article
Bhowmik, P., Yeates, A., & Rice, O. (2022). Exploring the Origin of Stealth Coronal Mass Ejections with Magnetofrictional Simulations. Solar Physics, 297(3), Article 41. https://doi.org/10.1007/s11207-022-01974-x

Coronal mass ejections (CMEs) – among the most energetic events originating from the Sun – can cause significant and sudden disruption to the magnetic and particulate environment of the heliosphere. Thus, in the current era of space-based technologie... Read More about Exploring the Origin of Stealth Coronal Mass Ejections with Magnetofrictional Simulations.

On the limitations of magneto-frictional relaxation (2022)
Journal Article
Yeates, A. (2022). On the limitations of magneto-frictional relaxation. Geophysical and Astrophysical Fluid Dynamics, 116(4), 305-320. https://doi.org/10.1080/03091929.2021.2021197

The magneto-frictional method is used in solar physics to compute both static and quasi-static models of the Sun’s coronal magnetic field. Here, we examine how accurately magneto-friction (without fluid pressure) is able to predict the relaxed state... Read More about On the limitations of magneto-frictional relaxation.