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Abstract

Free-surface water flows over stochastic beds are complex due to the uncertainties in topography profiles
being highly heterogeneous and imprecisely measured. In the present study, the propagation and influence
of several uncertainty parameters are quantified in a class of numerical methods for one-dimensional free-
surface flows. The governing equations consist of both single-layer and two-layer shallow water equations
on either flat or non-flat topography. For this purpose, the free-surface profiles are computed for different
realizations of the random variables when the bed is excited with sources whose statistics are well defined.
Many research studies have been dedicated to the development of numerical methods to achieve some order
of accuracy in free-surface flows. However, little concern was given to examine the performance of these
numerical methods in presence of uncertainty. The current work addresses this specific area in computational
hydraulics with regards to the uncertainty generated from bathymetric forces. As numerical solvers for the
one-dimensional shallow water equations, we implement four finite volume methods. To reduce the required
number of samples for uncertainty quantification, we combine the proper orthogonal decomposition method
with the polynomial chaos expansions for efficient uncertainty quantifications of complex hydraulic problems
with large number of random variables. Numerical results are shown for several test examples including dam-
break problems for single-layer and two-layer shallow water flows. The problem of flow exchange through
the Strait of Gibraltar is also solved in this study. The obtained results demonstrate that in some hydraulic
applications, a highly accurate numerical method yields an increase in its uncertainty and makes it very
demanding to use in an operational manner with measured data from the field. On the other hand, when
the complexity of the physics increases, these highly accurate numerical methods display less uncertainty
compared to the low accurate methods.

Keywords. Uncertainty quantification; Polynomial chaos expansion; Proper orthogonal decomposition;
Shallow water equations; Stochastic beds; Finite volume methods

1 Introduction

Free-surface models in hydraulics have gained an increasing interest during last decades. Ranging from flood
forecasting to monitoring hydraulic infrastructures such as dams, hydraulic simulations have served for several
purposes to support decision making. Water free-surface flows under the influence of gravity can be modeled
using the well-established shallow water equations subject to the assumption that the vertical depth is much
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smaller than any typical horizontal length within the hydraulic system. The governing equations in these models
are derived by depth-averaging the incompressible Navier-Stokes equations, see for example [44]. However, the
main drawback resulting from these assumptions remains the lack of capturing some physical dynamics in the
vertical motion of the water flow. Therefore, during the recent years, multi-layer shallow water models have
attracted enormous attention and have became very useful tools to solve many hydraulic problems such as
rivers, estuaries, bays and other nearshore regions where water flows interact with the bed topography and
wind shear stresses, see for instance [21, 2, 26]. From a numerical view point, the most challenging features
of the single-layer shallow water equations are the fact that they admit discontinuous and smooth solutions.
Even for problems in which the initial data is smooth can lead to discontinuous solutions in a finite time. The
hyperbolic nature of the system and its nonlinearity are also among the difficulties that arise when solving
numerically these equations. On the other hand, numerical treatment of the two-layer shallow water system
often presents difficulties due to their nonlinear form, presence of the non-conservative product terms, lost of
hyperbolicity, and difficulty to explicitly obtain its eigenstructure, see for example [26]. Many numerical tools
have been proposed in the literature in order to overcome these difficulties. In the present study, we only
consider the well-established finite volume methods including Lax-Friedrichs, Rusanov and Roe schemes, see
for instance [29]. We also adapt the finite volume modified method of characteristics [3] for solving the two-
layer shallow water equations. Despite this continuous effort to improve the accuracy of hydraulic simulations,
uncertainty remains ubiquitous for different reasons as discussed in [36] among others. Hence, the numerical
methods to solve the one-dimensional shallow water systems discretize the continuous equations in space and
time which will introduce numerical uncertainties. Furthermore, the empirical modelling of the bed bathymetry
and the friction coefficients introduce additional errors. In practice, these parameters are estimated by means
of calibration (or inverse problems) where data for a specific event is used, see for example [46].

Nowadays, uncertainty quantification in hydraulics is gradually growing regarding its important in the
process of decision making, see for example [34, 30, 47, 14] and further references are therein. Several works in
the literature have shown the appealing advantages of including uncertainty quantification in order to approve
knowledge of different river, lake and ocean flows [18]. Uncertainty propagation of dam break flow has
also been investigated in [1] using a stochastic non-intrusive method. Boundary conditions describing
the flow are often pointed out as the responsible for uncertainties in hydraulic calculations [37]. This is mainly
because these conditions suffer from both epistemic and stochastic errors which are often indistinguishable [32].
However, it turns out that other works including [8, 20] have highlighted that the uncertainty quantification
in hydraulics should also include the friction terms, as for some specific flow configurations the uncertainty in
hydraulics is more sensitive to these terms than the upstream flow conditions. In fact, the uncertainty expressed
around the Manning coefficient is great and its accuracy would significantly impact the overall computational
results obtained for the hydraulic simulations [8]. The bathymetry constitutes also an important source of
uncertainty in the numerical simulation of hydraulics [10]. For practical hydraulic applications, its description
is performed through interpolation of several scarce topographic measurements. For many realistic hydraulic
applications, these data are neither available nor functional which make the hydraulic simulations even more
uncertain, see for instance [11]. Recent studies have emphasized the importance of estimating the bathymetry in
hydraulics specially with the upcoming spatial Surface Water and Ocean Topography (SWOT) mission. In fact,
one method to alleviate the aforementioned problem could be achieved by means of Data Assimilation (DA).
However, the main challenging part in the DA approaches remains the difficulties to account for uncertainties of
the hydraulic simulation expressed by the numerical model, see for example the discussions reported in [22, 33].
The accuracy of uncertainty quantification is considerably increased when using a polynomial surrogate model
with a reasonable computational cost, compare [20] and further references are therein. For these reasons, the
Polynomial Chaos Expansion (PCE) is chosen to quantify the uncertainty in free-surface water flows. The
focus of the present study is on quantifying uncertainties related to hydraulic computations resulting from
bathymetric parameters (Manning coefficient and the field of bathymetry) using different numerical schemes.

When considering an uncertainty quantification problem using the PCE, one needs to sample the input
parameters following a probability density function. As discussed in [28, 50], assessing stochastic processes
such as bathymetry using each value of the vector representing the process as a random variable might be very

2



demanding. Here, the Karhunen-Loève (KL) expansion is considered to generate different realizations of the
stochastic bed. This method has been widely used in the framework of uncertainty quantification, see [39, 43]
for a detailed review. The PCE is becoming increasingly used in hydraulics community with its intrusive
and non-intrusive forms. The intrusive formulation appears to be less appealing because of the hyperbolic
nature of the shallow water equations, whereas the classical non-intrusive PCE struggles with the physical
shock occurring in open-channel hydraulics. A recent study reported in [41] overcomes this issue by using a
wavelet basis instead of the classical orthogonal polynomial basis. The main advantage of the method lies on
the fact that the uncertainty of the hydraulic state is obtained in a straightforward way. However, the main
drawback related to the curse of dimensionality as a sparse basis is hardly achievable with these methods. On
the other hand, non-intrusive PCE has been successfully implemented for open-channel hydraulics in numerous
studies, see for example [20, 25]. The appealing advantage of this method relies mainly in the possibility to
use the adaptive PCE introduced by [5]. However, the computational cost of the method could be impacted
by the discretization level of the hydraulic state. This issue has also been treated in previous studies using
methods like the Proper Orthogonal Decomposition (POD), see for instance [19]. The idea in this approach is
to decompose the hydraulic state using a POD technique. The uncertainty is then expressed on the eigenvalues
of this decomposition. In the present study, the uncertainty of the bathymetric field is propagated through the
hydraulic model using four different numerical solvers.

The aim in this study is to quantify the uncertainty of hydraulic computations over stochastic beds using
different numerical schemes. Numerical results are presented for simple tests such as dam-break problems
and lock-exchange flows and a realistic test of the exchange flow through the Strait of Gibraltar subject to
a stochastic bathymetry. To the best of our knowledge, quantifying uncertainties in finite volume methods
for two-layer shallow water flows is presented for the first time. Numerical results presented in the current
study demonstrate high resolution of the proposed techniques and confirm their capability to provide efficient
uncertainty quantification for simulation of free-surface water flows over stochastic beds. This paper is organized
as follows. The equations for free-surface water flows are presented in Section 2. In Section 3 we present the
numerical methods considered in the present work for solving the one-dimensional shallow water systems.
The formulation of the finite volume modified method of characteristics for the numerical solution of two-layer
models is also presented in this section. The general methodology used to address the problem of uncertainty
quantification is described in section 4. This section includes the reduction methodology along with the PCE
and the POD techniques. Section 5 is devoted to numerical results for several test examples of free-surface
water flows over stochastic topography. Our new approach is shown to enjoy the expected accuracy as well as
the robustness. Section 7 contains concluding remarks.

2 Governing equations for free-surface water flows

Shallow water equations have widely been used in the literature to model free-surface flows in rivers and coastal
areas as well as to study a wide variety of phenomena in hydraulics and oceanography. The main feature in
these equations is related to the fact that vertical effects can be neglected compared to the horizontal ones with
a good approximation by replacing the vertical momentum equation by the hydrostatic pressure distribution.
Indeed, the shallow water equations have been derived by integrating the three-dimensional incompressible
Navier-Stokes equations along the vertical direction based on the assumptions that the vertical motion is
ignored and the pressure distribution is hydrostatic, see [44] among others. Thus, in terms of the dependent
variables water height h(t, x) and water velocity u(t, x), the single-layer shallow water equations read

∂h

∂t
+ ∂ (hu)

∂x
= 0,

(1)
∂ (hu)

∂t
+ ∂

∂x

(
hu2 + 1

2gh2
)

= −gh
∂Z

∂x
− ghM2

b

u | u |
h4/3 ,
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Figure 1: Schematic illustration of a single-layer shallow water flow (left plot) and a two-layer shallow water
flow (right plot) over a given non-flat topography.

where Z(x) is the function characterizing the bottom topography, g the acceleration due to gravity, Mb the
Manning roughness coefficient at the bed, see the left plot in Figure 1 for an illustration. Notice that the
system (1) is strictly hyperbolic with real and distinct eigenvalues given by

λ1 = u −
√

gh, λ2 = u +
√

gh. (2)

In the current study, we also consider the two-layer shallow water equations for modelling free-surface water
flows. For this situation, the governing equations are written in a conservative form as

∂h1
∂t

+ ∂ (h1u1)
∂x

= 0,

∂ (h1u1)
∂t

+ ∂

∂x

(
h1u2

1 + 1
2gh2

1

)
= −gh1

∂Z

∂x
− gh1

∂h2
∂x

,

(3)
∂h2
∂t

+ ∂ (h2u2)
∂x

= 0,

∂ (h2u2)
∂t

+ ∂

∂x

(
h2u2

2 + 1
2gh2

2

)
= −gh2

∂Z

∂x
− gh2

ρ1
ρ2

∂h1
∂x

− gh2M2
b

u2 | u2 |
h

4/3
2

,

where the subscripts 1 and 2 represent respectively, the upper and lower layers in the hydraulic system, see the
right plot in Figure 1 for an illustration. Here, ρj is the water density of the jth layer, hj(t, x) is the water
height of the jth layer and uj(t, x) is the local water velocity for the jth layer, j = 1, 2. It should be stressed
that the exact calculation of eigenvalues associated with the two-layer system (3) is not trivial, see for instance
[26]. Indeed, the four eigenvalues λk (k = 1, . . . , 4) of the system are the zeros of the characteristic polynomial

P (λ) =
(
λ2 − 2u1λ + u2

1 − gh1
) (

λ2 − 2u2λ + u2
2 − gh2

)
− g2rh1h2, (4)

where the density ratio r = ρ1/ρ2. It should be stressed that, in many applications for free-surface flows, the
density ratio r ≈ 1 and the velocities u1 ≈ u2. In these situations, a first-order approximation of the eigenvalues
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can be obtained by expanding (4) in terms of 1 − r and u2 − u1 as

λ1 ≈ Um −
√

g (h1 + h2),

λ2 ≈ Um +
√

g (h1 + h2),
(5)

λ3 ≈ Uc −

√√√√(1 − r)g h1h2
h1 + h2

(
1 − (u2 − u1)2

(1 − r)g (h1 + h2)

)
,

λ4 ≈ Uc +

√√√√(1 − r)g h1h2
h1 + h2

(
1 − (u2 − u1)2

(1 − r)g (h1 + h2)

)
,

with
Um = h1u1 + h2u2

h1 + h2
, Uc = h1u2 + h2u1

h1 + h2
.

Note that, depending on the values of the density ratio r, the eigenvalues in (5) may become complex. In
this case, the system is not hyperbolic and it yields the so-called Kelvin-Helmholtz instability at the interface
separating the two layers. Therefore, a necessary condition for the two-layer system (3) to be hyperbolic is

(u2 − u1)2 < (1 − r)g (h1 + h2) . (6)

The system (3) can be rearranged in a vector form as

∂W
∂t

+ ∂F(W)
∂x

= Q(W) + R(W), (7)

where W is the vector of conserved variables, F the vector of flux functions, Q and R the vectors of source
terms defined as

W =


h1

h1u1

h2

h2u2

 , F(W) =



h1u1

h1u2
1 + 1

2gh2
1

h2u2

h2u2
2 + 1

2gh2
2


,

Q(W) =



0

−gh1
∂

∂x
(h2 + Z)

0

−gh2
∂

∂x
(rh1 + Z)


, R(W) =



0
0
0

−gh2M2
b

u2 | u2 |
h

4/3
2


.

Similarly, the equations (1) can be reformulated in the vector form (7) with

W =

 h

hu

 , F(W) =

 hu

hu2 + 1
2gh2

 , Q(W) =

 0

−gh
∂Z

∂x

 , R(W) =

 0

−ghM2
b

u | u |
h4/3

 .

Note that we solve the equations (7) for free-surface flows in a time interval and a spatial domain equipped
with given initial and boundary conditions with fixed topography and constant Manning roughness. In many
hydraulic applications, these parameters are not deterministic and may be hard to estimate. In the present
study, we also account for stochastic input parameter ω in the free-surface equations (7) such that the topog-
raphy z(x, ω) is a function of space and stochastic variables, and the Manning coefficient Mb(ω) depends on
the stochastic inputs.
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3 Numerical simulation of free-surface water flows

For the numerical solution of the free-surface equations (7) we consider a class of finite volume methods. We
discretize the spatial domain into control volumes [xi−1/2, xi+1/2] with uniform size ∆x = xi+1/2 − xi−1/2 and
divide the temporal domain into subintervals [tn, tn+1] with stepsize ∆t. Here, tn = n∆t, xi−1/2 = i∆x and
xi = (i + 1/2)∆x is the centre of the control volume. Integrating the equation (7) with respect to space over
the control volume [xi−1/2, xi+1/2], we obtain the following semi-discrete equations

dWi

dt
+

Fi+1/2 − Fi−1/2
∆x

= Qi + Ri, (8)

where Wi(t) is the space average of the solution W in the control volume [xi−1/2, xi+1/2] at time t i.e.,

Wi = 1
∆x

∫ xi+1/2

xi−1/2

W(t, x) dx,

and Fi±1/2 = F(Wi±1/2) are the numerical fluxes at x = xi±1/2 and time t. In (8), Qi and Ri are the difference
approximations of the discretized source terms Q(Wi) and S(Wi) in (7), respectively. To integrate the system
(8) in time we consider an operator splitting method consisting first of the predictor step

Wn+1/2
i = Wn

i + ∆tRn
i , (9)

followed by the corrector step

Wn+1
i = Wn+1/2

i − ∆t
Fn+1/2

i+1/2 − Fn+1/2
i−1/2

∆x
+ ∆tQn+1/2

i . (10)

It should be pointed out that as with all explicit time stepping methods, the theoretical maximum stable time
step ∆t is specified according to the Courant-Friedrichs-Lewy (CFL) condition

