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Skyrmions are particlelike vortices of magnetization with nontrivial topology, which are usually
stabilized by Dzyaloshinskii-Moriya interactions (DMI) in noncentrosymmetric bulk materials. Exceptions
are centrosymmetric Gd- and Eu-based skyrmion-lattice (SL) hosts with zero DMI, where both the SL
stabilization mechanisms and magnetic ground states remain controversial. We address these here by
investigating both the static and dynamical spin properties of the centrosymmetric SL host Gd2PdSi3 using
muon spectroscopy. We find that spin fluctuations in the noncoplanar SL phase are highly anisotropic,
implying that spin anisotropy plays a prominent role in stabilizing this phase. We also observe strongly
anisotropic spin dynamics in the ground-state (IC-1) incommensurate magnetic phase of the material,
indicating that it hosts a meronlike multi-q structure. In contrast, the higher-field, coplanar IC-2 phase is
found to be single q with nearly isotropic spin dynamics.

DOI: 10.1103/PhysRevLett.134.046702

Topological spin textures can support exotic spin dynam-
ics with a range of potential applications [1,2]. Especially
promising are materials hosting skyrmions, which are
topologically protected, noncoplanar vortices in the mag-
netization, that behave as extended particles [1,3]. While in
bulk they are usually found in noncentrosymmetric materi-
als and stabilized by Dzyaloshinskii-Moriya interactions
(DMI), which select a skyrmion helicity [4], they were also
found to be stabilized by competing magnetic interactions

in bulk centrosymmetric compounds with no preferred
helicity and no net DMI [1,2]. Examples are Gd2PdSi3,
with a triangular spin lattice [5–15], Gd3Ru4Al12
with a breathing kagome spin lattice [12,16–18], and
GdRu2Si2 [19–28], GdRu2Ge2 [29], and EuAl4 [30–32]
with tetragonal spin lattices. Common to these highly
symmetric rare-earth materials is that they host incom-
mensurate skyrmion-lattice (SL) phases with very small
(1.9–3.5 nm) skyrmions that are stable under higher
applied fields (∼1 T) and over a wider range of T than
their DMI-stabilized counterparts [1,2].
The stabilization mechanism for these centrosymmetric

skyrmions is controversial, with suggestions including
(i) short-range geometrical frustration [17,33–36],
(ii) long-range Ruderman-Kittel-Kasuya-Yosida (RKKY)
interactions plus dipolar [10,14,22,24,26,37] or biquadratic
exchange [21,27,29,38–42], and (iii) competition of
orbital-dependent exchange [43,44]. Most, but not all
[38,39], such scenarios require spin anisotropy. The
zero-field (ZF) ground state is also contentious [11], with
early studies of Gd2PdSi3 suggesting an exotic, triple-q
magnetic structure [5,6] [e.g., a lattice of merons and
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antimerons (ML), which are half-skyrmion-like spin
textures [21,25,29,45]], while recent calculations under
scenario (ii) indicated a simpler, single-q helical ground
state [10,37], as found in DMI-stabilized SL hosts [46].
Investigations of centrosymmetric SL hosts have focused
on their static and topological properties, with less attention
[32] paid to emergent spin dynamics [34], which can
elucidate both the stabilization mechanisms and the single-
or multi-q nature of their spin structures. Characteristic
dynamics of SL and related spin textures havebeen observed
in a range of DMI-stabilized SL hosts [1,2,47–49]. For
accessing these, muon spectroscopy (μSR), a local-probe
technique sensitive to spin fluctuations over a unique
frequency range (applicable also at low applied fields and
to conductive samples) [50], has proven valuable [51–57].
However, the narrow T range of DMI skyrmions [1,2,46]
limited the ability to extract the underlying spin-wave
dispersions unambiguously. Namely, when T is comparable
to the transition temperature TN , spin dynamics can become
dominated by multimagnon processes and/or critical fluc-
tuations (usually over TN=2≲ T ≲ 2TN), obscuring the
underlying single-spin-wave dispersion.
In this Letter, we investigate the most-studied centro-

symmetric SL host Gd2PdSi3 [5] using μSR and ac
susceptibility, complemented by density functional theory
(DFT) calculations of muon stopping sites [58]. We find
clear signatures of spin reorientation transitions between
the incommensurate magnetic phases and reveal the highly
anisotropic character of their spin fluctuations. By exploit-
ing the relatively wide region of stability of these phases,
we characterize the low-energy dispersion relations of their
spin-wave excitations. The excitations in the high-field
coplanar incommensurate IC-2 phase are consistent with a
single-q fanlike spin texture [5,6] with nearly isotropic spin
fluctuations. However, in the ground-state ZF incommen-
surate IC-1 phase, we find that low-energy in-plane
(ab-plane) spin fluctuations dominate, while out-of-plane
(c-axis) fluctuations are almost completely suppressed.
This, combined with previous resonant x-ray scattering
(RXS) and resistivity data [5,6], indicates that the IC-1
phase is a complex, triple-q magnetic structure, not the
recently predicted single-q helical structure [10,37]. This
disfavors SL-stabilization scenario (ii) above. Finally, in the
SL phase, out-of-plane fluctuations dominate instead,
with in-plane fluctuations suppressed as a power law in
T. We, therefore, argue that spin anisotropy is a key
ingredient in stabilizing the SL phase in centrosymmetric
rare-earth magnets.
Single crystals of Gd2PdSi3 were synthesized, with five

high-quality ≈9 mm2 × 0.6 mm platelike crystallites with
c-axis normals extracted [15,58]. ac magnetic susceptibility
measurements reproduced the phase diagram from previous
studies [5–7], including the SL phase [Fig. 1(a)]. For μSR
measurements, the crystallites were assembled in a mosaic
with coaligned c axes [58]. The initial muon spin pointed

along the out-of-plane (c-axis) direction in longitudinal-
field (LF) measurements (θ ¼ 0), and at an angle of θ ≈ 50°
from the c axis in ZF and transverse-field (TF) measure-
ments [Fig. 1(b)]. In a μSR experiment, longitudinal (Lkc)
and transverse (T⊥c) muon spin components evolve inde-
pendently [50], producing asymmetries AjðtÞ ∝ hSjμðtÞi in
detector pairs positioned along directions j ¼ L and T
[Fig. 1(b)], where SjμðtÞ is the j-th component of muon spin
SμðtÞ at time t. An intermediate value of θ in ZF and TF
experiments thus allowed us to track the different impacts
of the material’s magnetic state on the time evolution of the
L and T muon spin components from a single experimental
run. On the other hand, in LF experiments (where θ ¼ 0)
only the L muon spin component could be measured. All
measurements were made after first zero-field cooling the
sample to base T, while magnetic fields were always
applied along the c axis, which is an axis of threefold
crystallographic symmetry, and thus a magnetic eigenaxis,
of Gd2PdSi3.
We first performed μSR measurements on warming from

the IC-1 ground state of Gd2PdSi3 in ZF on the GPS
instrument at the Swiss Muon Source (SμS). At low T, a
highly damped oscillation in the T-direction (ab-plane)
muon spin component was observed at early times
t ≪ 0.1 μs [Fig. 2(a)] due to a broad distribution of
quasistatic local fields at the muon site [58] that originate
from long-range incommensurate magnetic ordering of
Gd3þ spins. At later times, up to t ≈ 10 μs, a further
exponential relaxation was observed due to dynamical
fluctuations of Gd3þ spins slower than the muon precession
frequency [50]. The measured T-direction asymmetry data
were fitted using AðtÞ ¼ ½as − ar�e−σ2t2 þ are−λt þ abgd,
where as ¼ const. is the total sample asymmetry and
abgd ¼ const. is the background due to muons hitting the
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FIG. 1. (a) Real part of ac susceptibility with an applied field
along the c axis. Phase boundaries (white) and μSR scans (green)
with the corresponding transition temperatures TN are shown.
Phase assignments, including our suggested assignment of the
IC-1 phase as a meron-antimeron lattice (ML), combine evidence
from a range of experimental techniques [5–7]. (b) Sample and
detector arrangement for μSR measurements. The initial muon
spin Sμð0Þ lies at an angle θ to the applied field Hkc, which
points along the longitudinal direction L (blue). The transverse
direction T (red) lies in the hexagonal ab plane.
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sample holder. The early-time damping rate σ in this model
is proportional to the average strength of quasistatic local
magnetic fields at the muon site [58] and is expected to
roughly scale with the magnitude of ordered moments in
the sample. ar is the late-time relaxing asymmetry due to
the fraction of local fields that initially point along the
measured muon spin component [58], and λ is the dynami-
cal relaxation rate due to slow fluctuations of fields
orthogonal to the measured muon spin component [50,58].
Fit results for the T direction are shown in Figs. 2(b)

