
Task Scheduling for Control System Based on Deep Reinforcement
Learning
Yuhao Liua, Yuqing Nia,<, Chang Dongb, Jun Chena and Fei Liua

aKey Laboratory of Advanced Control for Light Industry Processes (Ministry of Education), Jiangnan University, Wuxi, 214122, China
bDurham University Business School, Durham University, Durham, UK

A R T I C L E I N F O

Keywords:
Task scheduling
Control system
Cloud server
LQR
BPP
Reinforcement learning

A B S T R A C T

We investigate the control system’s computational task scheduling problem within limited time and
with limited CPU cores in the cloud server. We employ a neural network model to estimate the runtime
consumption of linear quadratic regulators (LQR) under varying numbers of CPU cores. Building
upon this, we model the task scheduling problem as a two-dimensional bin packing problem (2D
BPP) and formulate the BPP as a Markov Decision Process (MDP). By studying the characteristics of
the MDP, we simplify the action space, design an e�cient reward function, and propose a Double
DQN-based algorithm with a simplified action space. Experimental results demonstrate that the
proposed approach has improved training e�ciency and learning performance compared to other
packing algorithms, e�ectively addressing the challenges of task scheduling in the context of the
control system.

1. Introduction
Control science and technology is pivotal in advancing

humanity’s technological landscape, o�ering a theoretical
foundation and enabling automation across various indus-
trial sectors. Proportional-integral-derivative (PID) control
is commonly used in industrial automation for regulating
factory parameters, while fuzzy control excels in managing
complex nonlinear systems. The aerospace industry lever-
ages optimal control for aircraft performance optimization
[1, 2], and the automotive sector employs PID to fine-
tune engine power, with fuzzy control enhancing Anti-lock
Braking System (ABS) e�ciency [3]. In power systems,
distributed model predictive control ensures economic dis-
patch, while power electronics control manages energy con-
version [4].

Implementing these control systems or methods in spe-
cific scenarios necessitates computing resources to aid in ob-
taining controllers. These computations involve basic math-
ematical operations or complex matrix operations to de-
termine controller parameters. However, the computational
time varies depending on the model of CPUs or the quantity
of CPU cores. As the computational complexity of control
system solvers continues to rise, local processors’ processing
power becomes insu�cient for solving intricate problems.
Consequently, the shift from local processors to cloud com-
puting has become inevitable.

Cloud computing [5] stands as an internet-based com-
puting model that enables individuals and businesses to
access computing resources through remote servers. It of-
fers network and computing resources as services, known
as cloud services, which users can rent to fulfill their re-
quirements. Infrastructure as a Service [6] stands out as

<Corresponding author
yuhaoliu@stu.jiangnan.edu.cn (Y. Liu); yuqingni@jiangnan.edu.cn

(Y. Ni); chang.dong@durham.ac.uk (C. Dong); junchen@jiangnan.edu.cn (J.
Chen); feiliu@jiangnan.edu.cn (F. Liu)

a popular service solution within cloud services. Leading
providers like AWS, Azure, Alibaba Cloud, and Huawei
Cloud typically o�er virtual machines (VMs) to meet users’
computing needs, encompassing CPU and memory. With
the development of cloud services, technology companies
have begun to deploy dedicated clouds for specific tasks.
For example, Alibaba has deployed a large-scale ML-as-a-
Service cloud [7] specifically for solving machine learning
related tasks. When control tasks appear in large numbers,
technology companies may need to deploy dedicated service
clouds to solve control related tasks.

In the realm of cloud computing, providers employ a
multi-NUMA (Non-Uniform Memory Access) [8] architec-
ture to deliver high-capacity VMs with significant mem-
ory and CPU resources. Each server encompasses multiple
NUMAs, and each NUMA houses several CPU cores and
memory space. The number of CPU cores per server remains
limited. When handling varying VM creation requests, such
as CPU demands ranging from 2 cores to 64 cores, the
service provider creates VMs with the corresponding CPU
cores to manage user tasks [9, 10]. VMs with di�erent
core capacities require distinct durations to process compu-
tational tasks. Upon receiving VM requests, the cloud ser-
vice provider schedules VM creation based on the server’s
capacity and allocates user tasks at di�erent intervals. In
the current cloud environment, to ensure the user’s resource
request experience, once the user submits a task request, it
is necessary to make a timely task scheduling decision to
determine the time period for which the task should run
and feedback this information to the user. The server then
creates a VM to fulfill the user’s task based on the task
scheduling decision. These characteristics require the system
to perform online task scheduling and to make task schedul-
ing decisions as soon as the task request arrives, without
the need for prior knowledge. During this process, we can
create a resource-time table to pre-plan users’ task requests
for better utilization of server resources. For example, the

Yuhao Liu et al.: Preprint submitted to Elsevier Page 1 of 13

Revised Manuscript (Clean version)

Task Scheduling for Control System Based on Deep Reinforcement Learning

cloud server places the task sequences in such a resource-
time table based on the user’s task requests in a specific
period (e.g., 24 hours) with limited CPU cores. Once the
table is planned, the cloud scheduler follows this table to
direct the server to allocate resources for each task in the
task sequence in di�erent periods. On this basis, determining
how to schedule the resource-timetable to achieve e�cient
utilization of server resources becomes an open problem.

This scheduling problem encapsulates two constraints:
time and CPU cores, driven by the finite working hours
and limited CPU cores in the server. The objective is to
e�ciently utilize server resources within working hours,
framed as a two-dimensional bin packing problem (2D BPP)
[11, 12, 13]. This 2D BPP translates time on one axis and
CPU cores on the other, providing an optimal solution to the
task scheduling problem [14, 15].

Addressing the 2D BPP has seen extensive prior work.
Traditional heuristic algorithms, including First-Fit [16],
Next-Fit [17], and Best-Fit [18] methods, have played a
significant role in balancing space utilization and e�ciency
[19]. However, they often fall short of providing an opti-
mal solution. Additionally, meta-heuristic algorithms like
genetic algorithms, simulated annealing, and ant colony
algorithms have also found some application in solving
the 2D BPP [20, 21]. Previous researchers have integrated
deep learning into solutions for combinatorial optimiza-
tion problems [22, 23]. Some relevant studies have focused
on the application of deep learning models to solve the
Traveling Salesman Problem and scheduling problems [24].
Furthermore, research has emphasized the combination of
traditional methods with deep reinforcement learning (DRL)
[25, 26] to fully leverage the advantages of both. In tradi-
tional reinforcement learning [27], the Q-learning algorithm
[28, 29] creates a table to store the collected interaction data,
allowing for the evaluation of the value of each state-action
pair. Based on these values, it selects the optimal policy.
With the development of deep learning, Deep Q-Network
(DQN) [30, 31, 32] replaces the state-action value table with
parameterized functions and utilizes each sampled interac-
tion data to update and improve the deep neural network.
This significantly enhances learning e�ciency. Using these
methods, research has explored using images as inputs and
employing convolutional neural networks as the Q-network
to solve the 2D BPP [33]. The Actor-Critic method [34] in
reinforcement learning has also proven e�ective in tackling
the 2D BPP [35].

In this work, we investigate the scheduling of compu-
tational tasks in control systems under constraints of lim-
ited time and a finite number of CPU cores. Our explo-
ration commences by focusing on the infinite-time linear
quadratic optimal control problem within linear systems.
Addressing this optimal control issue involves designing a
linear quadratic regulator (LQR) to ensure system stability
and meet performance criteria. The coe�cients in the LQR
bear a direct association with the CPU runtime required
for solving this control problem. To comprehensively un-
derstand this relationship, we systematically measure the

Figure 1: Illustration of the complete process of task schedul-

ing.

time needed to obtain the LQR for di�erent coe�cient
matrices across various CPU core configurations, generating
a dataset. Acknowledging the impossibility of accounting for
all conceivable coe�cient matrix scenarios, we leverage a
neural network to estimate runtime under di�erent matrices
and CPU core numbers. The collected data serves as training
input for the neural network, enabling it to generalize and
predict runtimes for obtaining LQRs under diverse condi-
tions.

Armed with information on runtime variations under
di�erent CPU core numbers for control problems, we pro-
ceed to create VMs with varying CPU core numbers, ad-
hering to the constraint of a limited CPU core quantity.
Subsequently, we strategically plan the schedule of these
VMs within the server’s resource-time table, factoring in
the time each VM requires to solve its designated task. A
visual representation of this process is elucidated in Fig.
1. Addressing the scheduling conundrum involves solving
a 2D BPP. For this purpose, we deploy a model-free Double
DQN, a method seamlessly integrating deep neural networks
with Q-learning. This amalgamation furnishes an e�cient
algorithm for devising optimal scheduling strategies. Ex-
panding on this approach, we streamline the action space of
the Markov Decision Process (MDP) and formulate more
judicious and e�ective reward functions. This refinement
enhances the learning speed and resource utilization e�-
ciency of the scheduling design based on Double DQN.
Compared to some other reinforcement learning algorithms,
the simplified action space approach proposed in this paper
shortens the training episode of the model and can train
e�cient models in shorter episodes. The results of this
method also outperform traditional heuristic algorithms.

The main contributions of this work are summarized as
follows:

1) We investigate the resource requirements of computa-
tional tasks in LQR with the background of utilizing
cloud server resources for computational tasks in control
systems. We propose a packing algorithm based on Dou-
ble DQN to address the task scheduling problem within
limited time and with limited CPU cores in the server.

2) In the MDP modeling of our proposed packing algorithm
based on Double DQN, we represent the state of the
bins using a tuple composed of four elements, establish
an action space that continuously shrinks as the pack-
ing progresses, and design an e�cient reward function.
Compared to other packing algorithms, our approach

Yuhao Liu et al.: Preprint submitted to Elsevier Page 2 of 13

Task Scheduling for Control System Based on Deep Reinforcement Learning

Figure 2: Illustration of a neural network predicting and classifying the required CPU cores and runtime for LQR.

addresses the challenges of large action spaces and slow
training speeds and demonstrates superior performance.

2. Neural Network-Based CPU Runtime
Estimation for LQR
This paper aims to address the control system’s com-

putational task scheduling problem within limited time and
with limited CPU cores in the sever. The first step in solving
this problem involves measuring the CPU runtime under
varying numbers of CPU cores for specific control problems.
By combining the obtained data, we employ deep learning
methods to predict the runtime needed for a certain category
of control problems under varying numbers of CPU cores.

In optimal control, LQR is an important control method.
For example, in the field of aircraft control, LQR is often
used as a control method to make the aircraft perform ma-
neuvers according to a desired trajectory with good stability
[36]. In the field of the Internet of Things (IoT), LQR can be
used as temperature controllers in smart buildings to regulate
the temperature in the building [37]. So in this paper, we
illustrate the infinite-time linear quadratic optimal control
problem in linear systems. This optimal control problem is
addressed by designing an LQR to meet system stability and
performance criteria. The LQR controller solution in the
optimal control problem is used as a representative of the
control problem.

For a given continuous-time linear time-invariant sys-
tem, its basic expression can be described using the state-
space model,

Üx(t) = Ax(t) + Bu(t), (1)

where x(t) À Rn is the system state vector, u(t) À Rm is the
control input vector, t À [0,ÿ), and A and B are coe�cient

matrices of corresponding dimensions. This system is fully
controllable. In the design of the optimal controller to satisfy
system stability and specific performance criteria, the opti-
mal control strategy is derived by calculating the quadratic
cost function,

J =
ÿ

0
(x(t)T Fx(t) + u(t)TRu(t))dt, (2)

where R is positive definite and F is positive semi-definite.
By designing a linear feedback controller to minimize the
cost function J ,

u(t) = *Kx(t), (3)

where u(t) is the control input and K is the state feedback
matrix, a key component of the LQR used to compute the
control input. Through the computation of the Algebraic
riccati equation (ARE),

A
T
P + PA * PBR

*1
B
T
P + F = 0, (4)

we can compute matrix P . To make the algebraic Riccati
equation admit a unique positive definite solution P > 0,
(A,F

1
2) is assumed to be observable [38, 39, 40]. Once P is

computed, K can be obtained as follows.

K = R
*1
B
T
P . (5)

After calculating the state feedback matrix K , the input
of the controller can be obtained using Eq. (3). Therefore,
obtaining the LQR is essentially equivalent to the problem
of computing K .

