I. Capellini
Phylogeny and metabolic scaling in mammals
Capellini, I.; Venditti, C.; Barton, R.A.
Abstract
The scaling of metabolic rates to body size is widely considered to be of great biological and ecological importance, and much attention has been devoted to determining its theoretical and empirical value. Most debate centres on whether the underlying power law determining metabolic rates is 2/3 (as predicted by scaling of surface area/volume relationships) or 3/4 ('Kleiber's Law'). Although recent evidence suggests that empirically derived exponents vary among clades with radically different metabolic strategies, such as ectotherms and endotherms, models, such as the Metabolic Theory of Ecology, depend on the assumption that there is at least a predominant, if not universal, metabolic scaling exponent. Most analyses claimed to support the predictions of general models however fail to control for phylogeny. We used phylogenetic generalised least squares models to estimate allometric slopes for both basal metabolic rates (BMR) and field metabolic rates (FMR) in mammals. Metabolic rate scaling conformed to no single theoretical prediction, but varied significantly among phylogenetic lineages. In some lineages we found a 3/4 exponent in others a 2/3 exponent, and in yet others exponents differed significantly from both theoretical values. Analysis of the phylogenetic signal in the data indicated that the assumptions of neither species-level analysis nor independent contrasts are met. Analyses that assumed no phylogenetic signal in the data (species level analysis) or a strong phylogenetic signal (independent contrasts) returned estimates of allometric slopes that were erroneous in 30% and 50% of cases respectively. Hence, quantitative estimation of the phylogenetic signal is essential for determining scaling exponents. The lack of evidence for a predominant scaling exponent in these analyses suggests that general models of metabolic scaling, and macro-ecological theories that depend on them, have little explanatory power.
Citation
Capellini, I., Venditti, C., & Barton, R. (2010). Phylogeny and metabolic scaling in mammals. Ecology, 91(9), 2783-2793. https://doi.org/10.1890/09-0817
Journal Article Type | Article |
---|---|
Publication Date | Sep 1, 2010 |
Deposit Date | Apr 12, 2010 |
Publicly Available Date | Oct 6, 2010 |
Journal | Ecology |
Print ISSN | 0012-9658 |
Publisher | Ecological Society of America |
Peer Reviewed | Peer Reviewed |
Volume | 91 |
Issue | 9 |
Pages | 2783-2793 |
DOI | https://doi.org/10.1890/09-0817 |
Keywords | Allometry, Basal metabolic rate, Field metabolic rate, Kleiber's law, Metabolic theory of ecology (MTE). |
Public URL | https://durham-repository.worktribe.com/output/1522468 |
Files
Published Journal Article
(449 Kb)
PDF
Copyright Statement
© 2010 by the Ecological Society of America.
You might also like
Hominin brain size increase has emerged from within-species encephalization
(2024)
Journal Article
Measuring episodic memory and mental time travel: crossing the species gap
(2024)
Journal Article
The Brains and Bones Project: Using Embodied Teaching to Teach Embodiment
(2024)
Journal Article
Co-evolutionary dynamics of mammalian brain and body size
(2024)
Journal Article
A systematic review of sex differences in rough and tumble play across non-human mammals
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search