Skip to main content

Research Repository

Advanced Search

Outputs (17)

Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel (2024)
Journal Article
Hasenhündl, M., Talling, P. J., Pope, E. L., Baker, M. L., Heijnen, M. S., Ruffell, S. C., …Cartigny, M. J. B. (2024). Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel. Frontiers in Earth Science, 12, Article 1381019. https://doi.org/10.3389/feart.2024.1381019

Submarine canyons and channels are globally important pathways for sediment, organic carbon, nutrients and pollutants to the deep sea, and they form the largest sediment accumulations on Earth. However, studying these remote submarine systems compreh... Read More about Morphometric fingerprints and downslope evolution in bathymetric surveys: insights into morphodynamics of the Congo canyon-channel.

Seismic and Acoustic Monitoring of Submarine Landslides: Ongoing Challenges, Recent Successes, and Future Opportunities (2023)
Book Chapter
Clare, M. A., Lintern, G., Pope, E., Baker, M., Ruffell, S., Zulkifli, M. Z., …Talling, P. J. (2024). Seismic and Acoustic Monitoring of Submarine Landslides: Ongoing Challenges, Recent Successes, and Future Opportunities. In G. Bayrakci, & F. Klingelhoefer (Eds.), Noisy Oceans: Monitoring Seismic and Acoustic Signals in the Marine Environment (59-82). Wiley. https://doi.org/10.1002/9781119750925.ch5

Submarine landslides pose a hazard to coastal communities and critical seafloor infrastructure, occurring on all of the world's continental margins, from coastal zones to hadal trenches. Offshore monitoring has been limited by the largely unpredictab... Read More about Seismic and Acoustic Monitoring of Submarine Landslides: Ongoing Challenges, Recent Successes, and Future Opportunities.

Predicting turbidity current activity offshore from meltwater-fed river deltas (2023)
Journal Article
Bailey, L. P., Clare, M. A., Pope, E. L., Haigh, I. D., Cartigny, M. J., Talling, P. J., …Heijnen, M. (2023). Predicting turbidity current activity offshore from meltwater-fed river deltas. Earth and Planetary Science Letters, 604, Article 117977. https://doi.org/10.1016/j.epsl.2022.117977

Quantification of the controls on turbidity current recurrence is required to better constrain land to sea fluxes of sediment, carbon and pollutants, and design resilient infrastructure that is vulnerable to such flows. This is particularly important... Read More about Predicting turbidity current activity offshore from meltwater-fed river deltas.

Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming (2022)
Journal Article
Pope, E. L., Heijnen, M. S., Talling, P. J., Jacinto, R. S., Gaillot, A., Baker, M. L., …Urlaub, M. (2022). Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming. Nature Geoscience, 15(10), 845-853. https://doi.org/10.1038/s41561-022-01017-x

Landslide-dams, which are often transient, can strongly affect the geomorphology, and sediment and geochemical fluxes, within subaerial fluvial systems. The potential occurrence and impact of analogous landslide-dams in submarine canyons has, however... Read More about Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming.

Longest sediment flows yet measured show how major rivers connect efficiently to deep sea (2022)
Journal Article
Talling, P. J., Baker, M. L., Pope, E. L., Ruffell, S. C., Jacinto, R. S., Heijnen, M. S., …Hilton, R. J. (2022). Longest sediment flows yet measured show how major rivers connect efficiently to deep sea. Nature Communications, 13(1), https://doi.org/10.1038/s41467-022-31689-3

Here we show how major rivers can efficiently connect to the deep-sea, by analysing the longest runout sediment flows (of any type) yet measured in action on Earth. These seafloor turbidity currents originated from the Congo River-mouth, with one flo... Read More about Longest sediment flows yet measured show how major rivers connect efficiently to deep sea.

Turbidity Currents Can Dictate Organic Carbon Fluxes Across River‐Fed Fjords: An Example From Bute Inlet (BC, Canada) (2022)
Journal Article
Hage, S., Galy, V., Cartigny, M., Heerema, C., Heijnen, M., Acikalin, S., …Talling, P. (2022). Turbidity Currents Can Dictate Organic Carbon Fluxes Across River‐Fed Fjords: An Example From Bute Inlet (BC, Canada). Journal of Geophysical Research: Biogeosciences, 127(6), https://doi.org/10.1029/2022jg006824

The delivery and burial of terrestrial particulate organic carbon (OC) in marine sediments is important to quantify, because this OC is a food resource for benthic communities, and if buried it may lower the concentrations of atmospheric CO2 over geo... Read More about Turbidity Currents Can Dictate Organic Carbon Fluxes Across River‐Fed Fjords: An Example From Bute Inlet (BC, Canada).

First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents (2022)
Journal Article
Pope, E. L., Cartigny, M. J., Clare, M. A., Talling, P. J., Lintern, D. G., Vellinga, A., …Vendettuoli, D. (2022). First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents. Science Advances, 8(20), Article eabj3220. https://doi.org/10.1126/sciadv.abj3220

Until recently, despite being one of the most important sediment transport phenomena on Earth, few direct measurements of turbidity currents existed. Consequently, their structure and evolution were poorly understood, particularly whether they are de... Read More about First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents.

Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes? (2022)
Journal Article
Heijnen, M. S., Clare, M. A., Cartigny, M. J., Talling, P. J., Hage, S., Pope, E. L., …Hughes Clarke, J. E. (2022). Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?. Earth and Planetary Science Letters, 584, Article 117481. https://doi.org/10.1016/j.epsl.2022.117481

Submarine channels are the primary conduits for land-derived material, including organic carbon, pollutants, and nutrients, into the deep-sea. The flows (turbidity currents) that traverse these systems can pose hazards to seafloor infrastructure such... Read More about Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?.

Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents (2020)
Journal Article
Simmons, S., Azpiroz-Zabala, M., Cartigny, M., Clare, M., Cooper, C., Parsons, D., …Talling, P. (2020). Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents. Journal of Geophysical Research: Oceans, 125(5), Article e2019JC015904. https://doi.org/10.1029/2019jc015904

Turbidity currents transport prodigious volumes of sediment to the deep‐sea. But there are very few direct measurements from oceanic turbidity currents, ensuring they are poorly understood. Recent studies have used acoustic Doppler current profilers... Read More about Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents.