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Abstract
Quantum systems with SU(N) symmetry are paradigmatic settings for quantum many-body
physics. They have been studied for the insights they provide into complex materials and their
ability to stabilize exotic ground states. Ultracold alkaline-earth atoms were predicted to exhibit
SU(N) symmetry forN= 2I+ 1= 1,2, . . . ,10, where I is the nuclear spin. Subsequent experiments
have revealed rich many-body physics. However, alkaline-earth atoms realize this symmetry only
for fermions with repulsive interactions. In this paper, we predict that ultracold molecules shielded
from destructive collisions with static electric fields or microwaves exhibit SU(N) symmetry, which
holds because deviations of the s-wave scattering length from the spin-free values are only about
3% for CaF with static-field shielding and are estimated to be even smaller for bialkali molecules.
They open the door to N as large as 32 for bosons and 36 for fermions. They offer important
features unachievable with atoms, including bosonic systems and attractive interactions.

1. Introduction

Quantum systems with SU(N) symmetry offer fascinating settings for quantum many-body physics. They
have been studied for the insights they provide into complex materials and their ability to stabilize exotic
ground states. In practical terms, SU(N) symmetry can be realized for particles that have N quantum states if
the interactions are the same for all combinations of the states.

Ultracold alkaline-earth atoms with nuclear spin I have been predicted and observed [1–4] to exhibit
SU(N) symmetry based on their nuclear spin states, with N up to 2I+ 1. This arises because the nuclear
spins are very weakly coupled to other degrees of freedom. Experiments on these systems have allowed the
study of a wealth of phenomena: bosonization of high-spin fermions by measurements of collective
modes [5–7], flavor-selective Mott transitions in a lattice [8], and the SU(N) Fermi–Hubbard model’s
equations of state [9–11] and short-ranged magnetic correlations [12]. The symmetry is also responsible for
the temperature T= 1nK reached in [12]; this is the lowest temperature ever achieved for fermions. Unlike
ordinary SU(2) spins, quantum fluctuations need not become classical for large spin. Consequently, exotic
behavior is predicted to occur in lattices as the temperature is lowered further. Predicted phases abound for
different lattice geometries and N, including chiral spin liquids, a topological phase of matter never before
observed [13, 14]. The itinerant or doped SU(N) Hubbard models are little explored and likely to show
extremely rich phenomena.

However, alkaline-earth-atom realizations of SU(N) physics have important limitations. One constraint
is that, to have I ̸= 0 (N > 1), such atoms must be fermions to satisfy the ‘even–even’ rule of nuclear
physics [15]. Another constraint is that, empirically, all the interactions in the experimentally viable ultracold
alkaline-earth atoms, Sr and Yb, are repulsive, i.e. have a positive scattering length a [4]. Moreover, the
important tool of magnetic Feshbach resonances that is used to tune interactions in alkali atoms is absent for
ground-state alkaline-earth atoms, since they lack unpaired electrons.
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Figure 1. Applications of SU(N) symmetry with shielded ultracold molecules: (a) formation of bound molecular clusters and
their dissociation by thermal (temperature T) or quantum (e.g. lattice tunneling t) fluctuations, reminiscent of deconfinement in
QCD, (b) ordered phases in optical lattices including charge-density waves (CDW) and color superfluids (CSF), and (c) states
with large quantum fluctuations arising from large N and the high degree of symmetry.

Rapidly advancing experiments with ultracold molecules offer exciting possibilities for many-body
physics, quantum technologies, precision measurement, and studying chemical reactions [16–20]. A wide
variety of ultracold molecules have been produced, including bialkali molecules (hereafter alkali dimers)
produced by assembly of ultracold atoms, and other species produced by direct laser cooling.

Initial experiments on collisions of ultracold molecules revealed collisional losses that occur whenever
pairs of colliding molecules reach short range (R≲ 100 a0). These losses occur for both reactive and
non-reactive molecules and impede the creation of interesting many-body states. Their discovery stimulated
theoretical proposals to ‘shield’ the molecules by creating intermediate-range repulsive interactions using
static electric fields [21–25] or microwave radiation [26, 27]. The shielding methods prevent pairs of
molecules reaching short range, where most losses occur, and also suppress most inelastic collisions. Both
static-field and microwave shielding have now been demonstrated experimentally [28–34], and two-color
microwave shielding has recently been used to achieve Bose–Einstein condensation for NaCs [35].

In this paper, we show theoretically that shielded molecules can realize SU(N) systems that circumvent
the constraints of alkaline-earth atoms. This arises because molecules can have many spin states, and the
scattering lengths for s-wave collisions of shielded molecules depend only weakly on their spin states.
Fermionic and bosonic molecules are available, and the sign and magnitude of the scattering length can be
tuned by varying the control fields that generate the shielding [25, 27]. The dipolar interactions may also be
tuned. Experimentally available molecules can realize all N up to N = 36, for Na40K [32], much larger than
for Sr (N = 10) and Yb (N = 6).