2.1. Computational Resource Measurement
As mentioned earlier, the essence of obtaining LQR lies

in computingK through Eq. (4) and Eq. (5). This paper relies

Yuhao Liu et al.: Preprint submitted to Elsevier Page 3 of 13

Task Scheduling for Control System Based on Deep Reinforcement Learning

on experimental testing to determine the runtime required for
calculating K on a computer under varying numbers of CPU
cores. For the solution to Eq. (4) and Eq. (5), we conduct tests
by using state and input matrices of varying dimensions.
For time assessments, we utilize the built-in timing tool,
i.e., the time module in Python. After conducting multiple
tests and averaging the results, we obtain the required time
for di�erent dimensions of state matrices and input matrices
under varying numbers of CPU cores in obtaining the LQR.

2.2. Neural Network Modeling
From the approach mentioned above of obtaining the

runtime under varying numbers of CPU cores required for
di�erent dimensions of inputs, it is evident that the dimen-
sions of the state and input matrices have an impact on the
time and memory resources required for obtaining the LQR.
However, in practical problem-solving, it’s not feasible to
consider all possible dimensions. Therefore, we introduce a
neural network model. To map the features of the data to
the required number of CPU cores and the corresponding
computing time, we use a neural network consisting of four
fully connected layers. The input layer contains six nodes,
which receive the six features of the data respectively. The
output layer contains four nodes, each of which is a category
that consumes di�erent amounts of resources. During our
measurement of the running time used in the data, we
combine formula analysis and use di�erent combinations
of features for the measurement, and eventually decide to
use six elements as inputs to the neural network. The first
five of them are features of matrix A and matrix B, and
the sixth feature is the computing power of the CPU. Since
the resource pool has two constraints, i.e., time and CPU,
we select four di�erent combinations of time and CPU as
network outputs. These include the matrix dimensions, n
and m, the determinant of matrix A, the Frobenius norm
of matrices A and B, and the CPU cores c. Using these
features as network inputs, the corresponding time required
and CPU cores are generated as outputs of the network.
Based on the number of classifications, the CPU cores and
time required for the LQR are divided into di�erent ranges,
with di�erent labels representing various time and CPU
cores. The network structure is shown in Fig. 2 and it consists
of fully connected layers.

In this structure, the neural network is designed to learn
the mapping between the dimensions of input coe�cient ma-
trices and the associated CPU cores and time requirements.
This allows us to e�ciently estimate the runtime needed for
di�erent dimensions of state and input coe�cient matrices
under varying numbers of CPU cores when obtaining the
LQR.

3. DRL-Based Task Scheduling
As discussed in the previous section, we obtained the

CPU runtime required for LQRs with di�erent coe�cient
matrices under varying numbers of CPU cores. In this sec-
tion, building upon the findings from the previous section,
we address the task scheduling problem by scheduling the

resource-timetable within limited time and with limited CPU
cores to achieve e�cient utilization of the server.

In this paper, we assume that the cloud service provider’s
server contains W CPU cores, and the server operates for
H hours each day. This creates a resource-timetable with a
length of H on the vertical axis and W on the horizontal
axis. Users can choose from di�erent types of VMs created
by the server with varying numbers of CPU cores. The total
number of CPU cores for all concurrently created VMs must
not exceed the total server core count W . Various users
may opt for di�erent VM types and convey their respective
computational tasks to the cloud service provider, forming
a sequence of tasks. Within the time interval from 0 to
H , the server can receive computing tasks from the task
sequence. Each computing task requires di�erent processing
times under the specified VM type. For instance, the same
computing task takes less time to be completed when users
choose VM types with more cores compared to those with
fewer cores. Building upon this, we assume that a task
sequence is obtained from the neural network described in
the previous section. For each task in the sequence, we
determine the required number of CPU cores, denoted as
w (0 < w < W), and the corresponding processing time,
denoted as h (0 < h < H). And we assume this task
sequence follows uniform distribution and the tasks in the
task sequence must be arranged in order.

Next, the resource-timetable can be viewed as a finite
two-dimensional bin. This bin is used for scheduling specific
time slots for executing computing tasks, with CPU cores on
the horizontal axis and time on the vertical axis. When the
server receives a task, we can create a VM of the appropriate
duration based on the CPU cores and task’s time require-
ments and schedule it on this bin. Each created VM occupies
a certain number of CPU cores and a specific length of time
on the bin. In this process, the task sequence can be seen as
a sequence of rectangles. Thus, the task scheduling process
is formulated as a 2D BPP, and our goal is to maximize the
packing density of a sequence of rectangles in a finite two-
dimensional bin.

In this problem, each item in the sequence of rectangular
objects cannot be rotated, as the length and width represent
di�erent meanings. Each rectangular item is placed sequen-
tially, and the length h

i
and width w

i
of the i-th rectangular

item I
i

satisfy 0 < h
i
< H and 0 < w

i
< W . In this

scenario, the objective is to maximize resource utilization,
called packing e�ciency (PE), before the sequence con-
cludes.

PE = used area in the bin
total area in the bin

. (6)

3.1. Markov Decision Process
BPP can be described as a Markov Decision Process

(MDP). An MDP is a discrete-time stochastic control pro-
cess. At each time step i, the stochastic process is in a certain
state s

i
, and the agent can choose an available action a

i
in

the state s
i
. The stochastic process will randomly transition

to a new state s
i+1 after the next time step i + 1, providing

the agent with corresponding feedback R
ai
(s

i
, s

i+1). The

Yuhao Liu et al.: Preprint submitted to Elsevier Page 4 of 13

Task Scheduling for Control System Based on Deep Reinforcement Learning

Figure 3: Illustration of extracting four features from the current bin. The four features are used to represent the state of the bin.

chosen action influences the probability of the stochastic
process entering the new state s

i+1. Specifically, it is given
by the state transition function P

ai
(s

i
, s

i+1). Therefore, the
next state s

i+1 depends on the current state s
i

and the
agent’s action a

i
. However, given s

i
and a

i
, it is conditionally

independent of all previous states and actions. From this, it
can be inferred that an MDP is characterized by four main
elements, represented by a quadruple M = (S , A, P , R),
where S represents the finite set of states that the system
can occupy, A is the set of available actions, P is the state
transition matrix and R is the reward function.

The state transition matrix P defines the transition prob-
abilities between all state pairs. The MDP in this paper can
be considered model-free. Since this paper does not leverageP to optimize decisions during the agent training process, we
do not introduce P extensively here. And next, we define S ,A, and R individually. All the notations in section 3 are in
Tab. 1.

