Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Independent Membrane Binding Properties of the Caspase Generated Fragments of the Beaded Filament Structural Protein 1 (BFSP1) Involves an Amphipathic Helix (2023)
Journal Article
Jarrin, M., Kalligeraki, A. A., Uwineza, A., Cawood, C. S., Brown, A. P., Ward, E. N., …Quinlan, R. A. (2023). Independent Membrane Binding Properties of the Caspase Generated Fragments of the Beaded Filament Structural Protein 1 (BFSP1) Involves an Amphipathic Helix. Cells, https://doi.org/10.3390/cells12121580

Background: BFSP1 (beaded filament structural protein 1) is a plasma membrane, Aqua- 21 porin 0 (AQP0/MIP)-associated intermediate filament protein expressed in the eye lens. BFSP1 is 22 myristoylated, a post-translation modification that requires ca... Read More about Independent Membrane Binding Properties of the Caspase Generated Fragments of the Beaded Filament Structural Protein 1 (BFSP1) Involves an Amphipathic Helix.

Allophycocyanin A is a carbon dioxide receptor in the cyanobacterial phycobilisome (2022)
Journal Article
Guillen-Garcia, A., Gibson, S., Jordan, C., Ramaswamy, V., Linthwaite, V., Bromley, E., …Cann, M. (2022). Allophycocyanin A is a carbon dioxide receptor in the cyanobacterial phycobilisome. Nature Communications, 13, Article 5289. https://doi.org/10.1038/s41467-022-32925-6

Light harvesting is fundamental for production of ATP and reducing equivalents for CO2 fixation during photosynthesis. However, electronic energy transfer (EET) through a photosystem can harm the photosynthetic apparatus when not balanced with CO2. H... Read More about Allophycocyanin A is a carbon dioxide receptor in the cyanobacterial phycobilisome.

Ubiquitin is a carbon dioxide-binding protein (2021)
Journal Article
Linthwaite, V., Pawloski, W., Pegg, H., Townsend, P., Thomas, M., Brown, A., …Cann, M. (2021). Ubiquitin is a carbon dioxide-binding protein. Science Advances, 7(39), Article eabi5507. https://doi.org/10.1126/sciadv.abi5507

The identification of CO2-binding proteins is crucial to understanding CO2-regulated molecular processes. CO2 can form a reversible posttranslational modification through carbamylation of neutral N-terminal -amino or lysine -amino groups. We have p... Read More about Ubiquitin is a carbon dioxide-binding protein.

The identification of carbon dioxide mediated protein post-translational modifications (2018)
Journal Article
Linthwaite, V., Janus, J., Brown, A., Wong-Pascua, D., O’Donoghue, A., Porter, A., …Cann, M. (2018). The identification of carbon dioxide mediated protein post-translational modifications. Nature Communications, 9, Article 3092. https://doi.org/10.1038/s41467-018-05475-z

Carbon dioxide is vital to the chemistry of life processes including metabolism, cellular homoeostasis, and pathogenesis. CO2 is generally unreactive but can combine with neutral amines to form carbamates on proteins under physiological conditions. T... Read More about The identification of carbon dioxide mediated protein post-translational modifications.