The properties of SU(N) molecular systems open interesting paths for many-body physics. Attractively
interacting SU(N) systems are predicted to have rich pairing structures, for example transitions between
color superfluid and trion phases in SU(3) systems [36–41], as illustrated in figure 1(a). This has similarities
to the crossover from a confining hadronic phase to a parton gas in high-energy physics [42]. In a lattice,
these trions can order, for example forming a ‘charge’-density wave, as shown in figure 1(b). Bosonic SU(N)
systems have garnered interest as integrable systems [43], holographic duals [44], and ferromagnets with
non-Abelian symmetry-breaking [45]. In all cases the large, experimentally tunable N (figure 1(c)) provides
a control parameter, with different interesting physics potentially arising for each N. Such examples offer a
small glimpse of the possibilities offered by shielded ultracold molecules.

Section 2 presents coupled-channel calculations for collisions of CaF molecules in different spin states,
shielded with a static electric field. CaF is chosen because it has only 4 spin states, which makes the
calculations tractable. Even CaF, which has much larger spin couplings than alkali dimers, satisfies SU(N)
symmetry to about 3% relative accuracy, as measured by the deviations of scattering lengths for particular
spin states from the spin-free value. We use the coupled-channel results to develop a model of the spin
dependence that can give quantitative estimates for other molecules. The model shows that SU(N) symmetry
will hold to even higher accuracy for alkali dimers. Section 3 derives many-body models for these systems,
especially the SU(N) Hubbard models that describe shielded molecules in an optical lattice. Section 4
summarizes, suggests experiments to verify the predictions, and outlines next steps for the field.
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Figure 2. Effective potentials (adiabats) for spin-free CaF at the threshold (ñ,mn) = (1,0)+ (1,0) for fields of 23 and
24.5 kV cm−1. The differences between the adiabats at different fields allow tuning of the scattering length. The inset shows an
expanded view of the long-range potential well.

2. Shielded interactions of molecules

A pair of polar molecules, k= 1,2, interact at long range via the dipole–dipole interaction

Ĥdd =−
3
(
µ1 · R̂

)(
µ2 · R̂

)
−µ1 ·µ2

4πϵ0R3
, (1)

where R is the intermolecular distance, R̂ is the corresponding unit vector, and µk is the dipole moment of
molecule k which lies along the molecular axis. For an s-wave collision, with relative angular momentum
(partial-wave) quantum number L= 0, the dipole–dipole interaction averages to zero. However, it has matrix
elements between L= 0 and 2, both diagonal and off-diagonal in molecular pair state. The matrix elements
off-diagonal only in L cause an effective long-range attraction proportional to d4/R4 [46], where d is the
space-fixed dipole moment of each molecule (for static-field shielding) or the rotating dipole (for microwave
shielding).

Both static-field and microwave shielding operate by engineering a field-dressed pair state to be a small
energy∆E below the initial state of interest. Matrix elements of Ĥdd that connect the two pair states produce
a repulsive contribution to the interaction potential for the upper (initial) state. Shielding occurs when the
repulsion is sufficient to prevent pairs of colliding molecules coming close together. The repulsion is
proportional to (d4/∆E)/R6 at long range.

The combination of long-range attraction and shorter-range repulsion produces a potential well at long
range, whose depth and position depend on the molecule and the field applied. This allows considerable
control over the scattering length, which for some molecules may be tuned from positive to negative values
and even through poles [25, 27].

We focus here on static-field shielding, using coupled-channel scattering calculations. We begin with
spin-free calculations on bosonic CaF in its vibronic ground state (X2Σ+, v= 0) in section 2.1 and then
consider the effects of electron and nuclear spins in section 2.2. We use these results to develop a semiclassical
model of the effects in section 2.3 and apply the model to experimentally available alkali dimers in section 2.4.

2.1. The spin-free case
We consider collisions between molecules in the state (ñ,mn) = (1,0), for which static-field shielding is most
effective. The single-molecule eigenstates are labeled by hindered-rotor quantum numbers ñ, which correlate
at zero field with the free-rotor quantum number n, andmn, its projection onto z.

It is helpful to consider the effective potentials for scattering. We define these as adiabats that are the
R-dependent eigenvalues Ui(R) of the pair Hamiltonian given in appendix A. An electric field slightly
exceeding a critical value brings the pair state (ñ1,mn,1)+ (ñ2,mn,2) = (1,0)+ (1,0) close to, and above, the
state (0,0)+ (2,0) [21]. These two pair states mix via Ĥdd to produce a repulsive interaction for
(1,0)+ (1,0). Figure 2 shows the spin-free adiabats for s-wave scattering for two CaF molecules in state
(ñ,mn) = (1,0) at two values of an applied electric field F that produce effective shielding. It is the variation
of the adiabats with electric field that allows tuning of the scattering length.