∆t = Cr
∆x

max
k

(
|λn

k |
) , (11)

where Cr is a constant (Courant number) to be chosen less than unity and λk are the eigenvalues given by
(2) or (5) for single-layer or two-layer shallow water equations, respectively. The spatial discretization of the
equation (10) is complete when a reconstruction of the numerical fluxes Fn+1/2

i±1/2 and source terms Qn+1/2
i is

chosen. In general, the reconstruction of the numerical fluxes requires a solution of Riemann problems at the
interfaces xi±1/2, see for example [29, 38]. In general this step can be carried out using any finite volume
method developed in the Literature for solving hyperbolic systems of conservation laws. In the current study
we consider the following reconstructions:

Lax-Friedrichs method: The numerical fluxes Fn
i+1/2 are defined by

Fn
i+1/2 = 1

2
(
F
(
Wn

i+1
)

+ F (Wn
i )
)

+ ∆x

2∆t

(
Wn

i − Wn
i+1
)

. (12)

Rusanov method: The numerical fluxes Fn
i+1/2 are defined by

Fn
i+1/2 = 1

2
(
F
(
Wn

i+1
)

+ F (Wn
i )
)

+ λ

2
(
Wn

i − Wn
i+1
)

, (13)

where λ is the Rusanov speed defined by λ = max
k

(λn
k), with λk are the eigenvalues given by (2) or (5) for

single-layer or two-layer shallow water equations, respectively.
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Roe method: The numerical fluxes Fn
i+1/2 are defined by

Fn
i+1/2 = 1

2
(
F(Ŵn

i+1) + F(Ŵn
i )
)

+ 1
2A

(
Ŵn

i+1/2

) (
Ŵn

i − Ŵn
i+1
)

, (14)

where the averaged state Ŵn
i+1/2 is calculated as

Ŵn
i+1/2 =


ĥn

i + ĥn
i+1

2√
ĥn

i ûn
i +

√
ĥn

i+1ûn
i+1√

ĥn
i +

√
ĥn

i+1

 ,

and A = RΛR−1 is the Roe matrix defined by

R =

 1 1

λ̂1 λ̂2

 , Λ =

 λ̂1 0

0 λ̂2

 ,

where λ̂1 and λ̂2 are the eigenvalues in (2) calculated at the averaged state. Note that the extension of the Roe
scheme to the two-layer system is not possible since (5) is only an approximation of the eigenvalues associated
with the system and no explicit exact formulation is provided for these eigenvalues. Therefore, we also consider
a finite volume modified method of characteristics (FVC) in the current study. The FVC method is simple,
easy to implement, and accurately solves the equations (7) without relying on Riemann problem solvers. This
method has been proposed in [3] for solving the single-layer shallow water equations (1) and its extension to
the two-layer shallow system (3) is presented in the present work.

3.1 Finite volume modified method of characteristics

To reconstruct the numerical fluxes Fn
i±1/2 in (10), we consider the method of characteristics applied to the

advective version of the system (3). In general, the advective form of the two-layer system (3) is built such that
the non-conservative variables are transported with the same velocity field associated with each layer. Here,
the two-layer shallow water equations (3) are reformulated in an advective form as

∂U1
∂t

+ u1
∂U1
∂x

= S1,

(15)
∂U2
∂t

+ u2
∂U2
∂x

= S2,

where

U1 =

 h1

u1

 , U2 =

 h2

u2

 , S1 =

 −h1∂xu1

−g
∂

∂x
(Z + h1 + h2)

 , S2 =

 −h2∂xu2

−g
∂

∂x
(Z + rh1 + h2)

 .

The fundamental idea of the method of characteristics is to impose a regular grid at the new time level and
to backtrack the flow trajectories to the previous time level. At the old time level, the needed quantities are
evaluated by interpolation from their known values on a regular grid, for more discussions we refer the reader
to [45, 40] among others. Thus, the characteristic curves associated with the equations (15) are solutions of
the initial-value problem

dXj,i+1/2(τ)
dτ

= uj,i+1/2
(
τ, Xj,i+1/2(τ)

)
, τ ∈ [tn, tn+1] ,

(16)
Xj,i+1/2(tn+1) = xi+1/2, j = 1, 2.
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Note that Xj,i+1/2(τ) is the departure point at time τ of a particle that will arrive at point xi+1/2 in time tn+1.
The method of characteristics does not follow the flow particles forward in time, as the Lagrangian schemes
do, instead it traces backward the position at time tn of particles that will reach the points of a fixed mesh at
time tn+1. To compute the solutions of (16) we use an explicit second-order Runge-Kutta scheme. Once the
departure points Xj,i+1/2(tn) are known, a solution at the cell interface xi+1/2 is reconstructed as

Un
j,i+1/2 = Uj

(
tn+1, xi+1/2

)
= Ũj

(
tn, Xj,i+1/2(tn)

)
, (17)

where Ũj

(
tn, Xj,i+1/2(tn)

)
is the solution at the characteristic foot computed by interpolation from the grid-

points of the control volume where the departure point Xj,i+1/2(tn) resides. In the present work we consider a
quadratic Lagrange interpolation to perform this stage.

Applied to the equations (15), the characteristic solutions are given by

hn
1,i+1/2 = h̃n

1,i+1/2 − ν

2 h̃n
1,i+1/2

(
un

1,i+1 − un
1,i

)
,

un
1,i+1/2 = ũn

1,i+1/2 − ν

2g
(
(Z + hn

1 + hn
2 )i+1 − (Z + hn

1 + hn
2 )i

)
,

(18)
hn

2,i+1/2 = h̃n
2,i+1/2 − ν

2 h̃n
2,i+1/2

(
un

2,i+1 − un
2,i

)
,

un
2,i+1/2 = ũn

2,i+1/2 − ν

2g
(
(Z + rhn

1 + hn
2 )i+1 − (Z + rhn

1 + hn
2 )i

)
,

where ν = ∆t
∆x and

h̃n
1,i+1/2 = h1

(
tn, X1,i+1/2(tn)

)
, ũn

1,i+1/2 = u1
(
tn, X1,i+1/2(tn)

)
,

h̃n
2,i+1/2 = h2

(
tn, X2,i+1/2(tn)

)
, ũn

2,i+1/2 = u2
(
tn, X2,i+1/2(tn)

)
,

are the solutions at the characteristic foot computed by interpolation from the gridpoints of the control volume
where the departure points X1,i+1/2(tn) and X2,i+1/2(tn) belong. The numerical fluxes Fi±1/2 in (8) are
calculated using the intermediate states Wn

i±1/2 recovered accordingly from the characteristic solutions Un
j,i±1/2

in (17). Hence, the FVC method (10) reduces to

hn+1
1,i = hn

1,i − ν
(
(h1u1)n

i+1/2 − (h1u1)n
i−1/2

)
,

qn+1
1,i = qn

1,i − ν

((
h1u2

1 + 1
2gh2

1

)n

i+1/2
−
(

h1u2
1 + 1

2gh2
1

)n

i−1/2

)
− 1

2νgĥn
1,i

(
(Z + h2)i+1 − (Z + h2)i−1

)
,

(19)
hn+1

2,i = hn
2,i − ν

(
(h2u2)n

i+1/2 − (h2u2)n
i−1/2

)
,

qn+1
2,i = qn

2,i − ν

((
h2u2

2 + 1
2gh2

2

)n

i+1/2
−
(

h2u2
2 + 1

2gh2
2

)n

i−1/2

)
− 1

2νgĥn
2,i

(
(Z + rh1)i+1 − (Z + rh1)i−1

)
,

where q1 = h1u1 and q2 = h2u2 are the water discharges associated with the upper layer and lower layer,
respectively. In our FVC method, the reconstruction of the term ĥn

1,i and ĥn
2,i in (19) is carried out such

that the discretization of the source terms is well balanced with the discretization of the flux gradients using
the concept of C-property as detailed in [3]. Hence, if the source terms ĥn

1,i and ĥn
2,i in the stage of (19) are

discretized as
ĥn

1,i = 1
4
(
hn

1,i+1 + 2hn
1,i + hn

1,i−1
)

, ĥn
2,i = 1

4
(
hn

2,i+1 + 2hn
2,i + hn

2,i−1
)

, (20)

then the proposed FVC method satisfies the C-property. In summary, the implementation of the FVC algorithm
to solve the two-layer shallow water equations (3) is carried out in the following steps. Given

(
hn

1,i, qn
1,i, hn

2,i, qn
2,i

)
,

we compute
(
hn+1

1,i , qn+1
1,i , hn+1

2,i , qn+1
2,i

)
via:
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Step 1. Compute the departure points X1,i+1/2(tn) and X2,i+1/2(tn) using the explicit second-order Runge-
Kutta scheme for solving (16).

