Skip to main content

Research Repository

Advanced Search

Outputs (7)

Additivity of relative magnetic helicity in finite volumes (2020)
Journal Article
Valori, G., Démoulin, P., Pariat, E., Yeates, A., Moraitis, K., & Linan, L. (2020). Additivity of relative magnetic helicity in finite volumes. Astronomy & Astrophysics, 643, Article A26. https://doi.org/10.1051/0004-6361/202038533

Context. Relative magnetic helicity is conserved by magneto-hydrodynamic evolution even in the presence of moderate resistivity. For that reason, it is often invoked as the most relevant constraint on the dynamical evolution of plasmas in complex sys... Read More about Additivity of relative magnetic helicity in finite volumes.

Towards an algebraic method of solar cycle prediction (2020)
Journal Article
Petrovay, K., Nagy, M., & Yeates, A. R. (2020). Towards an algebraic method of solar cycle prediction. Journal of Space Weather and Space Climate, 10, Article 50. https://doi.org/10.1051/swsc/2020050

We discuss the potential use of an algebraic method to compute the value of the solar axial dipole moment at solar minimum, widely considered to be the most reliable precursor of the activity level in the next solar cycle. The method consists of summ... Read More about Towards an algebraic method of solar cycle prediction.

How good is the bipolar approximation of active regions for surface flux transport? (2020)
Journal Article
Yeates, A. (2020). How good is the bipolar approximation of active regions for surface flux transport?. Solar Physics, 295(9), Article 119. https://doi.org/10.1007/s11207-020-01688-y

We investigate how representing active regions with bipolar magnetic regions (BMRs) affects the end-of-cycle polar field predicted by the surface flux transport model. Our study is based on a new database of BMRs derived from the SDO/HMI active regio... Read More about How good is the bipolar approximation of active regions for surface flux transport?.

The Minimal Helicity of Solar Coronal Magnetic Fields (2020)
Journal Article
Yeates, A. (2020). The Minimal Helicity of Solar Coronal Magnetic Fields. Astrophysical Journal Letters, 898(2), Article L49. https://doi.org/10.3847/2041-8213/aba762

Potential field extrapolations are widely used as minimum-energy models for the Sun's coronal magnetic field. As the reference to which other magnetic fields are compared, they have—by any reasonable definition—no global (signed) magnetic helicity. H... Read More about The Minimal Helicity of Solar Coronal Magnetic Fields.

Impact of Inner Heliospheric Boundary Conditions on Solar Wind Predictions at Earth (2020)
Journal Article
Gonzi, S., Weinzierl, M., Bocquet, F., Bisi, M., Odstrcil, D., Jackson, B., …Nikolos Arge, C. (2021). Impact of Inner Heliospheric Boundary Conditions on Solar Wind Predictions at Earth. Space Weather, 19(1), https://doi.org/10.1029/2020sw002499

Predictions of the physical parameters of the solar wind at Earth are at the core of operational space weather forecasts. Such predictions typically use line-of-sight observations of the photospheric magnetic field to drive a heliospheric model. The... Read More about Impact of Inner Heliospheric Boundary Conditions on Solar Wind Predictions at Earth.