State
The square container is represented by a two-dimensional

array of H ùW , where unoccupied space is represented by
"0" and occupied space is represented by "1". The items to
be placed are also represented by a two-dimensional array
of l

i
ù w

i
(0 < l

i
< H , 0 < w

i
< W), where all elements

are "1". At time step i, the system’s state is determined by
the current arrangement in the square container. Inspired
by Teris, we design a representation of the current state
of the bin, which includes an evaluation of the number of
filled rows, the gaps created when filled, and the overall
bumpiness. Such a representation is intended to allow the
agent to evaluate the current action by the change of the
bin state after executing the action. These four features are
used to represent the current state of the bin, namely: perfect
lines, gaps, unevenness, and height. "Perfect lines" indicate

the number of rows that are fully occupied (all elements
are "1") in the current state. "Gaps" checks whether there
are gaps between elements in each column, representing the
number of holes between the items. "Unevenness" represents
the degree of unevenness in the placement process, that is,
the sum of the height di�erences of "1"s in each column.
"Height" represents the sum of the heights of the "1"
elements in each column in the current state.

Fig. 3 represents a two-dimensional array of W =
5,H = 5 at time step i, where some parts are filled with
the element "1" while the rest is filled with the element "0".
To visually explain the meanings of each feature, di�erent
colors are used to represent di�erent items. The white color
represents the unoccupied area, while other colors represent
the placed items. In Fig. 3, the purple square and the red
square, along with the yellow square, form a perfect line at
the bottom of the container, with a quantity of 1. There exists
a hole in the column containing the black square and the red
square. The height of the column formed by the blue square,
the black square, and the yellow square is 4. The height
di�erence with the column to its left is 1. Following this
method, at time step i, perfect lines = 1, gap = 1, unevenness
= 1 + 1 + 1 + 0 = 3, height = 4 + 3 + 2 + 1 + 1 = 11. Hence,
the state of this bin can be represented as s

i
= (11, 3, 1, 1).

The action space and its simplification
In each state, the agent can execute a total of H ù W

actions, where each action corresponds to the coordinates
of each element in the H ù W matrix. Each coordinate
corresponds to the upper-left unit square of the item to be
placed. Consequently, not every action is valid, as some
actions might result in stacking on occupied cells or placing
objects beyond the boundaries of the bin, rendering such
operations infeasible. Thus, to expedite training and enhance
resource utilization, the action space is pruned, and only

Yuhao Liu et al.: Preprint submitted to Elsevier Page 5 of 13

Task Scheduling for Control System Based on Deep Reinforcement Learning

Table 1
Notations in Section 3

Notation Explanation

s
i

The state at time step i

a
i

The action to be performed at time step i

r
i

The reward after executing a
i

I
i

The item to be placed at time step i

h
i

Length of I
i

w
i

Width of I
i

c
i

The cluster formed at time step i

C
s

ci
The size of c

i

C
c

ci
The compactness of c

i

A
ci

The size of the smallest rectangle that can

enclose c
i

L
Si

The number of perfect lines in state S
i

L
new

The difference between L
Si+1

and L
Si

K
w

A constant multiple of the bin width W

⌧ The soft update ratio

� Discount factor, � À (0, 1)

valid actions are retained based on the current panel state.
When there is no valid action in the action space for a
certain state, the state is the terminal state. The process of
simplification for action space is shown in Algorithm 1.

Algorithm 1 Simplification for action space.
Input action space A , item I

i
at time step i;

for action in A do
Place I

i
in the bin;

if I
i

overlaps with other object and exceeds the
boundaries of the bin then

Remove I
i

from the bin;
Delete the current action from action space A;

end if
end for

Reward function
During the bin packing process, to get higher space

utilization, we prefer to place the subsequent arriving items
near the previously placed items, preferably without leaving
gaps. When there is a gap in a row in the bin and there
happens to be an item that can fill the gap, the priority of
filling the gap is higher than placing it near a previously
placed item. Starting from such a bin packing experience,
the following reward function is set.

At time step i, for a given state s
i

within its action space,
each action yields a di�erent subsequent state s

i+1. For these
actions that may lead to di�erent outcomes, the following

Figure 4: Illustration of the reward for calculating the cluster

size and new perfect lines after performing an action.

reward function R(s
i
, a

i
) is defined:

R(s
i
, a

i
) =

h
n
n
n
n
n
l
n
n
n
n
nj

*2, the current state
has no

valid actions,

C
s

ci
ù C

c

ci
+ L

new
ùK

w
, when a new

perfect line is
formed,

C
s

ci
ù C

c

ci
, otherwise.

(7)

The reward function introduces three concepts: cluster
size (Cs

ci
), compactness (Cc

ci
), and new perfect lines (L

new
).

K
w

is a constant multiple of the bin width. These represent
the size of the clusters, the degree of compactness of the
clusters, and the number of newly formed perfect lines,
respectively. According to this reward function, for each
placement, the reward value of the corresponding action is
related to the size of the formed cluster and the number
of newly created perfect lines. In other words, the tighter
the placement and the more perfect lines generated, the
more reward will be obtained. Following this approach for
placement can simultaneously improve overall utilization.

"The size of a cluster (Cs

ci
)" is explained as follows: If an

element is connected to another element either horizontally
or vertically, they belong to the same cluster. The value ofCs

ci

is related to the size of the cluster formed after the execution
of the action; the larger the cluster, the larger the value of
C

s

ci
.
"Compactness (Cc

ci
)" is explained as follows: At time i,

action a
i

is taken, resulting in a new cluster c
i

with a size
of Cs

ci
. We introduce a new variable, A

ci
, which represents

the size of the smallest rectangle that can enclose cluster c
i
.

Compactness is then defined as

C
c

ci
=

C
s

ci

A
ci

, (8)

where Cc

ci
À (0, 1]. For example, as shown in Fig. 4, if action

a1 is taken for item I1, leading to cluster c1 represented by

Yuhao Liu et al.: Preprint submitted to Elsevier Page 6 of 13

Task Scheduling for Control System Based on Deep Reinforcement Learning

"1" with a cluster size of Cs

c1
= 5, and the smallest enclosing

rectangle has a size of A
c1

= 6, then the compactness is Cc

c1
= 5 / 6. Thus, the reward for action a1 is r1 = C

s

c1
ù C

c

c1
= 5

ù 5 / 6 = 4.17.
"New perfect lines (L

new
)" is explained as follows: It

refers to the number of new perfect lines generated by the
current action, which is calculated by subtracting the current
state’s perfect lines from the perfect lines in the next state.
As shown in Fig. 4, suppose that taking action a2 for item
I2 in a new cluster c2, with a cluster size of Cs

c2
= 5. The

minimum enclosing rectangle size for this cluster, denoted
as A

c2
, is 5. The compactness, Cc

c2
, is calculated as 5 / 5

= 1. Simultaneously, a new perfect line is formed, with a
quantity of 1. The quantity of perfect lines before executing
the action, denoted as L

s2
, is 0. After executing the action,

the quantity of new perfect lines in the new state, denoted as
L
s3

, is 1. Therefore, L
new

= L
s3

- L
s2

= 1 - 0 = 1. If we set
the value of K

w
to 5, the reward for action a2 is r2 = C

s

c2
ù

C
c

c2
+ L

new
ù K

w
= 5 ù 1 + 1 ù 5 = 10.

3.2. Deep Q-Network
In the learning procedure, the agent executes an action

according to the observed current state s
i

and policy ⇡ at
each time step i and the policy ⇡ is evaluated based on the
state-action value function Q(s

i
, a

i
),

Q
⇡
(s

i
, a

i
) = E

⌅
G
i
=

ÿ…
k=0

�
k
r
i+k+1 › (si, ai)

⇧

= E
⌅
r
i+1 + �Q

⇡
(s

i+1, ai+1) › (si, ai)
⇧
,

(9)

where G
i

is the cumulative return for each time step i and
r
i+k+1 denotes the reward obtained at step i + k + 1. The

variable � is the discount factor. And the variable � close to
1 focuses more on long-term cumulative rewards, while �

close to 0 focuses more on short-term rewards. By maximiz-
ing the state-action value function overall policies, we can
obtain the optimal state-action value function Q

<(s
i
, a

i
):

Q
<(s

i
, a

i
) = max

⇡
Q

⇡
(s

i
, a

i
). (10)

The update of the Q function needs to be iteratively
calculated to approximate the optimal Q

<(s
i
, a

i
), and the

scheme is called Q-learning. The deep Q-learning algorithm
(DQN) employs a deep neural network to play the role
of Q function, which can be denoted as the Q-network
Q

✓
(s

i
, a

i
) with ✓ being the parameters of the neural network.

The neural network takes the next state s
i+1 obtained by

performing action a
i
under the state s

i
as input and generates

the value of the action as output. The neural network shown
in Fig. 5 consists of three FCs. In the training of the network,
✓ is updated by

✓
< =argmin

✓

E(si,ai,ri,si+1)ÌD

⌧
›› r

i

+ � max
ai+1

Q
✓
(s

i+1, ai+1) *Q
✓
(s

i
, a

i
) ››2

�
,

(11)

where D is a bu�er that stores the transitions (s
i
, a

i
, r

i
, s

i+1)
during the interaction between the agent and the environ-
ment and r

i
+ � max

ai+1
Q

✓
(s

i+1, ai+1) *Q
✓
(s

i
, a

i
) is called

temporal di�erence error. The role of the replay bu�er is
mainly to make the samples satisfy the independence as-
sumption and to increase the sample utilization. The data
obtained from interaction sampling in MDP does not satisfy
the independence assumption by itself because the state at
this moment is related to the state at the previous moment.
Non-independently and identically distributed data has a sig-
nificant impact on training the neural network, causing the
neural network to be fitted to the most recently trained data.
Using empirical playback can break the correlation between
the samples and allow them to satisfy the independence
assumption.

Algorithm 2 Double DQN-Based BPP Algorithm.
Initialize replay bu�er D to capacity N ;
Initialize action-value function Q with random weights ✓;
Initialize target action–value function ÇQwith weight ✓* =
✓;
For episode = 1,..., M do

Initialize state s1;
For i = 1,..., T do

According to the item I
i
, simplify action space A;

With probability ✏ select a random action a
i

from

action space A;
Otherwise select a

i
= argmax

ai
Q

✓
(s

i
, a

i
) ;

Execute action a
i

and observe reward r
i

and next
state s

i+1;
Store transition (s

i
, a

i
, r

i
, s

i+1) in D;
Sample random minibatch of transitions
(s

i
, a

i
, r

i
, s

i+1) from D;

y
i
=
T

r
i
, if s

i+1 is terminal
r
i
+ � max

ai+1
Q

✓* (si+1, ai+1), otherwise

Perform a gradient descent step on (y
i
*

Q
✓
(s

i
, a

i
))2

with respect to the network parameters ✓;
Update ✓

* following: ✓* = (1 * ⌧)✓* + ⌧✓;
End for

End for

Since the temporal di�erence error contains the output of
the neural network, the target is constantly changing while
updating the parameters of the network, which can very eas-
ily cause instability in the training of the network. To address
this problem, a replica of Q

✓
(s

i
, a

i
) is introduced which is

called the target Q network and denoted as Q
✓* (si, ai). Eq.

(11) can be modified to be

✓
< =argmin

✓

E(si,ai,ri,si+1)ÌD

⌧
›› r

i

+ � max
ai+1

Q
✓* (si+1, ai+1) *Q

✓
(s

i
, a

i
) ››2

�
.

(12)

During the process of updating ✓, ✓* is copied from ✓ every
fixed numbers steps. This method, known as Double DQN,

Yuhao Liu et al.: Preprint submitted to Elsevier Page 7 of 13

Task Scheduling for Control System Based on Deep Reinforcement Learning

Figure 5: Illustration of the training process for agent.

is used to train the network more consistently and improve
the state-action value overestimation problem [30].

At the beginning of the i-th time step, the Q-network
generates output as the action-value function for the state-
action pair (s

i
, a

i
). Considering the exploration-exploitation

dilemma [27], the agent uses the policy of ✏-greedy (✏ À
(0, 1)) to take action.

a
i
=
T

argmax
ai
Q(s

i
, a

i
), with the probability of 1 * ✏,

random a
i

in A, otherwise.

The ✏-greedy policy is to choose the action of the optimalQ<

with probability 1 * ✏ and to choose a random action for all
other cases. The agent executes the action, i.e., placing the
incoming item into the bin, and thereby receives a reward
r
i

from the environment. Meanwhile, the target network
computes the Q-value for this state-action pair. And the
network updates parameters by Eq. (12). Compared with the
original Double DQN algorithm, the update form of ✓ adopts
a soft update technique:

✓
* = (1 * ⌧)✓* + ⌧✓, (13)

where ⌧ denotes the soft update ratio. This technique is
helpful to reduce the fluctuation of the output curve during
network training. The whole process of Double DQN-Based
BPP is shown in Fig. 5 and the algorithm is shown in
Algorithm 2.

4. Experiments And Results
The application of scheduling algorithms is in the ac-

tual service cloud or CloudSim and OpenStack, two cloud
computing infrastructure and service frameworks. However,

the algorithm proposed in this paper is di�erent from the
heuristic algorithm and requires parameter tuning and a
certain amount of training time. Therefore, this section uses
Python to simulate the scheduling process and train and
verify the model. In this section, we first obtain the resource
quantity prediction of the control task and then perform
resource scheduling. And to verify the e�ectiveness and
e�ciency of the proposed model in this paper, this section
presents experimental results for both resource measurement
and neural network modeling, as well as experiments and
results for the evolution of task scheduling into the BPP.
The neural network achieves excellent performance in the
measurement and classification of CPU cores and runtime.
In the BPP experiments, we provide a detailed description of
the data, procedures, and parameters of the training settings.
We then compare the e�ectiveness of the model proposed
in this paper with other packing algorithms and present the
packing utilization results using bins of di�erent sizes. Our
model outperforms these algorithms.

4.1. Results of Neural Network Classification
We choose to test the CPU runtime required by the LQR

through experiments. As indicated by Eq. (4) and Eq. (5),
obtaining the LQR requires obtaining the P matrix and the
K matrix, where the input matrix consists of four matrices:
A, B, F , and R. We randomly generate A and B matrices
of di�erent dimensions while ensuring controllability and
observability, where A is an nùn square matrix, and B is an
n ù m matrix. The matrices F and R are diagonal matrices
with dimensions corresponding to matrix A and elements
set to 1. In the experimental testing, we utilize the API, time
module, in Python to test the running time of obtaining the
LQR controllers. Due to the Global Interpreter Lock (GIL)
in Python, only one thread can be in an execution state at

Yuhao Liu et al.: Preprint submitted to Elsevier Page 8 of 13

Task Scheduling for Control System Based on Deep Reinforcement Learning

Figure 6: The confusion matrix for the neural network clas-

sification, class 0, 1, 2, 3 represent categories (u
l
, t

l
), (u

s
, t

l
),

(u
l
, t

s
) and (u

s
, t

s
) respectively.

any given time. Therefore, when running the program on
a single core, we limit the core’s performance to simulate
di�erences in performance with varying numbers of cores
on cloud servers. We conduct multiple tests and take the
average values to minimize testing errors. The experiments
are conducted on a computer with a 12th Gen Intel(R)
Core(TM) i5-12500 processor.

Based on the above approach, the obtained dataset ranges
from 1 to 6 for n and from 1 to 10 for m, resulting in 60
possible combinations for matrices A and B. Each com-
bination corresponds to 100 sets of random matrix data,
resulting in a total of 6000 sets of data. These data are run
on a a single CPU core with frequencies of 1.93GHz and
2.2GHz respectively and their runtime is measured, resulting
in 12,000 sets of data. For these 12,000 sets of data, we plan
to categorize them into four groups based on the runtime
in the dataset and the di�erent performances of the single
core: (u

l
, t
l
), (u

s
, t
l
), (u

l
, t
s
) and (u

s
, t
s
). u

s
and u

l
represent

small and large performances of CPU core, and t
s

and t
l

represent small and large time requirements. To address
this classification problem, we introduce the neural network
structure shown in Fig. 2, with 6 input nodes, 3 hidden layers
each consisting of 32 nodes, and 4 output nodes representing
the four categories. The model employs the Adam optimizer
with a learning rate of 1e*3, and the final classification
accuracy is 93%, the confusion matrix for the classification
is shown in Fig. 6.

4.2. BPP Experiments and Results
After estimating the CPU cores and runtime for di�erent

dimensions of LQR using a neural network and classifying
them based on their resource needs, the scheduling of tasks
can be initiated. As described in Section 3, the resource

Table 2
Hyperparameters during model training with 5 ù 5 bin size

learning rate 2e*3

discount factor 0.99

batch size 512

replay buffer capacity N 5e4

optimizer Adam

activation function Relu

soft update ratio ⌧ 5e*3

initial epsilon 1.0

final epsilon 1e*3

episode 2e4

K
w

0.5

Figure 7: Packing efficiency (y) vs. Iteration (x) plot during

training phase with rectangular items inside a squared bin (5

× 5).

scheduling involved in this paper can be depicted as a 2D
BPP, which we resolve using the Double DQN from deep
reinforcement learning. The implementation of this method
is carried out in PyTorch.

This model utilizes the Adam optimizer for optimization.
The Q-network structure follows the configuration illus-
trated in Fig. 5, with 64 nodes in each hidden layer. The
specific parameters for the model training can be found in
Tab. 2.

We chose a square bin with a size of W ùW to place the
items of di�erent sizes. To do this, we first generate a certain
number of items of size wùh (1 f w f 2, 1 f h f 2). Their
shapes are rectangles and squares. The ratio of the number
of each category is the same as the ratio of their sizes, and
the total size needs to exceed the capacity of the bin. The
order of items in this sequence is random, and then these
items are sent to the algorithm one by one and the sequence
L will be placed in the W ùW bin. During the iterations of

Yuhao Liu et al.: Preprint submitted to Elsevier Page 9 of 13

Task Scheduling for Control System Based on Deep Reinforcement Learning

(a) 8 ù 8 bin (b) 10 ù 10 bin

Figure 8: Packing efficiency (y) vs. Episode (x) plot during training phase with rectangular items inside a square bin (8 × 8 and

10 × 10).

training, send the items inL in order and allocate appropriate
rewards after each action. The Q-network is updated based
on the reward value after each action is executed, eventually
resulting in an approximately optimal packing strategy.

For the baselines choosing, we first select two heuristic
algorithms: ShelfNextFit and Skyline as baselines. We also
select a reinforcement learning algorithm: Deep-Pack for
comparison with the proposed method. The baselines are
summarized as follows:

• ShelfNextFit [14]: Place the new item on the last open
shelf.

• Skyline [41]: Select the empty space with the smallest
y-axis and the smallest x-axis to place the new item.

• Deep-Pack [33]: Use a deep convolutional network to
fit the action value function in DQN, and place the
items according to the action value.