Step 2. Compute the approximations

h̃n
1,i+1/2 = h1

(
tn, X1,i+1/2(tn)

)
, ũn

1,i+1/2 = u1
(
tn, X1,i+1/2(tn)

)
,

h̃n
2,i+1/2 = h2

(
tn, X2,i+1/2(tn)

)
and ũn

2,i+1/2 = u2
(
tn, X2,i+1/2(tn)

)
,

employing a quadratic Lagrange interpolation procedure.

Step 3. Evaluate the intermediate states hn
1,i+1/2, un

1,i+1/2, hn
2,i+1/2 and un

2,i+1/2 from the predictor stage (18).

Step 4. Update the solutions hn+1
1,i , qn+1

1,i , hn+1
2,i and qn+1

2,i using the corrector stage (19).

Note that the application of the FVC scheme for solving the single-layer shallow water equations (1) is straight-
forward and its formulation is omitted here.

4 Uncertainty quantification methods

In general, the purpose of uncertainty quantification is to identify the main sources of uncertainty in a physical
model (e.g. parameters, external forcing, boundary conditions, initial conditions) and to quantify their impact
on the quantities of interest simulated by the numerical model (prognostic variables, probability of exceeding
the threshold). This allows to associate every forecast with a level of certainty since the accuracy of a simulation
significantly depends on both the quantity and the quality of the input data. Therefore, to better understand
the results of numerical simulations it is necessary to take into account these uncertainties in the simulations.
In addition, a problem of quantification of uncertainties is a problem which aims at estimating uncertainty
on the outputs of a numerical simulation according to uncertainties on the knowledge of its input parameters.
Because of the random nature of uncertainty, the probabilistic approach to deal with a problem of uncertainty
quantification is to consider the uncertain data of the model as random variables or random processes, and to
reconsider the real deterministic numerical model as a stochastic model. This section presents the techniques
used in the current study for uncertainty quantification. First, methods of generating different independent
realizations of the bathymetric field are presented. Then, the classical PCE method is used as a surrogate tool
to alleviate the computational cost. Finally, as the model output (i.e. the hydraulic state) would depend on
the space and in order to avoid building as many surrogate models as the number of gridpoints, we suggest to
reduce the dimension of the problem using the POD and to compute a PCE only for the associated nonphysical
variables.

4.1 Karhunen-Loève expansion for stochastic process

A stochastic process is defined by the means of an indexation set X, E is a measurable space and (Ω, F , P)
is a σ-algebra representing the probability space [49]. The stochastic process z is then defined as a collection
{zx, x ∈ X} which the random values are in the state space E and described statistically by the probabilistic
space (Ω, F , P)

zx : Ω −→ E. (21)

Consequently, one is able to define a realization ω ∈ Ω for a stochastic process as

z(ω) : X −→ E
x 7−→ zx(ω) (22)

The Karhunen-Loève expansion (KL) allows to model a random process based on a spectral decomposition of
its spatial covariance matrix C(x, x′), see for example [31]. Note that, by construction the covariance function
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is real, symmetric and positive definite. Consequently, the set of eigenfunctions form a complete orthogonal
basis for the space in which the process belongs. Hence, a stochastic process can be defined as

z(x, ω) = z(x) +
∞∑

i=0
ωiliϕi(x), (23)

where x is the curvilinear abscissa, z the mean of the random process, ω = {ω1, . . . , ω∞} a set of independent
random variables, li the eigenvalues of the covariance function, and ϕi(x) the eigenfunctions. In practice and
for computational reasons, the equation (23) is truncated at a certain degree d. The choice of this latter is
often determined by a threshold ϵ from which the eigenvalues could be neglected i.e.

d∑
i=0

li

∞∑
i=0

li

> 1 − ϵ.

Thus, the expansion (23) is replaced by

z(x, ω) = z(x) +
d∑

i=0
ωiliϕi(x). (24)

It should be stressed that the major limitation of the KL decomposition is the a priori knowledge of the
covariance matrix. In the literature, this parameter is estimated empirically and therefore could be subject to
the uncertainty itself. This uncertainty is not considered in the present work and the reader may be referred
to [43] for more discussions on this topic. This expansion is commonly used to model the uncertainty of
stochastic input parameters for two reasons: firstly the mean-square error of the finite representation (24) is
minimized such that the equation (23) converges following the ℓ2-norm. The second reason is related to the
generation of random samples. In fact, making a realization of z(x, ω) amounts to randomly draw the different
ωi following a defined probability density function. Those parameters are considered independent random
variables. Therefore, the KL decomposition offers a good representation of the input parameters when the
covariance is known. In our study, The covariance matrix C(x, x′) is supposed to be exponential. Indeed, [51]
showed that the uncertainty in the description of bathymetric fields followed this spatial correlation function.
Thus, the correlation matrix is defined as

C(x, x′) = σ2 exp
(

−|x − x′|
θ

)
, (25)

where σ and θ are the hyper-parameters of the covariance function with σ is the standard deviation of the
process and θ is the correlation length. Note that, calculating the eigenvalues and eigenvectors is well known by
the Fredholm problem. There exits many algorithms that aim to solve this latter given a well defined matrix,
see for example [27] for more details. Once, li and ϕi(x) are known, the KL expansion is implemented in a
straightforward manner. Therefore, the bathymetry could be written as described in (24) and could be sampled
in order to consider its uncertainty in hydraulic computations. Numerical values should be given hereafter.

4.2 Polynomial chaos expansions

The PCE has been intensively used as a surrogate model in the context of uncertainty quantification, see [25, 20]
among others. It aims to reproduce the global behavior of the considered shallow water models. Supposing that
the input parameters of this model are represented by M independent random variables ζ = {ζ1, ζ2, . . . , ζM }
with finite variance well defined in a probabilistic space, the response W of this model is also random. Note
that W is a vector-valued response as it represents the spatial variability of the hydraulic states. Considering

10



that the expectation E
[
∥W∥2] is finite, the behavior of W could be reproducible following a polynomial

decomposition namely PCE [42] as
W(x, ζ) =

∑
i∈N

αi(x)Ψi(ζ), (26)

where Ψi are the multivariate polynomials that form the basis are chosen in such way they are orthonormal with
respect to the associated probability density function of ζ, i.e. E [Ψi(ζ)Ψj(ζ)] = δij with δij is the Kronecker
symbol, compare for example [48]. In (26), αi are the unknown spectral coefficients of the decomposition to be
determined. Again, the sum in (26) is truncated to a finite series as

W(x, ζ) ≈
∑
i∈I

αi(x)Ψi(ζ), (27)

where I ⊂ N is the finite set of indices. The determination of a PCE is therefore conditioned by the estimation
of the spectral coefficients αi. There are many methods used in the literature to achieve this step and we refer
to [50] for a review on these methodologies. In the current work, only the regression method is used and this
choice comes from the fact that these methods coupled with compressed sensing techniques are advantageous
when the stochastic dimension M of the problem is high (which is more likely to be the case here after the use
of the KL decomposition). The regression method is based on solving a least-square minimization problem in
some ℓ2-norm to estimate the coefficients αi, see for instance [4]. In practice, we begin by defining an error ϵ
as the distance between the model and the PCE for a finite set of randomly sampled input variables of size Nls

as

ϵ =

∥∥∥∥∥∥W(x, Ξ) −
∑
i∈N

αi(x)Ψ(Ξ)

∥∥∥∥∥∥
2

≡ W − α⊤Ψ, (28)

where Ξ =
(
ζ(1), ζ(2), . . . , ζ(Nls)

)⊤
is the set of realizations for the stochastic input variables ζ in (27) and W =(

W(1), W(2), . . . , W(Nls)
)⊤

the vector of associated model outputs. We also define α =
(
α0, α1, . . . , αNP C−1

)⊤
as the vector of the NP C = Card(I) unknown coefficients and Ψ is the matrix of size NP C × Nls assembling
the values of all orthonormal polynomials at the stochastic input realizations values Ψik = Ψi(ζ(k)), with
i = 0, 1, . . . , NP C−1 and k = 1, 2, . . . , Nls. Following the ordinary least-square solver (28), the estimation of the
set of coefficients α is equivalent to minimize the following function

J(α) = ϵ⊤ϵ =
(
W − α⊤ Ψ

)⊤ (
W − α⊤ Ψ

)
, (29)

which leads to a standard well-known linear algebraic solution as

α = (Ψ⊤ Ψ)−1 Ψ⊤ W . (30)

Here, the input space exploration is fulfilled using a Monte-Carlo sampling-based approach [6, 20]. It is worth
mentioning that the number of coefficients NP C needed is directly affected by the stochastic dimension M as
well as the polynomial degree p. As a consequence, the Monte-Carlo size Nls will also increase significantly
with M and p. This is a classical problem of PCE also known as the curse of dimensionality. The adaptive
Least Angle Regression (LAR) method [16] has been introduced and used to overcome this specific problem [6].
This method introduced in the context of compressed sensing has made it possible to recover accurately the
solution with fewer model simulations. It will be used in the present work as it has been demonstrated to be
very efficient in this framework. The idea behind this method is to select with an iterative manner an optimal
sparse basis among the original one and then to compute a limited number of coefficients using a standard
regression method. In the context of PCE, a hybrid LAR method is used. The method consists on using LAR
to evaluate the best set of predictors among the full basis elements with the help of a cross-validation method.
These coefficients are estimated using the classical least square method, see [6] for more details. The infinite
expansion (26) describing the PCE converges with respect to the standard ℓ2-norm known by the mean-squared
convergence, see for example [50]. However, due to the errors of truncation and spectral coefficient estimation,
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the accuracy of this expansion must be evaluated in the same error norm. There are many different error
metrics that allow to assess the accuracy of the PCE, see [20, 50] among others. In the present work, all the
PCEs are assessed using the Leave-One-Out (LOO) error. This method avoids integrating the model over
another set of validation samples and therefore the computational cost is optimized. It has been introduced
in this context with the introduction of sparse PCE [4] and the LOO technique required the formulation of
several surrogate models [6]. Each surrogate model is built excluding one point out of the input sample and
the accuracy of the surrogate model is then quantified at this particular point. Following this theory, the error
ϵLOO is defined by

ϵLOO =

Nls∑
k=1

(
W(k) − W(−k)

)2

Nls∑
k=1

(
W(k) − W

)2
, (31)

where W denotes the sample-averaged model simulations and W(−k) stands for the evaluation of the PCE at
ζ(k) when the surrogate has been built using an experimental design in which ζ(k) was excluded. It should be
stressed that, in the context of PCE, it has been proven that the LOO error could be computed analytically
using all the samples from the Monte-Carlo simulations. In this case, a corrected LOO error is computed
using only a full PCE rather than several decompositions, compare [5]. Furthermore, it has been proven that
in the case of sparse PCE, the LOO error is robust and conservative, see [6]. The relative error and the LOO
error have also been compared in [20] for the case of the PCE applied to hydraulic uncertainties and the results
reported in this reference have shown a good agreement between the two metrics. In the present work,
the determination of the optimal polynomial degree is performed using an iterative procedure.
Thus, a PCE is computed for different degrees varying from 1 to 20 and the optimal degree is
determined based on the value of the corresponding ϵLOO error. For the same value of a given
error, the lowest value of the degree is retained in our simulations.

Note that, when dealing with numerical models with spatial or temporal dependency, the classical way
used in numerical simulations is to discretize the physical domain and resolve the governing equations for each
control volume. This procedure leads to multiple decompositions to ensure the numerical convergence. As a
result, uncertainty quantification becomes computationally very demanding not only because of the stochastic
dimensions but also because of the spatial or temporal dimensions of the output variables. For these reasons,
many methods have been introduced in the literature in order to reduce the dimensionality of the output vector,
see for instance [35, 7, 12]. Among all these different techniques, the POD have proven to be efficient in the
context of physical fields with rapid variability as in the case of hydraulics [35].

4.3 Stochastic proper orthogonal decomposition

The proper orthogonal decomposition (POD) is a well-established technique that allows a high-dimensional
system to be approached by a low-dimensional one, compare [13] among others. This method is based on
determining a basis of orthogonal eigenvalues representative of the simulated physics. The eigenvectors are
obtained by solving the integral of Fredholm problem whereas, the kernel of this integral is constructed from
a set of simulations constructed using a set of experiments. The interesting property of this representation
lies in the fact that the eigenfunctions associated with the problem are optimal in the sense of the energetic
representation which makes it possible to use them to construct a reduced representation of the physics under
study. Notice that the POD is used in the uncertainty quantification to reduce the size of a random vector at the
output of the model. The uncertainty is therefore carried out over each direction defined by the eigenvectors
ϕi(x). The idea is based on projecting the solution W of the model into a finite and orthonormal basis
{ϕi, i ∈ IP OD}, where IP OD is a discrete finite set of indices. Thus, the process W(x, ζ) is decomposed as

W(x, ζ) =
∑

i∈IP OD

λ̂i(ζ)ϕi(x). (32)
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The estimation of the finite basis {ϕi, i ∈ IP OD} is performed by decomposing the covariance matrix as

C = 1
Nls

WW⊤. (33)

Indeed, the literature is rich of techniques that aim to decompose a covariance matrix. One of the most known
methods is the Singular Value Decomposition (SVD) algorithm [15]. Hence, we define a POD-truncated error
ϵ such as only the most k invaluable eigenvectors are retained as

k∑
i=0

λi

Nls∑
i=0

λi

> 1 − ϵ, (34)

where λ̂i is the mean value of λi(ζ). In summary, the stochastic POD procedure can be implemented using the
following steps:

Step 1. Define the covariance matrix (33).

Step 2. Expand the matrix C using an SVD algorithm to determine λi and ϕi(x).

Step 3. Retain only the first k eigenvalues and eigenvectors in the expansion using the condition (34).

Step 4. Reconstruct the stochastic solutions W(x, ζ) using (32).

It is worth remarking that the selection of convergence criterion is problem-dependent and therefore the selection
of ϵ for test examples in the present investigation is discussed in section 5 where numerical examples are
described.

4.4 The POD-PCE surrogate model

Once the stochastic POD is reconstructed, the eigenvalues are considered as stochastic independent variables
(since the eigenvectors form a basis). This means that we can define a PCE for each eigenvalue following
the same manner as described in the previous section on the polynomial chaos expansions leaving the spatial
dependence described by the eigenvectors ϕi(x) as

λi(ζ) =
NP C∑
j=0

γjΨj(ζ), (35)

where γj are the corresponding spectral coefficients computed following the methodology de-
scribed in Section 4.2. Hence, using (35), the equation (27) reduces to

W(x, ζ) =
∑

i∈IP OD

NP C∑
j=0

γjΨj(ζ)

ϕi(x). (36)

Figure 2 summarizes both algorithms that we consider in the present work for the quantification of uncertainty.
Here, the first step consists of developing the KL decomposition to be able to sample the bathymetric fields.
Obviously, this step depends mainly on the definition of a spatial correlation associated with the problem under
consideration. In practice, the covariance matrix hyper-parameters could be inferred from observational data,
compare for example [43]. For all our simulations carried out in this study, the correlation matrix is assumed
to be exponential with given correlation length for each test problem and the associated eigenvalues and
eigenvectors are obtained analytically as in [28]. The second step in our algorithm for uncertainty quantification
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Figure 2: Schematic representation of the uncertainty quantification strategy used in the present study using
a POD-PCE based surrogate model.

is the sampling of different random variables using a Monte Carlo approach which include the eigenvalues of
the KL decomposition and the Manning coefficient following a well defined probabilistic distribution. For each
realization, the hydraulic state is computed using step 3 in the algorithm shown in Figure 2. Next, a resulting
hydraulic state is obtained for each realization which allows to perform a POD over the hydraulic state. Note
that the eigenvectors represent the spatial variability while, the eigenvalues are responsible for the uncertainty
as explained in [19]. The final step in our algorithm is to carry out an adaptive spare PCE over the eigenvalues
of the POD. It is evident that, using this surrogate model, one is able to quantify the uncertainty for each
numerical solver.

5 Numerical results and examples

We present numerical results for several test problems of shallow water flows using single-layer and two-layer
shallow water equations over flat and non-flat beds. The main goal of this section is to illustrate the numerical
performance of the techniques described above. In all the computations reported herein, the Courant number is
set to Cr = 0.8 and the time stepsize ∆t is adjusted at each time step according to the CFL stability condition
(11). We present numerical results obtained using the Lax-Friedrichs, Rusanov, Roe and FVC methods.
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Figure 3: Eigenvalues (left plot) and associated eigenfunctions (right plot) of the correlation matrix in the KL
decomposition for the dam-break problem over a flat bed.

5.1 Results for single-layer shallow flows

In this class of flow problems, we investigate the uncertainty using the proposed finite volume methods for the
single-layer shallow water equations (1). More precisely we quantify the uncertainty related to the bathymetry
displayed by the considered numerical methods. The aim here is to rank these finite volume methods regarding
the uncertainty on the computed water height and water velocity variables when the knowledge about the
bathymetry is uncertain. Here, the POD-PCE meta-model is built using 1000 forward simulations. In all cases
considered in this section, we follow the general methodology described in section 5. Thus, we first decompose
the bathymetry field using the KL decomposition, then we run Monte-Carlo simulations to obtain a set of
fields for both water height and water velocity. These fields are then reduced using the POD approach and are
reduced further by using a truncation threshold in the PCE over each POD modes.

5.1.1 Dam-break problem over a flat bed

For this test example, the uncertainty quantification is performed for a dam-break flow problem over a stochastic
frictionless flat bed (i.e. Z = 0 and Mb = 0). The channel is of length 30 m and subject to the following initial
conditions

h(0, x) =


1 m, if x ≤ 15 m,

0.3 m, if x > 15 m,

u(0, x) = 0 m/s.

At time t = 0 the dam collapses and the flow problem consists of a shock wave traveling downstream and a
rarefaction wave traveling upstream. In this case example, the variation coefficient in the bathymetry
CVb = 0.05 and the Manning coefficient is kept deterministic. The computed results are presented at
time t = 2 s.

Figure 3 presents the eigenvalues and eigenvectors obtained for the bathymetry process. This latter is
supposed to be a Gaussian process described with an exponential spatial autocorrelation function. Given a
threshold value ϵ = 10−2, 8 eigenvalues are required to correctly sample the bathymetric field. In other words,
the stochastic dimension of this problem is set at 8. For each of the four numerical methods tested in this
study, a 1000 Monte-Carlo simulations are run while the POD is then used to reduce the output space. In
this case, only two modes are retained to correctly represent the water height and the water velocity fields.
The PCE is built over each POD mode corresponding to 4 PCEs (2 for the water height and 2 for the water
velocity) instead of 2 × 100 decompositions in the conventional approach. An iterative procedure is used to
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Table 1: Best polynomial degree along with the LOO error for the two POD modes in the water height and
water velocity using different numerical schemes for the dam-break problem over a flat bed.

First POD mode
FVC Lax-Friedrichs Roe Rusanov

Optimal polynomial degree (h) 3 3 3 3
Optimal polynomial degree (u) 3 3 3 3
LOO error (h) 1.5 × 10−9 1.8 × 10−9 4.5 × 10−11 3.8 × 10−11

LOO error (u) 10−7 1.6 × 10−6 2.3 × 10−8 2.2 × 10−9

Second POD mode
FVC Lax-Friedrichs Roe Rusanov

Optimal polynomial degree (h) 3 3 3 3
Optimal polynomial degree (u) 3 3 3 3
LOO error (h) 4.8 × 10−9 3.6 × 10−9 0.75 × 10−11 0.4 × 10−11

LOO error (u) 8.8 × 10−7 2 × 10−6 1.3 × 10−8 5.8 × 10−9

Figure 4: Mean solutions obtained using Lax-Friedrichs, Roe, Rusanov and FVC methods for water height (left
plot) and water velocity (right plot) for the dam-break problem over a flat bed.

determine the best polynomial degree along with the LOO error that is used to assess the robustness of the
considered PCE.

Table 1 summarizes the results obtained for the first and the second POD modes. It is evident that a
polynomial of degree 3 is enough to correctly reproduce the uncertainty translated from errors in the bathymetry
in the four methods considered in this study. Depending on the numerical method and the output field (water
height or water velocity), the LOO error varies from 10−11 to 10−6 which makes the surrogate model very
reliable for uncertainty quantification in this class of dam-break problems. The results obtained for the mean
and variance fields are depicted in Figure 4 and Figure 5, respectively. As can be seen from these results,
the mean fields highlight some well-established results on the accuracy of the numerical methods, i.e. the
numerical diffusion is more pronounced for the Lax-Friedrichs method than the FVC method. However, the
variance fields show noticeable differences in these numerical methods particularly where the hydraulic shock.
It is also clear that the FVC and Roe methods are more sensitive to changes in the bathymetry than the
Rusanov and Lax-Friedrichs methods. Note that the FVC and Roe methods, being more accurate than the
Rusanov and Lax-Friedrichs methods, are more sensitive to the stochastic inputs. Therefore, these numerical
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Figure 5: Variance solutions obtained using Lax-Friedrichs, Roe, Rusanov and FVC methods for water height
(left plot) and water velocity (right plot) for the dam-break problem over a flat bed.

Figure 6: Spacial correlation field for water height using Lax-Friedrichs, Roe, Rusanov and FVC methods for
the dam-break problem over a flat bed.
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Figure 7: Correlation functions for water height at x = 1 m (left plot) and x = 15 m (right plot) using
Lax-Friedrichs, Roe, Rusanov and FVC methods for the dam-break problem over a flat bed.

Figure 8: Same as Figure 5 but at time t = 4 s.

methods display more uncertainty in both water height and water velocity solutions, especially around the
discontinuity. Furthermore, regarding their importance in the context of data assimilation for bathymetric
corrections, the correlation matrices and functions are presented for this test example. Figure 6 illustrates the
correlation matrices using the four numerical methods whereas, Figure 7 represents the correlation function in
the spatial points located at x = 1 m and 15 m in the computational domain. There are no obvious differences
in these statistical informations for this test case.

Next, we present numerical results for later time at t = 4 s to quantify the propagation of uncertainty in
the hydraulic model. It should be noted that at each time step, another surrogate model is built for
this test case. Figure 8 displays the obtained results at this simulation time. Comparing these results with
those shown in Figure 5, clearly the uncertainty is very sensitive to the simulation time and therefore to the
hydrodynamic itself. This confirms that the uncertainty quantification should be addressed carefully regarding
the considered physics and the results for one simulation time are far to be generalized to another simulation
time. Regarding the numerical methods considered in this study, the results are quite similar to the previous
case and the high accurate methods such as FVC and Roe methods, display more uncertainties around the
discontinuity location compared to the other methods, and this uncertainty tends to propagate spatially within
the simulation time.

Next we compare sensitivity results of the uncertainty quantification for two different meshes with 100 and
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Figure 9: Variance solutions obtained using Rusanov method for water height (left plot) and water velocity
(right plot) at time t = 4 s for the dam-break problem over a flat bed using two different meshes with 100 and
200 control volumes.

Table 2: Variation coefficients in the bathymetry CVb and in the Manning CVm used in our simulations for the
dam-break problem over a non-flat bed.

Test 1 Test 2 Test 3 Test 4
CVm 0.05 0.01 0.01 0.05
CVb 0.05 0.05 0.1 0.1

200 control volumes. For brevity in the presentation, only results obtained using the Rusanov method are
taken under consideration since this case is representative of all the other methods. Figure 9 shows the results
of the uncertainty and its sensitivity to the spatial discretization. Note that refining the mesh will ultimately
improve the accuracy of the model and intuitively the uncertainty should decrease. This statement is only
true for the upstream region and it is especially highlighted for the water height. However, around the area
where the shock occurs, refining the spatial discretization will lead to more uncertainty mainly because of the
complex physics occurring in this area.

5.2 Dam-break problem over a non-flat bed

In this test example we consider a dam-break problem over a non-flat bed defined as

Z(x) = 1
5 exp

(
−(x − 15)2

20

)
.

The aim here is to study effects of the supposed uncertainty in both the bathymetry and the Manning coefficient
on the hydraulic state over a non-flat bed. Using a mean value of 0.025 for the Manning coefficient, a mesh
with 100 control volumes and a simulation time of t = 2 s. Four different tests, as described in Table 2, are
considered in this study. We follow the same strategy to quantify the uncertainty as discussed in section 3. As
described in Table 3, two POD modes are enough to represent all the uncertainty displayed by the hydraulic
state. In general, a polynomial of degree 3 is able to correctly study the uncertainty as the LOO error ranges
from 10−11 to 10−6 depending on which numerical method is used.

The variance of both water heights and velocity fields using the considered numerical methods and for the
cases listed in Table 2 are displayed in Figure 10. It is notable that our comments in the previous section are still
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Figure 10: Variance solutions for the water height h (left plots) and water velocity u (right plots) obtained for
the dam-break problem over a non-flat bed at time t = 2 s in the four considered tests listed in Table 2.
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Table 3: Best polynomial degree along with the LOO error for the two POD modes in the water height and
water velocity using different numerical schemes for the dam-break problem over a non-flat bed.

First POD mode
FVC Lax-Friedrichs Roe Rusanov

Optimal polynomial degree (h) 3 3 3 3
Optimal polynomial degree (u) 3 3 3 3
LOO error (h) 0.2 × 10−10 0.5−9 2.3−11 2.2−11

LOO error (u) 10−8 1.6−6 0.8−8 1.1−8

Second POD mode
FVC Lax-Friedrichs Roe Rusanov

Optimal polynomial degree (h) 3 3 3 3
Optimal polynomial degree (u) 3 3 3 3
LOO error (h) 1.3 10−10 2.4 10−9 3.7 10−11 1.5 10−11

LOO error (u) 1.1 10−8 0.6 10−6 1.6 10−8 0.7 10−8

valid for these simulations here as well. The variance does not significantly change from a numerical method to
another however, near the hydraulic jump, the uncertainty increases and therefore the calibration data need to
be more accurate when using an accurate method. It is clear that the variance around the hydraulic jump for
the FVC method attends the highest values. Figure 10 also points out that the hydraulic state is more sensitive
to the bathymetry than the Manning coefficient. For instance, the variance of the two last tests in Table 2 is
four times the variance of the first two tests regardless of the uncertainty taken in the Manning coefficient.

6 Results for two-layer shallow water flows

We present numerical results for the two-layer shallow water equations (3) subject to different hydraulic condi-
tions. We consider two test examples including a lock-exchange flow problem and the problem of flow exchange
in the Strait of Gibraltar. We focus mainly on assessing the uncertainty of the hydraulic states composed by
the hydraulic layers and two velocities related to these layers with respect to the bathymetry. Notice that, in
absence of exact expressions for the eigenvalues in the system (3), the Roe method can not be applied and
only results obtained using the Lax-Friederich, Rusanov and FVC methods are presented in this section. Since
the purpose here is to quantify the uncertainty regarding the numerical method used, a small variation of the
bathymetry around the mean is considered to guaranty stability in the considered numerical methods.

6.1 Lock-exchange flow problem

In the first example we consider the lock-exchange problem proposed in [21]. The bottom topography is
considered to be a Gaussian function defined as

Z (x) = exp
(
−x2

)
− 2. (37)

The two layers are initially separated and the lighter water is on the left while the heavier one is on the right
i.e.,

(h1(x, 0), h2(x, 0))⊤ =


(−Z (x) , 0)⊤ , if x ≤ 0,

(0, −Z (x))⊤ , elsewhere,
u1(x, 0) = u2(x, 0) = 0. (38)
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Table 4: Best polynomial degree along with the LOO error for the POD mode in the water height and water
velocity using different numerical schemes for the lock-exchange flow problem.

FVC Lax-Friedrichs Rusanov
Optimal polynomial degree (h1) 2 2 3
Optimal polynomial degree (h2) 2 2 2
Optimal polynomial degree (u1) 2 2 2
Optimal polynomial degree (u2) 2 2 2
LOO error (h1) 2 × 10−5 1.9 × 10−5 8.8 × 10−6

LOO error (h2) 5.8 × 10−6 4.7 × 10−6 1.2 × 10−8

LOO error (u1) 8.8 × 10−6 10−5 1.6 × 10−8

LOO error (u2) 1.1 × 10−5 1.2 × 10−5 1.1 × 10−8

Figure 11: Mean value of the hydraulic state for the lock-exchange flow problem.

The density ratio is ρ1/ρ2 = 0.98, the computational domain is [−3, 3] and the boundary conditions are
imposed on the water discharges q1 = h1u1 and q2 = h2u2 as q1 = −q2 at each end of the domain. The
variation coefficients in the bathymetry and in the Manning are CVb = 0.01 and CVm = 0.01, respectively. In
this hydraulic problem, the heavier water propagates to the left while the lighter one moves to the right. The
solution is expected to converge to a smooth steady state and we compute the numerical steady-state solution
on a mesh with 100 control volumes. Following the same methodology described in section 2, the uncertainty
of the hydraulic state is quantified. For this flow problem, first the assessment of the surrogate model is
performed. The obtained results show that given the uncertainty of the bathymetry, only one POD mode is
needed. Indeed, the perturbation in the bathymetry highly affects the numerical stability and therefore, the
domain of randomness of this parameter has been narrowed which would also translate to a narrow domain
of uncertainty in the hydraulic state. Table 4 summarizes the results of the surrogate model built for each
component of the hydraulic state and for each numerical method. Here, a polynomial degree of 2 is enough
to correctly estimate the uncertainty and the LOO error ranges from 10−8 to 10−5. This makes the proposed
surrogate model very reliable for the purpose of uncertainty quantification.

Figure 11 illustrates the mean values of the water free-surface and water interface corresponding to the two
water layers whereas, Figure 12 reports the mean value of the water velocities for the three numerical methods
considered in the present study. It is clear that there are no large differences between the results obtained for
the water free-surface solutions. For the water velocities, the Rusanov method is underestimating the mean
solutions compared to the Lax-Friedrichs and FVC methods, but the differences are also very small. It is also
worth noting that it could be corrected using observations. Figure 13 and Figure 14 display the results obtained
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Figure 12: Mean values for water velocity u1 (left plot) and u2 (right plot) for the lock-exchange flow problem.

Figure 13: Variance in water height h1 (left plot) and h2 (right plot) for the lock-exchange flow problem.

Figure 14: Variance in water velocity u1 (left plot) and u2 (right plot) for the lock-exchange flow problem.

for the variance in water height and water velocity, respectively. In contrary to the mean value, these results
are very different. It is clear that the Lax-Friedrichs method generates the largest amount of the uncertainty
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Figure 15: Schematic map of the Strait of Gibraltar along with relevant locations (left plot) and the bathymetry
used in our simulations (right plot).

Figure 16: Initial conditions for the flow exchange through the Strait of Gibraltar.

compared to the other methods. This large amount of uncertainty is mainly driven by the model itself as the
numerical diffusion in this case is also very important compared to the single-layer shallow water model. The
hydraulic calculations using the FVC method are also less uncertain compared to the Rusanov method.

