Skip to main content

Research Repository

Advanced Search

Outputs (44)

First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents (2022)
Journal Article
Pope, E. L., Cartigny, M. J., Clare, M. A., Talling, P. J., Lintern, D. G., Vellinga, A., …Vendettuoli, D. (2022). First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents. Science Advances, 8(20), Article eabj3220. https://doi.org/10.1126/sciadv.abj3220

Until recently, despite being one of the most important sediment transport phenomena on Earth, few direct measurements of turbidity currents existed. Consequently, their structure and evolution were poorly understood, particularly whether they are de... Read More about First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents.

Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes? (2022)
Journal Article
Heijnen, M. S., Clare, M. A., Cartigny, M. J., Talling, P. J., Hage, S., Pope, E. L., …Hughes Clarke, J. E. (2022). Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?. Earth and Planetary Science Letters, 584, Article 117481. https://doi.org/10.1016/j.epsl.2022.117481

Submarine channels are the primary conduits for land-derived material, including organic carbon, pollutants, and nutrients, into the deep-sea. The flows (turbidity currents) that traverse these systems can pose hazards to seafloor infrastructure such... Read More about Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?.

Near‐Bed Structure of Sediment Gravity Flows Measured by Motion‐Sensing “Boulder‐Like” Benthic Event Detectors (BEDs) in Monterey Canyon (2022)
Journal Article
Gwiazda, R., Paull, C., Kieft, B., Klimov, D., Herlien, R., Lundsten, E., …Talling, P. J. (2022). Near‐Bed Structure of Sediment Gravity Flows Measured by Motion‐Sensing “Boulder‐Like” Benthic Event Detectors (BEDs) in Monterey Canyon. Journal of Geophysical Research: Earth Surface, 127(2), https://doi.org/10.1029/2021jf006437

The near-bed section of submarine gravity flows travels at the highest and most destructive speeds making direct measurements of this region of the flow difficult. Here results are presented from “boulder-like” Benthic Event Detectors (BEDs) that mea... Read More about Near‐Bed Structure of Sediment Gravity Flows Measured by Motion‐Sensing “Boulder‐Like” Benthic Event Detectors (BEDs) in Monterey Canyon.

How distinctive are flood-triggered turbidity currents? (2022)
Journal Article
Heerema, C. J., Cartigny, M. J., Jacinto, R. S., Simmons, S. M., Apprioual, R., & Talling, P. J. (2022). How distinctive are flood-triggered turbidity currents?. Journal of Sedimentary Research, 92(1), 1-11. https://doi.org/10.2110/jsr.2020.168

Turbidity currents triggered at river mouths form an important highway for sediment, organic carbon, and nutrients to the deep sea. Consequently, it has been proposed that the deposits of these flood-triggered turbidity currents provide important lon... Read More about How distinctive are flood-triggered turbidity currents?.

Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers (2021)
Journal Article
Bailey, L. P., Clare, M. A., Rosenberger, K. J., Cartigny, M. J., Talling, P. J., Paull, C. K., …Lundsten, E. (2021). Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth and Planetary Science Letters, 562, Article 116845. https://doi.org/10.1016/j.epsl.2021.116845

Turbidity currents dominate sediment transfer into the deep ocean, and can damage critical seabed infrastructure. It is commonly inferred that powerful turbidity currents are triggered by major external events, such as storms, river floods, or earthq... Read More about Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers.

Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway (2020)
Journal Article
Barrett, R., Bellwald, B., Talling, P., Micallef, A., Gross, F., Berndt, C., …Krastel, S. (2021). Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway. Journal of Geophysical Research. Solid Earth, 126(2), Article e2020JB020655. https://doi.org/10.1029/2020jb020655

Submarine landslides can be several orders of magnitude larger than their terrestrial counterparts and can pose significant hazards across entire ocean basins. The landslide failure mechanism strongly controls the associated tsunami hazard. The Tampe... Read More about Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway.

Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution (2020)
Journal Article
Heijnen, M. S., Clare, M. A., Cartigny, M. J., Talling, P. J., Hage, S., Lintern, D. G., …Hughes Clarke, J. E. (2020). Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution. Nature Communications, 11(1), Article 3129. https://doi.org/10.1038/s41467-020-16861-x

Submarine channels are the primary conduits for terrestrial sediment, organic carbon, and pollutant transport to the deep sea. Submarine channels are far more difficult to monitor than rivers, and thus less well understood. Here we present 9 years of... Read More about Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution.

Efficient preservation of young terrestrial organic carbon in sandy turbidity current deposits (2020)
Journal Article
Hage, S., Galy, V., Cartigny, M., Acikalin, S., Clare, M., Gröcke, D., …Talling, P. (2020). Efficient preservation of young terrestrial organic carbon in sandy turbidity current deposits. Geology, 48(9), 882-887. https://doi.org/10.1130/g47320.1

Burial of terrestrial biospheric particulate organic carbon in marine sediments removes CO2 from the atmosphere, regulating climate over geologic time scales. Rivers deliver terrestrial organic carbon to the sea, while turbidity currents transport ri... Read More about Efficient preservation of young terrestrial organic carbon in sandy turbidity current deposits.

Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents (2020)
Journal Article
Simmons, S., Azpiroz-Zabala, M., Cartigny, M., Clare, M., Cooper, C., Parsons, D., …Talling, P. (2020). Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents. Journal of Geophysical Research: Oceans, 125(5), Article e2019JC015904. https://doi.org/10.1029/2019jc015904

Turbidity currents transport prodigious volumes of sediment to the deep‐sea. But there are very few direct measurements from oceanic turbidity currents, ensuring they are poorly understood. Recent studies have used acoustic Doppler current profilers... Read More about Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents.

An integrated process‐based model of flutes and tool marks in deep‐water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds (2020)
Journal Article
Peakall, J., Best, J., Baas, J. H., Hodgson, D. M., Clare, M. A., Talling, P. J., …Lee, D. R. (2020). An integrated process‐based model of flutes and tool marks in deep‐water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds. Sedimentology, 67(4), 1601-1666. https://doi.org/10.1111/sed.12727

Flutes and tool marks are commonly observed sedimentary structures on the bases of sandstones in deep‐water successions. These sole structures are universally used as palaeocurrent indicators but, in sharp contrast to most sedimentary structures, the... Read More about An integrated process‐based model of flutes and tool marks in deep‐water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds.