Skip to main content

Research Repository

Advanced Search

Professor Charles Augarde's Outputs (7)

A review of drag anchor penetration models to inform cable burial risk assessment (2022)
Presentation / Conference Contribution
Pretti, G., Coombs, W., Augarde, C., Puigvert, M., Gutierrez, J., & Cross, L. (2022, August). A review of drag anchor penetration models to inform cable burial risk assessment. Paper presented at 4th International Symposium on Frontiers in Offshore Geotechnics (ISFOG), Austin, Texas

A review of current construction guidelines to inform the design of rammed earth houses in seismically active zones (2022)
Journal Article
Thompson, D., Augarde, C., & Osorioa, J. P. (2022). A review of current construction guidelines to inform the design of rammed earth houses in seismically active zones. Journal of Building Engineering, 54, Article 104666. https://doi.org/10.1016/j.jobe.2022.104666

Sustainability in the materials we use for construction is a prime concern, focusing on reducing the embodied energy and carbon footprints of the materials used. The cement used in concrete products is responsible for a significant proportion of Man'... Read More about A review of current construction guidelines to inform the design of rammed earth houses in seismically active zones.

MRI to MPM: Developing a Patient-specific Material Point Method Model of the Human Heart (2022)
Presentation / Conference Contribution
Gavin, N., Coombs, W., Brigham, J., & Augarde, C. (2022, April). MRI to MPM: Developing a Patient-specific Material Point Method Model of the Human Heart. Paper presented at UKACM 2022, Nottingham, UK

The heart is an important organ in the human body and has been widely studied using Finite Element Analysis techniques which often require extremely fine meshes in order to obtain accurate results. Also, large deformations are typically seen in heart... Read More about MRI to MPM: Developing a Patient-specific Material Point Method Model of the Human Heart.

The Virtual Element Method for Engineers (2022)
Presentation / Conference Contribution
O'Hare, T., & Augarde, C. (2022, April). The Virtual Element Method for Engineers. Paper presented at UKACM 2022, Nottingham, England

The virtual element method (VEM) is a relatively new technique, similar to the finite element method (FEM), but having no restriction on the number of element sides. This has numerous advantages, particularly regarding greater meshing flexibility, ho... Read More about The Virtual Element Method for Engineers.

A comparison of approaches for modelling poro-mechanics in the Material Point Method (2022)
Presentation / Conference Contribution
Pretti, G., Coombs, W., & Augarde, C. (2022, April). A comparison of approaches for modelling poro-mechanics in the Material Point Method. Paper presented at UKACM 2022, Nottingham, UK

When it comes to the analysis of fully saturated porous materials, a plethora of formulations [1] are available in the literature. Among them, the so-called u − p formulation constitutes a well-established approach when low-frequency problems are con... Read More about A comparison of approaches for modelling poro-mechanics in the Material Point Method.

A serviceability investigation of dowel-type timber connections featuring single softwood dowels (2022)
Journal Article
Wilkinson, G., & Augarde, C. (2022). A serviceability investigation of dowel-type timber connections featuring single softwood dowels. Engineering Structures, 260, Article 114210. https://doi.org/10.1016/j.engstruct.2022.114210

Dowel-type connections are common in timber engineering, but current design codes are largely based on empiricism and are oversimplified. This inhibits the optimised use of connections, which is essential for the design of economically efficient timb... Read More about A serviceability investigation of dowel-type timber connections featuring single softwood dowels.

Effects of fibre additions on the tensile strength and crack behaviour of unsaturated clay (2022)
Journal Article
Wang, J., Hughes, P. N., & Augarde, C. E. (2023). Effects of fibre additions on the tensile strength and crack behaviour of unsaturated clay. Ground Improvement, 176(2), 108-120. https://doi.org/10.1680/jgrim.21.00006

Desiccation cracking in clay soils is a combined mechanical and hydraulic problem and such soils can be improved by various methods including reinforcement with fibres. The relationships between tensile strength, cracking resistance and water-retenti... Read More about Effects of fibre additions on the tensile strength and crack behaviour of unsaturated clay.