Fig. 7 shows the packing e�ciency of the 5 ù 5 bin
during the training phase. Due to the simplification of the
action space by retaining only valid actions, the bin utiliza-
tion rate is relatively high in the early stages of training.
As the iterations progress, the packing e�ciency becomes
progressively higher until it levels o�. In Tab. 3, we present
the packing results for the 5ù 5 bin using both the proposed
method and baselines, respectively. Compared with heuristic
algorithms, the performance of the algorithm proposed in
this paper surpasses them. Compared with Deep-Pack, the
superiority of the proposed algorithm is mainly reflected in
the convergence speed of the algorithm.

Furthermore, this paper also extends the bin sizes, which
introduces an issue of increased action space. In Deep-Pack,
the number of actions is determined by the size of the bin,
which is W ùW . With the expansion of bin sizes, the action
space would proportionally increase, leading to a significant
increase in the matrix that the convolution has to handle.
This would inevitably result in a huge increase in training
time. However, in the proposed method, data preprocessing
is conducted in advance, with the characteristics of the bins

Table 3
Utilization of proposed method and baselines with 5 ù 5 bin

size

BinPack method Bin

size

Train episodes Utilization

Proposed Method 5 ù 5 20,000 92.32%

Deep-Pack 5 ù 5 300,000 91.00%

ShelfNextFit 5 ù 5 —— 76%

Skyline 5 ù 5 —— 80%

Table 4
Utilization of proposed method and baselines with different bin

size

Bin size BinPack method Utilization

5 ù 5 Proposed Method 92.32%

ShelfNextFit 76%

Skyline 80%

8 ù 8 Proposed Method 96.36%

ShelfNextFit 70.31%

Skyline 84.38%

10 ù 10 Proposed Method 94.25%

ShelfNextFit 76%

Skyline 91%

serving as the network input. Only valid actions are included
in the action space, greatly reducing the training time while
still achieving favorable results, as shown in Fig. 8. Because
Deep-Pack requires massive time to train in the expanded
size bin packing, we only compare the proposed method with
the heuristic algorithm, as shown in Tab. 4.

Yuhao Liu et al.: Preprint submitted to Elsevier Page 10 of 13

Task Scheduling for Control System Based on Deep Reinforcement Learning

Table 5
Ablation study with different bin size

Bin size Reward function Action space Utilization

5 ù 5 Proposed Simplified 92.32%

Proposed Total 47.15%

+1 Simplified 90.05%

+1 Total 42%

8 ù 8 Proposed Simplified 96.36%

Proposed Total 15.82%

+1 Simplified 90.93%

+1 Total 15.68%

10 ù 10 Proposed Simplified 94.25%

Proposed Total 14%

+1 Simplified 93.08%

+1 Total 10.5%

4.3. Ablation Study
In addition to the training and evaluation of the pro-

posed method, ablation studies are conducted using modified
models generated by partially masking modules/parts. In
the first study, the reward function was modified based on
the proposed method by changing it to the simplest reward
setting, where each time an item is successfully placed,
the environment will return a reward with the value of 1.
Such a reward treated all placement actions equally, chal-
lenging the learning process. As indicated in Tab. 5, the
final experimental outcomes were also inferior to the method
proposed in this paper. In the second study, the method of
simplifying the action space was not employed during the
packing process. Since the action space was not simplified,
there was a significant probability that the agent would
choose actions that had been selected before, leading to
negative rewards and the termination of the current episode.
This had a substantial impact on training, requiring more
time to achieve satisfactory results compared to the method
of simplifying the action space. The larger the action space,
the more challenging the training process becomes. The
experimental results showed a noticeable di�erence between
the two approaches under the same training episodes. In the
third study, a simple reward function and the total action
space were employed, and the final results are presented in
Tab. 5. In these studies, the training episodes corresponding
to the same bin size are identical and the results in Tab. 5
indicate that the proposed reward function and the simplified
action space method improved the e�ciency of the algo-
rithm, enabling the agent to achieve better results in fewer
training episodes.

5. Conclusion
This paper investigates the control system’s computa-

tional task scheduling problem within limited time and lim-
ited CPU cores in the cloud server, taking the problem of
obtaining LQR optimal controllers in the control system as
an example. A neural network modeling approach is em-
ployed to predict runtime for obtaining LQR with di�erent
coe�cient matrices under varying numbers of CPU cores.
After framing the task scheduling problem as a 2D BPP,
we propose a BPP algorithm based on Double DQN with a
simplified action space and validate its performance through
experiments with bins of varying sizes. The experimental
results demonstrate that the Double DQN algorithm out-
performs baselines, e�ectively addressing task scheduling
problems in the context of the control system.

In future work, we plan to further explore this method on
a larger set of tasks and a wider variety of control methods,
such as computational resource prediction and scheduling
for common methods such as fuzzy control, adaptive con-
trol, and robust control. By studying the performance and
behavior of this method in di�erent control tasks, we hope
to demonstrate its wide applicability and scalability.

References
[1] J. Z. Ben-Asher, Optimal Control Theory with Aerospace Applica-

tions, American Institute of Aeronautics and Astronautics, 2010.
[2] J. Zhu, E. Trélat, M. Cerf, Geometric Optimal Control and Applica-

tions to Aerospace, Pacific Journal of Mathematics for Industry vol.
9, no. 1 (2017) 1–41.

[3] P. Girovskỳ, J. �ilková, J. Ka�uch, Optimization of Vehicle Braking
Distance Using a Fuzzy Controller, Energies 13 (2020) 3022.

[4] M. A. Velasquez, J. Barreiro-Gomez, N. Quijano, A. I. Cadena,
M. Shahidehpour, Distributed Model Predictive Control for Eco-
nomic Dispatch of Power Systems with High Penetration of Renew-
able Energy Resources, International Journal of Electrical Power &
Energy Systems 113 (2019) 607–617.

[5] L. Qian, Z. Luo, Y. Du, L. Guo, Cloud Computing: An Overview,
in: Proc. Cloud Computing: First International Conference., Springer,
2009, pp. 626–631.

[6] D. Rani, R. K. Ranjan, A Comparative Study of SaaS, PaaS and IaaS
in Cloud Computing, International Journal of Advanced Research in
Computer Science and Software Engineering 4 (2014).

[7] Q. Weng, W. Xiao, Y. Yu, MLaaS in the Wild: Workload Analysis
and Scheduling in Large-Scale Heterogeneous GPU Clusters, in:
19th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 22), 2022.

[8] C. Lameter, Numa (Non-Uniform Memory Access): An Overview:
NUMA Becomes More Common Because Memory Controllers Get
Close To Execution Units on Microprocessors., Queue 11 (2013) 40–
51.

