Skip to main content

Research Repository

Advanced Search

Outputs (6)

Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway (2020)
Journal Article
Barrett, R., Bellwald, B., Talling, P., Micallef, A., Gross, F., Berndt, C., …Krastel, S. (2021). Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway. Journal of Geophysical Research. Solid Earth, 126(2), Article e2020JB020655. https://doi.org/10.1029/2020jb020655

Submarine landslides can be several orders of magnitude larger than their terrestrial counterparts and can pose significant hazards across entire ocean basins. The landslide failure mechanism strongly controls the associated tsunami hazard. The Tampe... Read More about Does Retrogression Always Account for the Large Volume of Submarine Megaslides? Evidence to the Contrary From the Tampen Slide, Offshore Norway.

Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution (2020)
Journal Article
Heijnen, M. S., Clare, M. A., Cartigny, M. J., Talling, P. J., Hage, S., Lintern, D. G., …Hughes Clarke, J. E. (2020). Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution. Nature Communications, 11(1), Article 3129. https://doi.org/10.1038/s41467-020-16861-x

Submarine channels are the primary conduits for terrestrial sediment, organic carbon, and pollutant transport to the deep sea. Submarine channels are far more difficult to monitor than rivers, and thus less well understood. Here we present 9 years of... Read More about Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution.

Efficient preservation of young terrestrial organic carbon in sandy turbidity current deposits (2020)
Journal Article
Hage, S., Galy, V., Cartigny, M., Acikalin, S., Clare, M., Gröcke, D., …Talling, P. (2020). Efficient preservation of young terrestrial organic carbon in sandy turbidity current deposits. Geology, 48(9), 882-887. https://doi.org/10.1130/g47320.1

Burial of terrestrial biospheric particulate organic carbon in marine sediments removes CO2 from the atmosphere, regulating climate over geologic time scales. Rivers deliver terrestrial organic carbon to the sea, while turbidity currents transport ri... Read More about Efficient preservation of young terrestrial organic carbon in sandy turbidity current deposits.

Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents (2020)
Journal Article
Simmons, S., Azpiroz-Zabala, M., Cartigny, M., Clare, M., Cooper, C., Parsons, D., …Talling, P. (2020). Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents. Journal of Geophysical Research: Oceans, 125(5), Article e2019JC015904. https://doi.org/10.1029/2019jc015904

Turbidity currents transport prodigious volumes of sediment to the deep‐sea. But there are very few direct measurements from oceanic turbidity currents, ensuring they are poorly understood. Recent studies have used acoustic Doppler current profilers... Read More about Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents.

An integrated process‐based model of flutes and tool marks in deep‐water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds (2020)
Journal Article
Peakall, J., Best, J., Baas, J. H., Hodgson, D. M., Clare, M. A., Talling, P. J., …Lee, D. R. (2020). An integrated process‐based model of flutes and tool marks in deep‐water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds. Sedimentology, 67(4), 1601-1666. https://doi.org/10.1111/sed.12727

Flutes and tool marks are commonly observed sedimentary structures on the bases of sandstones in deep‐water successions. These sole structures are universally used as palaeocurrent indicators but, in sharp contrast to most sedimentary structures, the... Read More about An integrated process‐based model of flutes and tool marks in deep‐water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds.

Direct evidence of a high-concentration basal layer in a submarine turbidity current (2020)
Journal Article
Wang, Z., Xu, J., Talling, P. J., Cartigny, M. J., Simmons, S. M., Gwiazda, R., …Parsons, D. R. (2020). Direct evidence of a high-concentration basal layer in a submarine turbidity current. Deep Sea Research Part I: Oceanographic Research Papers, 161, Article 103300. https://doi.org/10.1016/j.dsr.2020.103300

Submarine turbidity currents are one of the most important sediment transfer processes on earth. Yet the fundamental nature of turbidity currents is still debated; especially whether they are entirely dilute and turbulent, or a thin and dense basal l... Read More about Direct evidence of a high-concentration basal layer in a submarine turbidity current.