Skip to main content

Research Repository

Advanced Search

Outputs (4)

Fine‐Tuning the Photophysics of Donor‐Acceptor (D‐A 3 ) Thermally Activated Delayed Fluorescence Emitters Using Isomerisation (2022)
Journal Article
L. dos Santos, P., de Sa Pereira, D., Eng, J., Ward, J. S., Bryce, M. R., Penfold, T. J., & Monkman, A. P. (2023). Fine‐Tuning the Photophysics of Donor‐Acceptor (D‐A 3 ) Thermally Activated Delayed Fluorescence Emitters Using Isomerisation. ChemPhotoChem, 7(2), Article e202200248. https://doi.org/10.1002/cptc.202200248

Here two D–A3 regioisomers, comprising three dibenzothiophene-S,S-dioxide acceptor units attached to a central triazatruxene core, are studied. Both molecules show thermally activated delayed fluorescence (TADF), however, the efficiency of the TADF m... Read More about Fine‐Tuning the Photophysics of Donor‐Acceptor (D‐A 3 ) Thermally Activated Delayed Fluorescence Emitters Using Isomerisation.

Intramolecular Hydrogen Bonding in Thermally Activated Delayed Fluorescence Emitters: Is There Evidence Beyond Reasonable Doubt? (2022)
Journal Article
Hempe, M., Kukhta, N. A., Danos, A., Batsanov, A. S., Monkman, A. P., & Bryce, M. R. (2022). Intramolecular Hydrogen Bonding in Thermally Activated Delayed Fluorescence Emitters: Is There Evidence Beyond Reasonable Doubt?. Journal of Physical Chemistry Letters, 13(35), 8221-8227. https://doi.org/10.1021/acs.jpclett.2c00907

Intramolecular hydrogen bonding between donor and acceptor segments in thermally activated delayed fluorescence (TADF) materials is now frequently employed to─purportedly─rigidify the structure and improve the emission performance of these materials.... Read More about Intramolecular Hydrogen Bonding in Thermally Activated Delayed Fluorescence Emitters: Is There Evidence Beyond Reasonable Doubt?.

TADF dendronized polymer with vibrationally enhanced direct spin-flip between charge-transfer states for efficient non-doped solution-processed OLEDs (2022)
Journal Article
Li, C., Harrison, A. K., Liu, Y., Zhao, Z., Dias, F. B., Zeng, C., Yan, S., Bryce, M. R., & Ren, Z. (2022). TADF dendronized polymer with vibrationally enhanced direct spin-flip between charge-transfer states for efficient non-doped solution-processed OLEDs. Chemical Engineering Journal, 435, Article 134924. https://doi.org/10.1016/j.cej.2022.134924

A novel type of thermally activated delayed fluorescence (TADF) dendronized polymer was designed and synthesized. Firstly, one side of the asymmetric TADF unit was encapsulated by 3,6-di-tert-butylcarbazole via a conjugated linkage with strong twiste... Read More about TADF dendronized polymer with vibrationally enhanced direct spin-flip between charge-transfer states for efficient non-doped solution-processed OLEDs.

Asymmetrical‐Dendronized TADF Emitters for Efficient Non‐doped Solution‐Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes (2022)
Journal Article
Li, C., Harrison, A. K., Liu, Y., Zhao, Z., Zeng, C., Dias, F. B., Ren, Z., Yan, S., & Bryce, M. R. (2022). Asymmetrical‐Dendronized TADF Emitters for Efficient Non‐doped Solution‐Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angewandte Chemie International Edition, 61(19), Article e202115140. https://doi.org/10.1002/anie.202115140

Two asymmetric “half-dendronized” and “half-dendronized-half-encapsulated” TADF emitters eliminate degenerate excited states, assuring a solely thermal equilibrium route for an effective spin-flip process. AEE properties can minimize the exciton quen... Read More about Asymmetrical‐Dendronized TADF Emitters for Efficient Non‐doped Solution‐Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes.