Skip to main content

Research Repository

Advanced Search

Outputs (3)

DurLAR: A High-Fidelity 128-Channel LiDAR Dataset with Panoramic Ambient and Reflectivity Imagery for Multi-Modal Autonomous Driving Applications (2021)
Presentation / Conference Contribution
Li, L., Ismail, K. N., Shum, H. P., & Breckon, T. P. (2021, December). DurLAR: A High-Fidelity 128-Channel LiDAR Dataset with Panoramic Ambient and Reflectivity Imagery for Multi-Modal Autonomous Driving Applications. Presented at International Conference on 3D Vision, Surrey / Online

We present DurLAR, a high-fidelity 128-channel 3D LiDAR dataset with panoramic ambient (near infrared) and reflectivity imagery, as well as a sample benchmark task using depth estimation for autonomous driving applications. Our driving platform is eq... Read More about DurLAR: A High-Fidelity 128-Channel LiDAR Dataset with Panoramic Ambient and Reflectivity Imagery for Multi-Modal Autonomous Driving Applications.

Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark (2021)
Presentation / Conference Contribution
Isaac-Medina, B. K., Poyser, M., Organisciak, D., Willcocks, C. G., Breckon, T. P., & Shum, H. P. (2021, October). Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark. Presented at 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada

Unmanned Aerial Vehicles (UAV) can pose a major risk for aviation safety, due to both negligent and malicious use. For this reason, the automated detection and tracking of UAV is a fundamental task in aerial security systems. Common technologies for... Read More about Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark.

STGAE: Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising (2021)
Presentation / Conference Contribution
Zhou, K., Cheng, Z., Shum, H. P., Li, F. W., & Liang, X. (2021, October). STGAE: Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising. Presented at 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bari, Italy

Hand object interaction in mixed reality (MR) relies on the accurate tracking and estimation of human hands, which provide users with a sense of immersion. However, raw captured hand motion data always contains errors such as joints occlusion, disloc... Read More about STGAE: Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising.