Chun-Hai Wang
Infinitely Adaptive Transition Metal Oxychalcogenides: The Modulated Structures of Ce2O2MnSe2 and (Ce0.78La0.22)2O2MnSe2
Wang, Chun-Hai; Ainsworth, Chris M.; Gui, Dong-Yun; McCabe, Emma E.; Tucker, Matthew G.; Evans, Ivana R.; Evans, John S.O.
Authors
Chris M. Ainsworth
Dong-Yun Gui
Dr Emma McCabe emma.mccabe@durham.ac.uk
Associate Professor
Matthew G. Tucker
Professor John Evans john.evans@durham.ac.uk
Professor
Professor John Evans john.evans@durham.ac.uk
Professor
Abstract
This article reports the syntheses, structures, and physical properties of the oxychalcogenides (Ce1–xLax)2O2MnSe2 with x = 0–0.7. These materials have a layered structure related to that of the LaOFeAs-derived superconductors but with the transition metal sites 50% occupied. Ce2O2MnSe2 contains alternating layers of composition: [Ce2O2]2+ and [MnSe2]2–. The size mismatch between the layers leads to an incommensurate structure with a modulation vector of q = αa*+ 0b*+0.5c* with α = 0.158(1), which can be described with a (3 + 1)D superspace structural model in superspace group Cmme(α,0,1/2)0s0 [67.12]. There is a strong modulation of Mn site occupancies, leading to a mixture of corner- and edge-sharing MnSe4/2 tetrahedra in the [MnSe2]2– layers. The modulation vector can be controlled by partial substitution of Ce3+ for larger La3+, and a simple commensurate case was obtained for (Ce0.78La0.22)2O2MnSe2 with α = 1/6. The materials respond to the change in relative size of the oxide and chalcogenide blocks by varying the ratio of corner- to edge-sharing tetrahedra. The superspace model lets us unify the structural description of the five different ordering patterns reported to date for different Ln2O2MSe2 (Ln = lanthanide) materials. Mn moments in Ce2O2MnSe2 and (Ce0.78La0.22)2O2MnSe2 order antiferromagnetically below TN = 150 K, and Ce moments order below ∼70 K. The magnetic structures of both materials have been determined using neutron diffraction. Both materials are semiconductors; Ce2O2MnSe2 has σ = 9 × 10–6 Ω–1 cm–1 at room temperature and an activation energy for charge carrier mobility from RT to 170 °C of ∼0.4 eV.
Citation
Wang, C., Ainsworth, C. M., Gui, D., McCabe, E. E., Tucker, M. G., Evans, I. R., & Evans, J. S. (2015). Infinitely Adaptive Transition Metal Oxychalcogenides: The Modulated Structures of Ce2O2MnSe2 and (Ce0.78La0.22)2O2MnSe2. Chemistry of Materials, 27(8), 3121-3134. https://doi.org/10.1021/acs.chemmater.5b00666
Journal Article Type | Article |
---|---|
Online Publication Date | Apr 2, 2015 |
Publication Date | Apr 28, 2015 |
Deposit Date | May 4, 2015 |
Publicly Available Date | Apr 10, 2016 |
Journal | Chemistry of Materials |
Print ISSN | 0897-4756 |
Electronic ISSN | 1520-5002 |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 27 |
Issue | 8 |
Pages | 3121-3134 |
DOI | https://doi.org/10.1021/acs.chemmater.5b00666 |
Public URL | https://durham-repository.worktribe.com/output/1430030 |
Files
Accepted Journal Article
(2.7 Mb)
PDF
Copyright Statement
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © 2015 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.chemmater.5b00666.
You might also like
Solid State Materials Chemistry
(2021)
Book
Solid State Materials Chemistry
(2020)
Book
Rietveld Refinement
(2018)
Book
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search