6.1.1 Flow exchange through the Strait of Gibraltar

Our last example consists of solving the problem of flow exchange through the Strait of Gibraltar. This hydraulic
problem is selected because it presents a real example of two-layer shallow water flows for two major reasons.
Firstly, the domain of the Strait of Gibraltar is a large-scale domain including high gradients of the bathymetry
and well-defined shelf regions. Secondly, the Strait contains two water bodies with different densities, which
present a challenge in the shallow water modelling. Indeed, the basic Oceanic circulation in the Strait of
Gibraltar consists of an upper layer of cold, fresh surface Atlantic water (with density ρ1 = 1027 kg/m3) and
an opposite deep current of warmer and salty outflowing Mediterranean water (with density ρ2 = 1029 kg/m3),
compare for example [23]. A schematic map of the Strait of Gibraltar along with relevant locations is depicted
in the left plot of Figure 15. The system is bounded to the north and south by the Iberian and African
continental forelands, respectively, and to the west and east by the Atlantic Ocean and the Mediterranean
sea. In geographical coordinates, the Strait of Gibraltar is 35o45′ to 36o15′ N latitude and 5o15′ to 6o05′
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Figure 17: Eigenvalues (left plot) and associated eigenfunctions (right plot) used in the KL decomposition to
sample the bathyemtric field over the Strait of Gibraltar using an exponential Kernel with a correlation length
of 10 km.

W longitude. Here, we consider a one-dimensional cross-section along the Strait (obtained by a longitudinal
section along the dashed line in the left plot of Figure 15). The computational domain and the associated
bathymetry are displayed in the right plot of Figure 15. This restricted domain has also been considered in
[26, 24] among others.

This hydraulic problem was experimentally studied in [9] and numerically solved in [17] using a semi-
Lagrangian scheme and in [26] using a discontinuous Galerkin method. The flow parameters of this experiment
are those used in [9, 17, 26]. Thus, an artificial dam is included in the Strait separating the water bodies from
the Atlantic Ocean and the Mediterranean sea. On the boundaries, the ratio between the water discharges is set
to 1, i.e., q1 = −q2 at each boundary node. Here, the computational domain is covered with 100 control volumes
and Figure 16 exhibits the initial water heights h1 and h2. We evaluate the uncertainty displayed by the three
numerical methods used to identify the flow in this region. The variation coefficients in the bathymetry and in
the Manning are CVb = 0.005 and CVm = 0.01, respectively. The aim is to quantify the uncertainty generated
by an error in the reconstruction of the Strait bathymetry using the three different numerical methods. First,
a KL decomposition is carried out in order to represent the stochastic aspect of the bathymetric field. The
spatial correlation matrix was supposed to have an exponential Kernel as proposed in [51] and
the correlation length is set to a value of 10 km, which is the minimum distance existing between
two different observations stations. Figure 17 displays the results of this decomposition. It is evident that
the stochastic dimension of our hydraulic problem is very high as more than 30 modes are needed for the LOO
error to be under the threshold error of 10−2. This is mainly attributed to the size of the physical domain used
in the modelling of flow exchange through the Strait of Gibraltar.

Following the methodology discussed in Section 4, the fields of water height and velocity are decomposed
using a POD. Then, the uncertainty is supposed to be described by the eigenvalues of the POD approach.
For the considered hydraulic conditions and given the threshold used in the POD, only one mode is enough
to represent correctly the uncertainty. Again, the considered variance in the bathymetry has been selected
reasonably small in order to maintain the stability of the numerical schemes. Table 5 describes the assessment
of the PCE for this mode in all the three numerical methods used in this study. Overall, a polynomial degree
of 3 is able to correctly resolve the uncertainty with an error estimated to be less than 10−5 for the four fields
considered in a two-layer shallow water model and for the three numerical methods considered for its numerical
simulations.

Figure 18 represents the mean fields of the water free-surface h1 and the water interface h2 obtained at the
steady-state time. As can be seen, the Mediterranean water moves downstream and exits the Strait resulting
in the formation of strong and weak shocks. Under actual flow conditions, it is clear that a hydraulic jump
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Table 5: Best polynomial degree along with the LOO error for the POD mode in the hydraulic states using
different numerical schemes for the problem of flow exchange through the Strait of Gibraltar.

FVC Lax-Friedrichs Rusanov
Optimal polynomial degree (h1) 3 3 3
Optimal polynomial degree (h2) 3 3 3
Optimal polynomial degree (u1) 3 3 3
Optimal polynomial degree (u2) 3 3 3
LOO error (h1) 3.2 × 10−6 2.9 × 10−6 3.1 × 10−6

LOO error (h2) 2.6 × 10−5 2.1 × 10−5 2.3 × 10−5

LOO error (u1) 1.9 × 10−7 1.5 × 10−7 1.5 × 10−7

LOO error (u2) 2.1 × 10−7 1.7 × 10−5 1.75 × 10−7

Figure 18: Mean hydraulics for the problem of flow exchange through the Strait of Gibraltar.

Figure 19: Variance in water height h1 (left plot) and h2 (right plot) for the problem of flow exchange through
the Strait of Gibraltar.
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Figure 20: Variance in water velocity u1 (left plot) and u2 (right plot) for the problem of flow exchange through
the Strait of Gibraltar.

is detected in the water interface near the Camarinal Sill. The exchange discharge predicted by our method
is q1 = −q2 = 0.856 sv. There is an excellent agreement between the numerical results obtained by the
considered methods and those from previous studies reported in [9, 17, 26]. It is worth remarking that the
exact solutions to these examples are not available, but the computed solutions using the proposed methods
seem to converge to the physically relevant solutions in all selected test cases. The numerical methods used
in this case capture the shock accurately and do not diffuse the fronts or exhibit oscillations near the steep
gradients in the computational domain. Overall, there is a good convergence between the results of the three
numerical methods considered for this exchange flow problem. This agreement is also observed in the mean
velocity field of the upper layer for the three numerical methods. However, for the water interface, there is a
slight difference between the mean fields obtained using the FVC method and those obtained using the other
considered numerical methods for this flow problem. These discrepancies are also observed in the variance
fields, see Figure 19 and Figure 20. Hence, the FVC method being numerically more accurate, it displays less
uncertainty than the diffusive methods. This case example demonstrates that when the physical hydraulics is
very complex, the use of a highly accurate numerical method is necessary and the uncertainty quantified by
this method is expected to be well predicted.

7 Conclusions

In the current study, we have introduced a new methodology to quantify uncertainties generated by bathy-
metric forces on the hydraulic states. This methodology allows to overcome many known problems in the
uncertainty quantification for computational hydraulics and its combines: (i) a Karhunen-Loève decomposi-
tion to sample stochastic processes independently of the required number of control volumes in the mesh to
achieve reasonable accuracy, (ii) a sparse polynomial chaos expansion to overcome the well known problem of
curse of dimensionality risen by the Karhunen-Loève decomposition at a reasonable computational cost, and
(iii) a proper orthogonal decomposition for hydraulic states to increase further the efficiency of the proposed
method. Furthermore, we have examined the uncertainty quantification in a class of finite volume methods for
free-surface flows. The models consist of both single-layer and two-layer shallow water equations with stochas-
tic bathymetry and Manning roughness coefficients. Numerical results are presented for dam-break problems
for single-layer models and for exchange flows for two-layer models including the problem of flow exchange
through the Strait of Gibraltar. It has been shown that the uncertainty in the hydraulic calculations is very
sensitive to both the mathematical models and the numerical methods selected for their approximations. It
has been found that the uncertainty depends on the numerical scheme used in the solution procedure. While
accurate numerical schemes may increase the precision of the deterministic solution, they need continuous data
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to make them usable in the operational context. In addition, the simulation time has also been highlighted
to be a subject of uncertainty such that the uncertainty tends to increase with the simulation time. Efforts
on correcting the bathymetric fields would be very relevant to reduce the uncertainty of such models. In the
case of two-layer shallow water flows such as flow through the Strait of Gibraltar, highly accurate finite volume
schemes are shown to be the best numerical tools to quantify uncertainties in their involved parameters. The
present study demonstrated the need to accurately choose the appropriate numerical tools with
respect to the uncertainty depicted in the bathymetry since, when the uncertainty goes beyond
a certain level, some numerical schemes tend to loose their stability. For instance, highly accu-
rate finite volume methods exhibit oscillatory behavior at the hydraulic jumps. Although, we have
studied only the case of one-dimensional problems in hydraulics, the extension to two-dimensional problems
would be an encouraging next step and requires an in-depth study on high-order finite volume methods for
solving stochastic shallow water equations in unstructured meshes.
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