SEM-Net: Efficient Pixel Modelling for Image Inpainting with Spatially Enhanced SSM
Presentation / Conference Contribution
Chen, S., Zhang, H., Atapour-Abarghouei, A., & Shum, H. P. H. (2025, February). SEM-Net: Efficient Pixel Modelling for Image Inpainting with Spatially Enhanced SSM. Presented at 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Tucson, Arizona
Outputs (93)
Geometric Features Informed Multi-person Human-object Interaction Recognition in Videos
Presentation / Conference Contribution
Qiao, T., Men, Q., Li, F. W., Kubotani, Y., Morishima, S., & Shum, H. P. (2022, October). Geometric Features Informed Multi-person Human-object Interaction Recognition in Videos. Presented at Computer Vision - ECCV 2022, Tel Aviv, IsraelHuman-Object Interaction (HOI) recognition in videos is important for analysing human activity. Most existing work focusing on visual features usually suffer from occlusion in the real-world scenarios. Such a problem will be further complicated when... Read More about Geometric Features Informed Multi-person Human-object Interaction Recognition in Videos.
Tackling Data Bias in Painting Classification with Style Transfer
Presentation / Conference Contribution
Vijendran, M., Li, F. W., & Shum, H. P. (2023, February). Tackling Data Bias in Painting Classification with Style Transfer. Presented at VISAPP '23: 2023 International Conference on Computer Vision Theory and Applications, Lisbon, PortugalIt is difficult to train classifiers on paintings collections due to model bias from domain gaps and data bias from the uneven distribution of artistic styles. Previous techniques like data distillation, traditional data augmentation and style transf... Read More about Tackling Data Bias in Painting Classification with Style Transfer.
Unifying Human Motion Synthesis and Style Transfer with Denoising Diffusion Probabilistic Models
Presentation / Conference Contribution
Chang, Z., Findlay, E. J., Zhang, H., & Shum, H. P. (2023, February). Unifying Human Motion Synthesis and Style Transfer with Denoising Diffusion Probabilistic Models. Presented at GRAPP 2023: 2023 International Conference on Computer Graphics Theory and Applications, Lisbon, PortugalGenerating realistic motions for digital humans is a core but challenging part of computer animations and games, as human motions are both diverse in content and rich in styles. While the latest deep learning approaches have made significant advancem... Read More about Unifying Human Motion Synthesis and Style Transfer with Denoising Diffusion Probabilistic Models.
MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray
Presentation / Conference Contribution
Corona-Figueroa, A., Frawley, J., Bond-Taylor, S., Bethapudi, S., Shum, H. P., & Willcocks, C. G. (2022, July). MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray. Presented at 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, ScotlandComputed tomography (CT) is an effective med-ical imaging modality, widely used in the field of clinical medicine for the diagnosis of various pathologies. Advances in Multidetector CT imaging technology have enabled additional functionalities, inclu... Read More about MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray.
Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation
Presentation / Conference Contribution
Li, L., Shum, H. P., & Breckon, T. P. (2023, June). Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation. Presented at 2023 IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), Vancouver, BCWhilst the availability of 3D LiDAR point cloud data has significantly grown in recent years, annotation remains expensive and time-consuming, leading to a demand for semisupervised semantic segmentation methods with application domains such as auton... Read More about Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation.
Denoising Diffusion Probabilistic Models for Styled Walking Synthesis
Presentation / Conference Contribution
Findlay, E., Zhang, H., Chang, Z., & Shum, H. P. (2022, November). Denoising Diffusion Probabilistic Models for Styled Walking Synthesis. Presented at MIG 2022: The 15th Annual ACM SIGGRAPH Conference on Motion, Interaction and Games, Guanajuato, MexicoGenerating realistic motions for digital humans is time-consuming for many graphics applications. Data-driven motion synthesis approaches have seen solid progress in recent years through deep generative models. These results offer high-quality motion... Read More about Denoising Diffusion Probabilistic Models for Styled Walking Synthesis.
Towards Graph Representation Learning Based Surgical Workflow Anticipation
Presentation / Conference Contribution
Zhang, X., Al Moubayed, N., & Shum, H. P. (2022, September). Towards Graph Representation Learning Based Surgical Workflow Anticipation. Presented at 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Ioannina, GreeceSurgical workflow anticipation can give predictions on what steps to conduct or what instruments to use next, which is an essential part of the computer-assisted intervention system for surgery, e.g. workflow reasoning in robotic surgery. However, cu... Read More about Towards Graph Representation Learning Based Surgical Workflow Anticipation.
A Feasibility Study on Image Inpainting for Non-cleft Lip Generation from Patients with Cleft Lip
Presentation / Conference Contribution
Chen, S., Atapour-Abarghouei, A., Kerby, J., Ho, E. S., Sainsbury, D. C., Butterworth, S., & Shum, H. P. (2022, September). A Feasibility Study on Image Inpainting for Non-cleft Lip Generation from Patients with Cleft Lip. Presented at 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Ioannina, GreeceA Cleft lip is a congenital abnormality requiring surgical repair by a specialist. The surgeon must have extensive experience and theoretical knowledge to perform surgery, and Artificial Intelligence (AI) method has been proposed to guide surgeons in... Read More about A Feasibility Study on Image Inpainting for Non-cleft Lip Generation from Patients with Cleft Lip.
3D Reconstruction of Sculptures from Single Images via Unsupervised Domain Adaptation on Implicit Models
Presentation / Conference Contribution
Chang, Z., Koulieris, G. A., & Shum, H. P. (2022, November). 3D Reconstruction of Sculptures from Single Images via Unsupervised Domain Adaptation on Implicit Models. Presented at VRST '22: 28th ACM Symposium on Virtual Reality Software and Technology, Japan