and 2(d) with the transition temperature TN ¼ 22ð1Þ K
consistent with ac susceptibility [Fig. 1(a)]. In the itinerant
paramagnetic (PM) regime at T > TN we find σ ≈ 0.
Around T ≈ TN , critical spin fluctuations cause λT to
exhibit a divergence characteristic of a continuous phase
transition as we enter the IC-1 phase. In the ordered IC-1
phase (T < TN) the average local-field strength increases
and saturates as an order parameter, σ ∝ ½1 − ðT=TNÞ3=2�β
[32,50] with β ¼ 0.7ð1Þ, which is large but close to
β ¼ 0.50ð5Þ found in the centrosymmetric SL host
EuAl4 in ZF [32]. At low T, slow spin fluctuations cross
over into a power law λT ∝ Tp with p ¼ 0.96ð6Þ. A low-T
power-law dependence of the dynamical relaxation rate

could be understood within spin-wave theory for a two-
magnon process, which for a single gapless magnon band
predicts [58–60]

p ¼ 2D
s

− 1; ð1Þ

where D ≤ 3 is the (integer) dimensionality of spin-wave
excitations and s is the dominant power in their dispersion
relation ω ∝ jq − q0js around the ordering wave vector q0.
Usually, s ¼ 2 for ferromagnetic (q0 ¼ 0) and s ¼ 1 for
antiferromagnetic and incommensurate states (q0 ≠ 0)
[67]. The measured T-direction p ≈ 1 in the IC-1 phase
would thus correspond to a 1D (single-q) magnetic
structure (D ¼ s ¼ 1), if the single-magnon-band approxi-
mation were valid.
To test this, we also fitted the L-direction (c-axis)

data using the same model to obtain the relaxation rate
λL [Fig. 2(b)]. Assuming bulk uniaxial symmetry around
the c axis, we have [50,58] λL ¼ 2λab and λT ¼ λab þ λc,
where λab and λc are the relaxation rate contributions due to
dynamical fluctuations of in-plane and out-of-plane mag-
netic fields at the muon site, respectively. At the nearly
symmetric in-plane muon site that we obtain from DFT
muon stopping site calculations (near the center of a Gd3þ
triangle) [58], λab and λc ultimately arise from fluctuations
of in-plane and out-of-plane Gd3þ spin components,
respectively. This can be seen from a symmetry decom-
position of long-wavelength Gd3þ spin textures under local
reflections over the ab-plane and rotations about the c-axis
[for details, see the Supplemental Material (SM) [58]].
Figure 2(c) shows the extracted λab and λc. Remarkably, in
contrast to the single-magnon-band approximation where
we should have λab ∝ λc ∝ Tp (for a proof, applicable also
to general single-q states, see SM [58]), we instead find
λab ∝ T but λc ≈ 0 in the IC-1 phase. Our first result is,
therefore, that the IC-1 phase is not a simple single-q
magnetic structure, as was predicted [10,37]. Instead, there
appear to be multiple, highly anisotropic spin-fluctuation
modes in this phase. Such behavior is expected for
extended, multi-q spin textures [34,47], such as the
hypothesized ML state [5,6]. Their predominantly in-plane
nature appears consistent with easy-plane anisotropy found
in this phase [11].
Next, we turn to the IC-2 and SL phases. Here, we

performed separate μSR measurements in a TF of 0.75 Ton
the GPS instrument at SμS and an LF of 0.75 T on the HiFi
instrument at the STFC-ISIS Facility. We warmed from the
low-T SL to the intermediate IC-2 phase, and finally to the
PM phase [Fig. 1(a)]. The late-time data were well
described by the same model as for the ZF data, simplified
to AðtÞ ¼ are−λt þ abgd at late times. From T-direction TF
data and L-direction LF data we again extracted in-plane
λab and out-of-plane λc spin-fluctuation contributions,
as above.
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FIG. 2. IC-1 phase in ZF. (a) ab-plane (T-direction) muon
asymmetry at early (left) and late times (right). Solid lines on the
left-hand panel are guides to the eye; dashed lines are fits using
the model described in the text. The horizontal dashed line shows
the background level abgd. (b) Dynamical relaxation rates and
(c) contributions to these rates due to out-of-plane (c-axis) and in-
plane (ab-plane) spin fluctuations. Solid lines at T < TN are
guides to the eye, which include a critical divergence near TN
(evident as an increase in λ above ∼10 K); dashed lines are the
single-power-law low-T limits. (d) Strength of quasistatic mag-
netic fields extracted from fits of T-direction muon asymmetry.

PHYSICAL REVIEW LETTERS 134, 046702 (2025)

046702-3



The resulting relaxation rates are shown in Fig. 3(a)
with transition temperatures TN1 ¼ 12ð1Þ K and
TN2 ¼ 20ð1Þ K consistent with ac susceptibility [Fig. 1(a)].
The in-plane relaxation rate λab shows a critical divergence
at T ≈ TN2 due to a continuous transition between the PM
and IC-2 phases. In the IC-2 regime (TN1 < T < TN2) we
find nearly isotropic spin fluctuations with λc ≈ λab.
[Fitting these to a gapped model ∝ e−Δ=T also yields the
same characteristic energy scales Δ ¼ 47ð3Þ and 49(3) K
for λc and λab, respectively.] Any low-T power-law spin-
wave behavior is masked by near-critical fluctuations and
interrupted by a transition to the SL phase at TN1.
The phase transition at TN1 does not show any critical

divergence in the muon relaxation rate, only a change of
slope, implying that it is first order, consistent with the
topologically nontrivial nature of the SL phase [1,34].
While nearly isotropic at TN1, we find that highly aniso-
tropic spin fluctuations emerge with lowering T < TN1,
similarly to the IC-1 phase. However, while in the IC-1
phase spin fluctuations were predominantly in plane
(λc ≪ λab) the dominant spin fluctuations in the SL phase
are instead out of plane, with λc ≈ const. ≫ λab ∝ Tp and

p ¼ 2.0ð2Þ. We note that p ≈ 2 would uniquely correspond
to D ¼ 3, s ¼ 2 (3D ferromagnetic) spin excitations under
the single-band spin-wave approximation [Eq. (1)], but this
is inconsistent with a T-independent λc [58]. Instead, there
appears to be a large low-energy spin density of states due
to multiple spin fluctuation modes, as expected for SL
phases [34,47–49,68], that are predominantly polarized out
of plane (e.g., skyrmion breathing modes [47,68]).
We next turn to static properties of the SL and IC-2

phases in an applied field of 0.75 T. Figure 3(b) shows late-
time relaxing asymmetries ar;T and ar;L in the in-plane (T)
and out-of-plane (L) directions, respectively. Both change
rather abruptly at T ≈ TN2 due to the onset of magnetic
order. Assuming bulk uniaxial symmetry we expect [50,58]
ar;T ∝ hB̂2

ai ¼ hB̂2
bi and ar;L ∝ hB̂2

ci, where B̂ ¼ B=jBj is
the initial direction of a quasistatic local fieldB at the muon
site. In Fig. 3(b) we see that ar;T exhibits a broad peak in the
IC-2 phase at TN1 < T < TN2, while ar;L exhibits a
minimum. These both indicate approximately coplanar
quasistatic magnetism in this phase. In the SL phase, the
difference between ar;T and ar;L becomes smaller, implying
that local field directions become more isotropic, as
expected for a noncoplanar spin texture [1–3]. Our obser-
vation of coplanar magnetism in the IC-2 phase and
noncoplanar magnetism in the SL phase is consistent with
RXS results [5], where this was argued based on the
ellipticity of the magnetic moments of individual magnetic
Bragg peaks. However, our conclusions are based on a
complementary [11], real-space determination of local-
field directions only accessible to local probes like the
muon [50]. Intriguingly, via field-dependent quasistatic
μSR measurements, we find that the width of the local field
distribution does not scale with the average local-field
strength in the SL phase, but does do so in the IC-1 and
IC-2 phases (see the SM [58]).
Finally, to assess the low-T dynamics of the IC-2 phase,

we performed μSR measurements in an LF of 2 T on the
HiFi instrument. The late-time L-direction muon data were
well described by the same model as for the 0.75 T data,
where the fitted relaxation rate λL ¼ 2λab [Fig. 3(c)] shows
a transition temperature TN ¼ 15ð1Þ K consistent with ac
susceptibility [Fig. 1(a)]. Near T ≈ TN the muon relaxation
rate exhibits a critical divergence characteristic of a
continuous phase transition as we enter the IC-2 phase,
and at T < TN it crosses over into a low-T power law
λL ∝ Tp with p ¼ 1.2ð3Þ. The observed isotropy of spin
fluctuations in this phase [Fig. 3(a)] makes single-band
spin-wave theory [Eq. (1)] applicable, with the measured
p ≈ 1 indicating that the IC-2 phase is a 1D (single-q)
magnetic structure (D ¼ s ¼ 1), as previously suggested
[5,6]. This stands in contrast to multi-q IC-1 and SL phases
found at lower applied fields.
To summarize, our finding of different low-T in-plane

and out-of-plane spin fluctuations in both noncoplanar
SL and ground-state IC-1 phases of centrosymmetric
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Gd2PdSi3 contrasts with isotropic spin fluctuations found
in the coplanar single-q IC-2 phase. This should supply a
clue to the stabilization mechanism for centrosymmetric
skyrmions. In contrast to DMI-stabilized skyrmions
[47–49,68,69], systematic predictions for centrosymmetric
SL spin dynamics for different stabilization mechanisms
are lacking. Nevertheless, it seems unlikely that a spin
model without strong intrinsic anisotropy could explain the
observed highly anisotropic SL and IC-1 spin dynamics.
This agrees with suggestions that spin anisotropy
[11,34,42], combined with long-range interactions, is
important for stabilizing the SL phase [10,17,27,40]. A
quantitative determination of the anisotropy of intrinsic
magnetic interactions in Gd2PdSi3 would thus be crucial
[11]. We note that anisotropic magnetic interactions are
also found in other representatives of the hexagonal
R2PdSi3 family (R ¼ rare earth) [70,71], in the tetragonal
centrosymmetric SL hosts GdRu2Si2 and GdRu2Ge2
[19,44,72–74], and even (weakly) in cubic Gd-based mag-
nets [75]. Furthermore, our observation that the ground-
state IC-1 phase is a multi-q magnetic structure (triple-q,
based on previous RXS [5,6] and neutron-scattering [13]
Bragg-peak studies) suggests it is the exotic ML state, as
hypothesized in Ref. [5] from RXS and resistivity mea-
surements. While double-q (square-lattice) ML-like states
have recently been reported in thin-plate DMI-based
Co8Zn9Mn3 [45], and bulk tetragonal centrosymmetric
GdRu2Ge2 [29] and GdRu2Si2 [21] (in two phases), the
IC-1 phase would be a unique example of a triple-q
magnetic ML. Furthermore, the IC-1 phase is the ZF
ground state in Gd2PdSi3, while the ML states in
Co8Zn9Mn3 and GdRu2Ge2 are only stabilized under an
applied field, and the claimed ZF ML phase in GdRu2Si2
has recently been reinterpreted as a topological-charge-
stripe state instead [23,25,28]. The multi-q nature of the ZF
IC-1 phase represents another challenge to theory, as
calculations suggested that the ZF state should instead
be single-q under the RKKYþ dipolar skyrmion stabili-
zation scenario (ii) [10,37]. Our findings thus disfavor this
as the skyrmion stabilization mechanism. Nevertheless,
RKKY interactions were found to be strong in the related
centrosymmetric SL host GdRu2Si2 via angle-resolved
photoemission spectroscopy (ARPES) [24,26] and quan-
tum-oscillation measurements [22], complemented by
ab initio calculations [21,22,24,26], so they could still
play a role. A very recent ARPES and ab initio study of
Gd2PdSi3 seems to support this [14].
In conclusion, in our muon-spectroscopy study of

centrosymmetric Gd2PdSi3 we have found large anisotropy
in spin dynamics, with qualitatively different behavior of
dominant out-of-plane and subdominant in-plane spin
fluctuations in the SL phase. We have also established
the meronlike triple-q nature of its incommensurate IC-1
ground state with dominant in-plane, and nearly absent out-
of-plane, spin fluctuations. The higher-field IC-2 phase was

found to be coplanar and single-q with isotropic spin
fluctuations. Our results suggest that the enigmatic stabi-
lization mechanism behind SL phases in centrosymmetric
Gd- and Eu-based materials is likely to be intimately related
to spin anisotropy, and not solely RKKYþ dipolar. Further
local-probe studies of these and related centrosymmetric
compounds [1,2,61,76] should be informative in exploring
this. Studies of anisotropic spin excitations and their
dispersions via inelastic neutron scattering [10], and the
anisotropy of static spin correlations via RXS, especially on
single crystals, would also be valuable. Finally, our μSR
methods could also be extended to study low-T spin
anisotropy and dynamics of metastable skyrmions in
DMI-based SL hosts [1].
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