There are two sources of two-body loss. First, the repulsion does not extend all the way to R= 0. There is
a repulsive barrier, and some colliding pairs may tunnel through it to reach short range (R≲ 100 a0), where
loss may occur. Secondly, there can be inelastic collisions that produce molecules in lower field-dressed
states, particularly in the pair state (0,0)+ (2,0), which is just below the initial one. The solid lines in
figure 3 show the calculated rate coefficients for spin-free elastic scattering and total (inelastic+ short-range)
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Figure 3. Collision rate coefficients for CaF. Solid lines show spin-free rate coefficients for elastic scattering (red), inelastic
scattering (green) and short-range loss (black) at collision energy Ecoll = 10 nK× kB, over the range of electric fields F where
shielding is effective. The corresponding results including spin, for molecules in the initial pair state (g,mg) = (1,1)+ (1,1), are
shown as dashed lines. The resulting curves for elastic scattering and short-range loss lie underneath the spin-free ones. The
dashed blue line shows the contribution from the 1-molecule inelastic transition to (1,0)+(1,1). The calculations including spin
use the spin-N206-L6 basis set described in appendix B.

loss for CaF as a function of F [24]. The overall effectiveness of shielding may be characterized by the ratio γ
of rate coefficients for elastic scattering and total loss; this can be up to 107 for CaF and much larger for
molecules such as NaCs [25]. The calculations also provide the complex s-wave scattering length,
a(F) = α(F)− iβ(F), where β arises due to loss and L-changing collisions and is small when shielding is
effective. The real part α(F) is of principal interest here. Figure 4(a) shows α(F) for CaF from spin-free
coupled-channel calculations.

2.2. Dependence on spin state
SU(N) symmetry exists when the shielded interactions are almost independent of molecular spin state and
diagonal in it. Here we describe an approach to estimate the dependence on spin state and present quantum
scattering calculations for CaF that validate the estimate. We then give estimates of the spin dependence for a
variety of ultracold molecules of current experimental interest.

Electron and nuclear spins are described by the Hamiltonian for fine and hyperfine structure, ĥfhf, given
in appendix C. For CaF in a strong electric field, the electron spin s= 1/2 and the nuclear spin i = 1/2 of 19F
couple to form g, with projectionmg; these are approximately conserved and can take values (g,mg) = (0,0),
(1, 0) and (1,±1).

We first diagonalize the single-molecule Hamiltonian, including ĥfhf. We calculate the space-fixed dipole
moments dj = ⟨j|µz|j⟩ for j = (ñ,mn,g,mg) with (ñ,mn) = (1,0). It is convenient to define fractional changes
∆dj = (dj − d0)/d0 from the spin-free value d0. These depend only weakly on F: for CaF at F= 23 kV cm−1,
the values are−1.9× 10−5, 8.3× 10−4 and−4.4× 10−4 for the states (g,mg) = (0,0), (1, 0) and (1,±1),
respectively. The coefficient of the long-range attraction is proportional to d4j and thus differs by at most

0.33% from d40. We may expect that the effective potentials will differ by about this amount.
To test this simple model of the interactions, we perform full coupled-channel calculations including

electron and nuclear spins for both molecules. Details are in appendices B and C. The calculations produce
scattering lengths ajj′ and rate coefficients for elastic scattering and loss, as before, but now for each pair of
spin states j = (g,mg) and j ′ = (g ′,m ′

g). In zero magnetic field there are 7 distinct pairs, because pairs with
(mg,m ′

g) = (0,±1) are equivalent, as are the pairs (±1,±1), though the latter are different from (±1,∓1).
Shielding remains effective for all spin states, even for distinguishable pairs. The elastic scattering and

short-range loss are almost unaffected. However, there are additional inelastic transitions for some spin states
due to spin-changing collisions. In particular, a molecule initially in (g,mg) = (1,1) can undergo a transition
to (1,0). The rate coefficient for this process in a collision of two such molecules is shown as a blue dashed
line in figure 3. This dominates the total inelastic loss in the shielding region, though inelastic transitions to
other rotor pair states dominate at F> 25 kV cm−1, where shielding is ineffective. The spin-changing rate
coefficients are no larger than 10−14 cm3 s−1 and the ratio γ remains above∼ 105. The spin-changing rates
are similar for other collisions involving a molecule in state (1,1), and otherwise very small. This satisfies the
requirement that the interactions are diagonal in spin state.

