Skip to main content

Research Repository

Advanced Search

Outputs (3)

Simulation of strain localisation with an elastoplastic micropolar material point method (2024)
Presentation / Conference Contribution
O'Hare, T. J., Gourgiotis, P. A., Coombs, W. M., & Augarde, C. E. (2024). Simulation of strain localisation with an elastoplastic micropolar material point method. In W. M. Coombs (Ed.), UKACM Proceedings 2024 (141-144). https://doi.org/10.62512/conf.ukacm2024.009

The thickness of shear bands, which form along slip surfaces during certain modes of geotechnical failure, depends directly on the size of the soil particles. Classical continuum models, however, are invariant to length scale, so the strain localisat... Read More about Simulation of strain localisation with an elastoplastic micropolar material point method.

A geometrically-exact Finite Element Method for micropolar continua with finite deformations (2023)
Presentation / Conference Contribution
O'Hare, T. J., Gourgiotis, P. A., Coombs, W. M., & Augarde, C. E. (2023, April). A geometrically-exact Finite Element Method for micropolar continua with finite deformations. Paper presented at UKACM 2023, University of Warwick, Coventry, UK

Micropolar theory is a weakly non-local higher-order continuum theory based on the inclusion of independent (micro-)rotational degrees of freedom. Subsequent introduction of couple-stresses and an internal length scale mean the micropolar continuum i... Read More about A geometrically-exact Finite Element Method for micropolar continua with finite deformations.

The Virtual Element Method for Engineers (2022)
Presentation / Conference Contribution
O'Hare, T., & Augarde, C. (2022, April). The Virtual Element Method for Engineers. Paper presented at UKACM 2022, Nottingham, England

The virtual element method (VEM) is a relatively new technique, similar to the finite element method (FEM), but having no restriction on the number of element sides. This has numerous advantages, particularly regarding greater meshing flexibility, ho... Read More about The Virtual Element Method for Engineers.