Skip to main content

Research Repository

Advanced Search

Outputs (18)

Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents (2020)
Journal Article
Simmons, S., Azpiroz-Zabala, M., Cartigny, M., Clare, M., Cooper, C., Parsons, D., …Talling, P. (2020). Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents. Journal of Geophysical Research: Oceans, 125(5), Article e2019JC015904. https://doi.org/10.1029/2019jc015904

Turbidity currents transport prodigious volumes of sediment to the deep‐sea. But there are very few direct measurements from oceanic turbidity currents, ensuring they are poorly understood. Recent studies have used acoustic Doppler current profilers... Read More about Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents.

What determines the downstream evolution of turbidity currents? (2019)
Journal Article
Heerema, C. J., Talling, P. J., Cartigny, M. J., Paull, C. K., Bailey, L., Simmons, S. M., …Pope, E. (2020). What determines the downstream evolution of turbidity currents?. Earth and Planetary Science Letters, 532, Article 116023. https://doi.org/10.1016/j.epsl.2019.116023

Seabed sediment flows called turbidity currents form some of the largest sediment accumulations, deepest canyons and longest channel systems on Earth. Only rivers transport comparable sediment volumes over such large areas; but there are far fewer me... Read More about What determines the downstream evolution of turbidity currents?.

Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes (2019)
Journal Article
Hage, S., Cartigny, M. J., Sumner, E. J., Clare, M. A., Hughes Clarke, J. E., Talling, P. J., …Watts, C. (2019). Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes. Geophysical Research Letters, 46(20), 11310-11320. https://doi.org/10.1029/2019gl084526

Rivers (on land) and turbidity currents (in the ocean) are the most important sediment transport processes on Earth. Yet, how rivers generate turbidity currents as they enter the coastal ocean remains poorly understood. The current paradigm, based on... Read More about Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes.

Controls on the formation of turbidity current channels associated with marine-terminating glaciers and ice sheets (2019)
Journal Article
Pope, E. L., Normandeau, A., Ó Cofaigh, C., Stokes, C. R., & Talling, P. J. (2019). Controls on the formation of turbidity current channels associated with marine-terminating glaciers and ice sheets. Marine Geology, 415, Article 105951. https://doi.org/10.1016/j.margeo.2019.05.010

Submarine channels, and the sediment density flows which form them, act as conduits for the transport of sediment, macro-nutrients, fresher water and organic matter from the coast to the deep sea. These systems are therefore significant pathways for... Read More about Controls on the formation of turbidity current channels associated with marine-terminating glaciers and ice sheets.

The relationship between ice sheets and submarine mass movements in the Nordic Seas during the Quaternary (2018)
Journal Article
Pope, E. L., Talling, P. J., & Ó Cofaigh, C. (2018). The relationship between ice sheets and submarine mass movements in the Nordic Seas during the Quaternary. Earth-Science Reviews, 178, 208-256. https://doi.org/10.1016/j.earscirev.2018.01.007

Quaternary evolution of high-latitude margins has, to a large degree been shaped by the advance and retreat of ice sheets. Our understanding of these margins and the role of ice sheets is predominantly derived from the polar North Atlantic during the... Read More about The relationship between ice sheets and submarine mass movements in the Nordic Seas during the Quaternary.

Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons (2017)
Journal Article
Azpiroz-Zabala, M., Cartigny, M., Talling, P., Parsons, D., Sumner, E., Clare, M., …Pope, E. (2017). Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons. Science Advances, 3(10), Article e1700200. https://doi.org/10.1126/sciadv.1700200

Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity c... Read More about Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons.

Damaging sediment density flows triggered by tropical cyclones (2016)
Journal Article
Pope, E., Talling, P., Carter, L., Clare, M., & Hunt, J. (2017). Damaging sediment density flows triggered by tropical cyclones. Earth and Planetary Science Letters, 458, 161-169. https://doi.org/10.1016/j.epsl.2016.10.046

The global network of subsea fibre-optic cables plays a critical role in the world economy and is considered as strategic infrastructure for many nations. Sediment density flows have caused significant disruption to this network in the recent past. T... Read More about Damaging sediment density flows triggered by tropical cyclones.

Long-term record of Barents Sea Ice Sheet advance to the shelf edge from a 140,000 year record (2016)
Journal Article
Pope, E., Talling, P., Hunt, J., Dowdeswell, J., Allin, J., Cartigny, M., …Watts, M. (2016). Long-term record of Barents Sea Ice Sheet advance to the shelf edge from a 140,000 year record. Quaternary Science Reviews, 150, 55-66. https://doi.org/10.1016/j.quascirev.2016.08.014

The full-glacial extent and deglacial behaviour of marine-based ice sheets, such as the Barents Sea Ice Sheet, is well documented since the Last Glacial Maximum about 20,000 years ago. However, reworking of older sea-floor sediments and landforms dur... Read More about Long-term record of Barents Sea Ice Sheet advance to the shelf edge from a 140,000 year record.