The real part of the scattering length α(F) depends only weakly on spin state. The solid lines in
figure 4(b) show the differences δαjj′(F) = αjj′(F)−α0(F) between the scattering lengths and the spin-free
value α0(F) of figure 4(a) as a function of field. The values αjj′ not shown are close to (αjj +αj′j ′)/2. This
demonstrates that the scattering lengths are independent of spin state to within about 5% for shielded CaF.
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Figure 4. Effect of spins on scattering length. (a) Real part α(F) of the scattering length for CaF from spin-free calculations. (b)
Scattering lengths αjj′ (F), including the effects of spin, shown as differences from spin-free values. Solid lines are from
coupled-channel calculations; dashed lines are from the model of equation (7). Each spin combination is labeled by gmg + g ′m ′

g .

Figure 5. Effect of spins on the adiabats. Fractional differences∆Ujj′ (R) between adiabats with and without spin, defined by

equation (2), for CaF at 23 kV cm−1. Each spin combination is labeled by gmg + g ′m ′
g .

The coupled-channel calculations provide adiabats as in figure 2, but now for each spin combination.
They are almost indistinguishable on the scale of figure 2. However, they cross zero at slightly different inner
turning points Rtjj ′ , so to show their differences we define

∆Ujj′ (R) =
Ujj′

(
R+Rtjj ′ −Rt0

)
−U0 (R)

U0 (R)
, (2)

shifting Ujj′(R) slightly in R so that its turning point matches Rt0. Figure 5 shows∆Ujj′(R) for all spin
combinations of CaF at 23 kV cm−1. The differences between the adiabats including spin and the spin-free
adiabat are no more than 2% over the entire classically allowed range of R. The effective potential for
interaction of molecules in spin states j and j′ has long-range form

Ujj′ (R) =−
4h̄2D2

jj′

15µredR4
, (3)

where Djj′ = djdj′µred/(4πϵ0h̄2) is the dipole length for space-fixed dipoles dj and dj′ , and µred is the reduced
mass. At large R, the ratios of the adiabats are accurately given by the corresponding ratios of D2

jj′ .

2.3. Effective-potential model of spin dependence
In a semiclassical approximation [47], the s-wave scattering length a for a single channel with a long-range
potential proportional to R−4 may be written in terms of a phase integral Φ,

a= Rt −
√

8/15D tan
(
Φ− π

4

)
. (4)
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Figure 6. Features of the spin-free effective potential for CaF. The blue curve shows the phase integralΦ over the range of electric
fields F where shielding is effective. The red curve shows the corresponding inner turning point Rt.

Here Rt is the inner turning point at zero collision energy, with U(Rt) = U(∞) = 0, D is the dipole length,
and

Φ =

ˆ ∞

Rt

k(R) dR, (5)

where k(R) = (2µred|U(R)|/h̄2)1/2. The first term in equation (4), Rt, is omitted in [47], but can be a
substantial fraction of D for shielded collisions; for CaF at 23 kV cm−1, with D≈ 1290 a0, Rt contributes
about 380 a0 to the scattering length. Both Φ and Rt are shown for CaF in figure 6, as a function of field.

If we take the spin-free adiabat U0(R) as a reference, with phase k0(R) and phase integral Φ0, the integral
Φjj′ for a slightly shifted potential Ujj′(R) for the interaction between species in spin states j and j′ is

Φjj′ =

ˆ ∞

Rtjj ′

kjj′ (R) dR

≈
ˆ ∞

Rt0

k0 (R)
[
1+ 1

2∆Ujj′ (R)
]
dR. (6)

As shown in figure 7, Φjj′ scales approximately with D2
jj′ and Rt scales approximately with D−1

jj′ . These
dependencies apply to varying spin combination at constant field, but not to varying field, which also
changes the separation of the field-dressed states.

Differentiating equation (4) with these dependencies on D gives

da

dD
≈−Rt/D−

√
8/15tan

(
Φ− π

4

)
− 2Φ

√
8/15sec2

(
Φ− π

4

)
≈(a− 2Rt)/D− 2Φ

√
8/15sec2

(
Φ− π

4

)
. (7)

The last term is large near any poles in a; it has minima near Φ/π = integer+ 1/4, which is close to the
zeroes in a, but is nevertheless usually the largest term under shielding conditions.

