A. Huber
Skew Bisubmodularity and Valued CSPs
Huber, A.; Krokhin, A.; Powell, R.
Abstract
An instance of the (finite-)valued constraint satisfaction problem (VCSP) is given by a finite set of variables, a finite domain of values, and a sum of (rational-valued) functions, with each function depending on a subset of the variables. The goal is to find an assignment of values to the variables that minimizes the sum. We study (assuming that ${PTIME}\neq{NP}$) how the complexity of this very general problem depends on the functions allowed in the instances. The case when the variables can take only two values was classified by Cohen et al.: essentially, submodular functions give rise to the only tractable case, and any non--submodular function can be used to express, in a certain specific sense, the NP-hard Max Cut problem. We investigate the case when the variables can take three values. We identify a new infinite family of conditions that includes bisubmodularity as a special case and which can collectively be called skew bisubmodularity. By a recent result of Thapper and Živný, this condition implies that the corresponding VCSP can be solved by linear programming. We prove that submodularity, with respect to a total order, and skew bisubmodularity give rise to the only tractable cases, and, in all other cases, again, Max Cut can be expressed. We also show that our characterization of tractable cases is tight; that is, none of the conditions can be omitted.
Citation
Huber, A., Krokhin, A., & Powell, R. (2014). Skew Bisubmodularity and Valued CSPs. SIAM Journal on Computing, 43(3), 1064-1084. https://doi.org/10.1137/120893549
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 21, 2014 |
Online Publication Date | May 8, 2014 |
Publication Date | May 8, 2014 |
Deposit Date | May 29, 2014 |
Publicly Available Date | May 30, 2014 |
Journal | SIAM Journal on Computing |
Print ISSN | 0097-5397 |
Electronic ISSN | 1095-7111 |
Publisher | Society for Industrial and Applied Mathematics |
Peer Reviewed | Peer Reviewed |
Volume | 43 |
Issue | 3 |
Pages | 1064-1084 |
DOI | https://doi.org/10.1137/120893549 |
Public URL | https://durham-repository.worktribe.com/output/1452137 |
Files
Published Journal Article
(344 Kb)
PDF
Copyright Statement
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
You might also like
Topology and adjunction in promise constraint satisfaction
(2023)
Journal Article
Algebraic Approach to Promise Constraint Satisfaction
(2021)
Journal Article
Robust algorithms with polynomial loss for near-unanimity CSPs
(2019)
Journal Article
Towards a characterization of constant-factor approximable Finite-Valued CSPs
(2018)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search