For the coupled-channel problems involved in shielding, the arguments above apply to the real part α of
the scattering length. The variations in α from its spin-free value α0 may be approximated

δαjj′ =
(
Djj′ −D0

) dα
dD

≈ D0

(
∆dj +∆dj′

) dα
dD

, (8)

where D0 = d20µred/(4πϵ0h̄2).
The dashed lines in figure 4 show the results of the model for δαjj′ , compared to the coupled-channel

results including spin for CaF (solid lines). The model captures the overall behavior well. Details of the
model for CaF at 23 kV cm−1 are given in table 1, including the spin combinations not shown in figure 4. At
this field, Φ for CaF is slightly less than 3π/4; this is close to a pole in α as a function of Φ, with α large and
negative. Here the secant term in equation (7) dominates, and small changes in Φ cause large fractional
changes in α. Nevertheless, even for CaF at 23 kV cm−1, where dj varies by up to 0.13% between spin states,
the values of δαjj′ are no more than 3% of α. For systems where Φ is not close to a pole, there will be less
amplification of dα/dD by the secant term in equation (7).
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Figure 7. (a) Phase integralsΦjj′ and (b) inner turning points Rtjj ′ for different spin states j as a function of dipole length Djj′ , for
three different electric fields in the shielding region. All quantities are expressed as ratios to their spin-free values. The slopes of
the plots show that, at each field, Φjj′ scales approximately as D2

jj′ and Rtjj ′ scales approximately as D−1
jj′ .

Table 1. Comparing changes in scattering lengths predicted by the model with coupled-channel calculations including spin. For CaF at
23 kV cm−1, D0 = 1292 a0, Rt0 = 381.7 a0,Φ0/π = 0.6628 and α0 =−2980 a0. All lengths are in units of a0.

δαjj′ δαjj′

(g,mg)+ (g ′,m ′
g) Djj′ Rtjj ′ Φjj′/π (model) (c.c.)

(0,0)+(0,0) 1292 381.7 0.6628 2.22 4.28
(0,0)+(1,0) 1293 381.4 0.6638 −46.5 −41.7
(0,0)+(1,1) 1292 381.9 0.6622 26.6 26.3
(1,0)+(1,0) 1294 381.0 0.6648 −95.3 −88.7
(1,0)+(1,1) 1293 381.6 0.6633 −22.1 −19.2
(1,1)+(1,1) 1291 382.1 0.6617 51.0 48.8
(1,1)+(1,−1) 1291 382.1 0.6617 51.0 48.8

2.4. Extension to alkali dimers
CaF has only four spin states, so can be used to realize SU(N) up to N = 4. Other molecules, particularly
alkali dimers, can reach much greater N. A singlet molecule AB with nuclear spins iA and iB has
(2iA + 1)(2iB + 1) spin states. Thus alkali dimers with two spin-3/2 nuclei, such as Na87Rb or Na39K, can
reach N = 16, while bosonic molecules with larger spins, such as NaCs, can reach N = 32. Fermionic Na40K
can reach N = 36.

Alkali dimers have a hyperfine Hamiltonian [48] similar to that for CaF, but with the electron spin
replaced by a second nuclear spin and additional terms arising from nuclear quadrupole coupling.
Coupled-channel calculations that fully include spin are challenging for these molecules, because the spin
space is so much larger: for NaCs, for example, the number of spin functions for the pair is 64 times larger
than for CaF, and the computer time scales as the cube of this. Nevertheless, we can estimate the spin
dependence, using the effective-potential model of equation (8).

The range of scattering lengths for different spin states depends on the range of space-fixed dipole
moments dj for the molecule concerned. Table 2 summarizes the fractional changes in dj across spin states for

7
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Table 2. Range of dipole moments (dmax − dmin)/d0 for different spin states of the field-dressed level (ñ,mn) = (1,0) for alkali dimers
and CaF. For each molecule, we choose an electric field where static-field shielding is effective, but the ranges of dipole are only weakly
dependent on field. The value of Rt0 is also given at the chosen field, but this depends much more strongly on field.

Molecule F (kV cm−1) |(dmax − dmin)/d0| Rt0 (a0)

RbCs 2.7 4.3× 10−4 750
Na39K 7.1 8.3× 10−5 630
Na40K 7.1 8.9× 10−5 a

Na41K 7.0 1.0× 10−4 620
NaRb 4.5 4.9× 10−4 650
NaCs 2.5 2.4× 10−5 870
CaF 23 1.3× 10−3 380

a For Na40K, which is fermionic, the lowest channel has L= 1 and its adiabat never drops

below zero energy.

Figure 8. Predicting spin-dependent changes in scattering length for NaCs from the model. (a) Spin-free turning point Rt0 and
real part of scattering length α0 for NaCs at fields where shielding is effective; (b) real parts of αjj from equation (7), including the
effects of spin, shown as differences δαjj from spin-free values. Results are shown for spin states j with maximum and minimum
values of dj and span the range of possible values of δαjj ′.

several ultracold molecules of current interest, for the field-dressed level (ñ,mn) = (1,0) that can be shielded
with a static electric field. All the alkali dimers have ranges substantially smaller than CaF.

NaCs is particularly interesting, because α can be tuned close to zero at F≈ 2.395 kV cm−1 [25], in the
region where shielding is effective. It has 32 hyperfine states and a particularly small range of dipoles, because
NaCs has unusually small nuclear quadrupole coupling constants [49]. Figure 8(a) shows Rt0(F) and α0(F)
from spin-free coupled-channel calculations on NaCs. Figure 8(b) shows δαjj(F) from equation (7) for the
hyperfine states with the largest and smallest values of dj. The variation in αjj′ between spin states is only
about 0.1% at most fields, and only about 3 a0 around the zero in α.

3. Many-body physics

Molecular systems with an SU(N) symmetry offer vast new possibilities for quantum simulation and
many-body physics. The large spin degeneracy and the high symmetry enhance quantum fluctuations,
stabilize exotic states of matter such as chiral spin liquids [13, 14], and produce interesting dynamics, such as
controllable prethermalization [50]. Experiments will fall into two categories: experiments in continuous
space with just a trap, and optical lattice experiments.

In continuum experiments, the use of molecules will enrich the SU(N) phenomena studied with
alkaline-earth atoms and also allow exploration of totally new areas. Christakis et al [51] have demonstrated
quantum gas microscopy, which remains in development for fermionic alkaline-earth atoms. The large
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number of hyperfine states will allow exploration of repulsive SU(N) models with much larger N than for
alkaline-earth atoms; this will enhance quantum fluctuations and topological order [13, 14]. The larger N
may also allow even lower temperatures than in alkaline-earth atoms, which already reach record-low
temperatures for fermions [12].

Attractive and bosonic systems are also rich areas. Attractive gases, both with and without an optical
lattice, may allow experiments to explore the formation of energetically favorable clusters and their ordering,
with connections to both condensed matter [36–41] and high-density nuclear matter [42]. Bosonic SU(N)
systems have been considered, for example as integrable systems [43], non-Abelian ferromagnets [45] and
holographic duals [44].

To explore these areas efficiently and connect experiments to models studied in many-body physics, it is
necessary to reduce the coupled-channel results to an effective interaction. This is analogous to replacing the
complicated interatomic potential for atoms with a delta-function. Due to the range of thousands of bohr
and 1/R4 tail, a contact potential is probably adequate only for very dilute gases. The strength of the
delta-function interaction can be determined from the scattering length in the coupled-channel calculations.
Higher densities will probably require more accurate effective potentials based on the complete adiabats.

Optical lattice experiments with molecules provide another wide-ranging arena for SU(N) many-body
physics. In a sufficiently deep lattice, with temperatures and interactions small compared to the band gap, the
system is described by an SU(N) Hubbard Hamiltonian,

Ĥ=−t
∑
⟨i,j⟩,σ

(
ĉ†iσ ĉjσ + h.c.

)
+

U

2

∑
i,σ,τ

n̂iσn̂iτ +
∑
ij;στ

Vij

2
niσnjτ +

∑
iσ

(ϵσ −µσ) n̂iσ, (9)

where ciσ and c†iσ are annihilation and creation operators at site i for hyperfine state σ, and niσ = c†iσciσ ,
Vij = C3(1− 3cos2(Θij))/|ri − rj|3 with Θij the angle between the intermolecular separation and the electric
field, is the dipole interaction between molecules i and j, and ϵσ and µσ are the number operator,
single-molecule energy and chemical potential for component σ. The tunneling energy t is

t=−
ˆ

d3rw∗ (r)

(
− h̄2

2m
+V(r)

)
w(r+ d) , (10)

where d is a nearest-neighbor lattice vector,m is the molecular mass, V(r) is the lattice potential of a molecule
at center-of-mass position r, and w(r) is the lowest-band Wannier function obtained from the single-particle
band structure. When the spread of the Wannier functions is much larger than the interaction range,

U=
4π h̄2a

m

ˆ
d3r |w(r) |4, (11)

where a is the scattering length. Due to the large spatial extent of the interaction potential, equation (11) may
provide only a rough estimate of U. Quantitative calculations of U can be performed by solving the two-body
problem numerically. This is a challenging calculation, but is tractable when the lattice is deep enough.
Although the single-molecule energies in the last term of equation (9) apparently break SU(N) symmetry,
they are irrelevant because N̂σ =

∑
i n̂iσ , is conserved.

An important direction for future research will be to understand the phenomena that occur in molecular
many-body systems with SU(N) symmetry in optical lattices. For the particularly challenging case of
repulsive fermions in optical lattices, there are a number of numerical methods that can be
applied. Schäffer et al [52] provide a fairly comprehensive overview and comparison of the methods for the
SU(2) Fermi–Hubbard model, all of which can be extended in principle to SU(N). Ibarra-García-Padilla and
Choudhury [53] review the numerical methods that have been applied to understand ultracold atoms with
SU(N) symmetry in optical lattices; see table 1 therein for a summary. In parameter regimes where the
long-range (off-site) dipolar interaction is important, some of these algorithms, such as determinantal
quantumMonte Carlo, face serious challenges, and confronting these will be an important task for the
community.

4. Outlook

Realization of SU(N) symmetry in ultracold molecules will unlock a broad range of new physics, with strong
connections to condensed matter and other areas of many-body physics. A first step will be to confirm and
quantify the degree of symmetry experimentally. Initial characterizations may be performed by measuring
the kinetics of evaporation or cross-dimensional thermalization, already measured for one spin component
of 40KRb [29]. For a system with SU(N) symmetry, these are independent of hyperfine state. Spectroscopy
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can provide more accurate measurements, analogous to those for SU(N) symmetry with alkaline-earth
atoms [54]. Two-photon microwave or Raman spectroscopy can measure the difference in interaction energy
when the spin state is changed. A useful limit is a deep lattice where tunneling is negligible, so photons will
drive one-molecule hyperfine transitions on doubly-occupied sites. Amplitude-modulation spectroscopy has
also been used to measure interactions of atoms in lattices to high precision [55]. With the SU(N) symmetry
confirmed, experiments can begin probing the many-body phases of matter and dynamics offered.

This work also opens areas of theoretical research in both molecular collisions and many-body physics.
Although the treatment of the alkali dimers in section 2.4 is sufficient to estimate the degree of SU(N)
symmetry, full coupled-channel calculations are needed for quantitative results. This challenges current
methods due to the large number of nuclear states. Although we have focused here on shielding with static
electric fields, we expect that microwave shielding will provide interactions with a comparable degree of
SU(N) symmetry. Coupled-channel calculations are needed to verify this.

One rich avenue offered by alkaline-earth atoms is the existence of an electronically excited ‘clock state’,
which also exhibits SU(N) symmetry amongst its nuclear spin states. Similar possibilities will be offered by
excited vibrational states of molecules, which have very long lifetimes. The dipole moment, rotational
constant and fine/hyperfine constants of molecules depend only very weakly on their vibrational state, so
shielding will occur at very similar electric fields and with similar spin dependence.

The new many-body physics offered by shielded ultracold molecules includes gases, Hubbard models,
and Heisenberg models with large N. Such systems can have positive or negative scattering lengths, bosonic
or fermionic constituents, and dipolar interactions. In addition, the electric (or microwave) fields used to
implement the shielding can be dynamically changed at rates much faster than the intrinsic timescales of the
many-body dynamics. They can also be changed much faster than is typically possible for a magnetic field, as
used to control interactions via a Feshbach resonance for systems of ultracold alkali atoms with SU(2)
symmetry. This allows the possibility for experiments to study interaction quenches and ramps, and
characteristic phenomena associated with them: how long-range correlations grow and spread, how
short-range correlations (such as the contact) grow [56–58], and the universal Kibble-Zurek scaling of the
number of excitations created across ramps [59, 60]. All of these new factors offer fertile ground to study new
phases and dynamics of quantum matter.
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Appendix A. Hamiltonian for the spin-free case

The Hamiltonian of spin-free CaF in an electric field is

ĥ= bn̂2 −µ · F. (A1)

The molecule is treated as a rigid rotor with rotational constant b in an electric field F along the z axis; n̂ is
the operator for molecular rotation. For 40Ca19F, b/h≈ 10.267GHz and |µ|= 3.07D. The corresponding
Hamiltonian for a pair of molecules is

ĥ1 + ĥ2 +
h̄2L̂

2

2µredR2
+ Ĥdd −Celec

6 /R6, (A2)

where L̂ is the operator for relative rotation of the pair and µred is the reduced mass. Celec
6 [24, 62] accounts

for the electronic dispersion interaction between the molecules, but has only small effects on the results.
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Appendix B. Basis sets used in coupled-channel calculations

The methodology used for the coupled-channel calculations on CaF is as described in [24], except that the
present calculations use different basis sets.

As in [24], we use basis sets that are constructed from symmetrized products of field-dressed rotor
functions |ñ,mn⟩ and spin functions |g,mg⟩, together with functions for the partial-wave quantum number L
and its projectionML. We include rotor functions with ñ up to 5. For CaF, there are four spin functions for
each monomer rotor state. However, the resulting number of pair basis functions, Npair, is too large (∼10000
for each L,ML) to be used directly in coupled-channel calculations. We therefore include only a relatively
small number of ‘class 1’ pair functions explicitly in the basis set, with the remaining ‘class 2’ functions taken
into account through Van Vleck transformations as described in [24].

It is the number of class 1 functions that determines the overall computational cost. To achieve a
manageable basis-set size, we include only energetically nearby rotor pairs in class 1 and move the remainder
to class 2. In the present work, we include 14 rotor pairs in class 1: (ñ,mn) = (0,0)+ (1,0), (1,−1)+ (1,−1),
(1,1)+ (1,−1), (1,1)+ (1,1), (1,0)+ (1,−1), (1,0)+ (1,1), (1,0)+ (1,0), (0,0)+ (2,−1), (0,0)+ (2,1),
(0,0)+ (2,0), (1,−1)+ (2,−1), (1,−1)+ (2,1), (1,1)+ (2,−1) and (1,1)+ (2,1). Inclusion of all spin
functions for each of these rotor pairs gives a total number of symmetrized pair states Npair = 206. We refer
to basis sets based on this as spin-N206.

The spin-dependence of scattering lengths, characterized by δαjj′ , converges very fast with respect to the
rotor basis, and is much better than 1% for spin-N206. The convergence of loss rates is slower, and varies
with field because colliding pairs are more likely to reach short range when shielding is poor. Nevertheless, at
23 kV cm−1, spin-N206 gives convergence of loss rates to within 1%.

The basis set of partial waves is also important. For each pair function (rotor plus spin), we include
partial waves L up to 6 and refer to the resulting basis sets as spin-N206-L6. For each spin combination,
calculations are performed for only a single value ofMtot =mn,1 +mn,2 +mg,1 +mg,2 +ML, such that the
s-wave channel for the initial state is included in the basis set. The total number of coupled channels in class
1 varies from 556 to 652. Based on comparisons between spin-N206-L6 and spin-N206-L4, we estimate that
spin-N206-L6 gives δαjj′ converged to better than 1% and spin-changing rates converged within 10%.
However, the spin-free loss rates are much less accurate and need Lmax as high as 20 for convergence [24].
With Lmax = 6, which is the highest we can afford for calculations including spins, the spin-free loss rates are
underestimated by a factor of 10 at 23 kV cm−1.

Appendix C. Hamiltonian for fine and hyperfine structure

For a single CaF molecule, the Hamiltonian for fine and hyperfine structure is

ĥfhf = γ ŝ · n̂+ ζF̂i · ŝ+ t
√
6T2 (C) ·T2

(̂
i, ŝ

)
+ cF̂i · n̂. (C1)

Here the first term represents the electron spin-rotation interaction, while the second and third terms
account for the isotropic and anisotropic interactions between electron and nuclear spins. T2(̂i, ŝ) denotes
the rank-2 spherical tensor formed from î and ŝ, and T2(C) is a spherical tensor whose components are the
Racah-normalized spherical harmonics C2

q(θ,ϕ). The last term represents the nuclear spin-rotation
interaction, which is typically three orders of magnitude smaller than the others. The values of the constants
b, γ, ζF, t and cF for CaF are the same as in [24].
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[37] Rapp Á, Zaránd G, Honerkamp C and Hofstetter W 2007 Color superfluidity and “baryon” formation in ultracold fermions Phys.

Rev. Lett. 98 160405
[38] Inaba K and Suga S-I 2009 Finite-temperature properties of attractive three-component fermionic atoms in optical lattices Phys.

Rev. A 80 041602(R)
[39] Titvinidze I, Privitera A, Chang S-Y, Diehl S, Baranov M A, Daley A and Hofstetter W 2011 Magnetism and domain formation in

SU(3)-symmetric multi-species Fermi mixtures New J. Phys. 13 035013
[40] Koga A and Yanatori H 2017 Spontaneously symmetry-breaking states in the attractive SU(N) Hubbard model J. Phys. Soc. Japan

86 034702
[41] Xu H, Li X, Zhou Z, Wang X, Wang L, Wu C and Wang Y 2023 Trion states and quantum criticality of attractive SU(3) Dirac

fermions Phys. Rev. Res. 5 023180
[42] Aoki Y, Endrődi G, Fodor Z, Katz S D and Szabó K K 2006 The order of the quantum chromodynamics transition predicted by the

standard model of particle physics Nature 443 675
[43] Maassarani Z 1998 Exact integrability of the SU(N) Hubbard modelMod. Phys. Lett. B 12 51
[44] Fujita M, Meyer R, Pujari S and Tezuka M 2019 Effective hopping in holographic Bose and Fermi-Hubbard models J. High Energy

Phys. JHEP01(2019)045
[45] Polychronakos A P and Sfetsos K 2023 Ferromagnetic phase transitions in SU(N) Nucl. Phys. B 996 116353
[46] Yi S and You L 2000 Trapped atomic condensates with anisotropic interactions Phys. Rev. A 61 041604(R)
[47] Gribakin G F and Flambaum V V 1993 Calculation of the scattering length in atomic collisions using the semiclassical

approximation Phys. Rev. A 48 546
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