[9] D. Saxena, A. K. Singh, A Proactive Autoscaling and Energy-
e�cient VM Allocation Framework Using Online Multi-resource
Neural Network for Cloud Data Center, Neurocomputing 426 (2021)
248–264.

[10] J. Sheng, Y. Hu, W. Zhou, et al., Learning to Schedule Multi-NUMA
Virtual Machines via Reinforcement Learning, Pattern Recognition
121 (2022) 108254.

[11] V. V. Vazirani, Approximation Algorithms, volume 1, Springer, 2001.
[12] A. Lodi, S. Martello, D. Vigo, Recent Advances on Two-dimensional

Bin Packing Problems, Discrete Applied Mathematics 123 (2002)
379–396.

Yuhao Liu et al.: Preprint submitted to Elsevier Page 11 of 13

Task Scheduling for Control System Based on Deep Reinforcement Learning

[13] A. Wolke, B. Tsend-Ayush, C. Pfei�er, M. Bichler, More than
Bin Packing: Dynamic Resource Allocation Strategies in Cloud Data
Centers, Information Systems 52 (2015) 83–95.

[14] Z. Zhu, J. Sui, L. Yang, Bin-packing Algorithms for Periodic
Task Scheduling, International Journal of Pattern Recognition and
Artificial Intelligence 25 (2011) 1147–1160.

[15] G. L. Stavrinides, H. D. Karatza, Scheduling Multiple Task Graphs in
Heterogeneous Distributed Real-time Systems by Exploiting Sched-
ule Holes with Bin Packing Techniques, Simulation Modelling
Practice and Theory 19 (2011) 540–552.

[16] G. Dósa, J. Sgall, First Fit bin packing: A Tight Analysis, in: Proc.
30th International Symposium on Theoretical Aspects of Computer
Science (STACS 2013), Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2013.

[17] E. G. Co�man, Jr, M. R. Garey, D. S. Johnson, R. E. Tarjan,
Performance Bounds for Level-Oriented Two-Dimensional Packing
Algorithms, SIAM Journal on Computing 9 (1980) 808–826.

[18] G. Dósa, J. Sgall, Optimal Analysis of Best Fit Bin Packing, in:
Proc. International Colloquium on Automata, Languages, and Pro-
gramming, Springer, 2014, pp. 429–441.

[19] B. S. Baker, J. S. Schwarz, Shelf Algorithms for Two-Dimensional
Packing Problems, SIAM Journal on Computing 12 (1983) 508–525.

[20] E. Falkenauer, A Hybrid Grouping Genetic Algorithm for Bin
Packing, Journal of Heuristics 2 (1996) 5–30.

[21] J. Levine, F. Ducatelle, Ant Colony Optimization and Local Search for
Bin Packing and Cutting Stock Problems, Journal of the Operational
Research Society 55 (2004) 705–716.

[22] J. Schmidhuber, Deep Learning in Neural Networks: An Overview,
Neural Networks 61 (2015) 85–117.

[23] Y. Bengio, A. Lodi, A. Prouvost, Machine Learning for Combinatorial
Optimization: A Methodological Tour D’horizon, European Journal
of Operational Research 290 (2021) 405–421.

[24] M. Saadatmand-Tarzjan, On Computational Complexity of The
Constructive-optimizer Neural Network for The Traveling Salesman
Problem, Neurocomputing 321 (2018) 82–91.

[25] D. Wang, N. Gao, D. Liu, J. Li, F. L. Lewis, Recent Progress in
Reinforcement Learning and Adaptive Dynamic Programming for
Advanced Control Applications, IEEE/CAA Journal of Automatica
Sinica 11 (2024) 18–36.

[26] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, F. L. Lewis, Optimal
and Autonomous Control Using Reinforcement Learning: A Survey,
IEEE Transactions on Neural Networks and Learning Systems 29
(2018) 2042–2062.

[27] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction,
MIT press, 2018.

[28] C. J. Watkins, P. Dayan, Q-learning, Machine Learning 8 (1992)
279–292.

[29] B. Jang, M. Kim, G. Harerimana, J. W. Kim, Q-learning Algorithms:
A Comprehensive Classification and Applications, IEEE Access 7
(2019) 133653–133667.

[30] H. Van Hasselt, A. Guez, D. Silver, Deep Reinforcement Learning
with Double Q-Learning, in: Proc. The AAAI Conference on Artifi-
cial Intelligence, volume 30, 2016.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, et al., Human-level Control
Through Deep Reinforcement Learning, Nature 518 (2015) 529–533.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, et al., Playing Atari with Deep
Reinforcement Learning, arXiv preprint arXiv:1312.5602 (2013).

[33] O. Kundu, S. Dutta, S. Kumar, Deep-pack: A Vision-Based 2D
Online Bin Packing Algorithm with Deep Reinforcement Learning,
in: Proc. 2019 28th IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN), IEEE, 2019, pp. 1–7.

[34] T. Haarnoja, A. Zhou, K. Hartikainen, et al., Soft Actor-Critic Algo-
rithms and Applications, arXiv preprint arXiv:1812.05905 (2018).

[35] L. Zhang, D. Li, S. Jia, H. Shao, Brain-Inspired Experience Rein-
forcement Model for Bin Packing in Varying Environments, IEEE
Transactions on Neural Networks and Learning Systems 33 (2022)
2168–2180.

[36] A. Ashraf, W. Mei, L. Gaoyuan, Z. Anjum, M. M. Kamal, Design
Linear Feedback and LQR Controller for Lateral Flight Dynamics of
F-16 Aircraft, in: Proc. 2018 International Conference on Control,
Automation and Information Sciences (ICCAIS), IEEE, 2018, pp.
367–371.

[37] M. Barbiero, A. Rossi, L. Schenato, LQR Temperature Control in
Smart Building via Real-time Weather Forecasting, in: Proc. 2021
29th Mediterranean Conference on Control and Automation (MED),
IEEE, 2021, pp. 27–32.

[38] C. Peng, W. Zhang, Pareto Optimality in Infinite Horizon Mean-Field
Stochastic Cooperative Linear–Quadratic Di�erence Games, IEEE
Transactions on Automatic Control 68 (2023) 4113–4126.

[39] C. Peng, W. Zhang, Multiobjective Dynamic Optimization of Coop-
erative Di�erence Games in Infinite Horizon, IEEE Transactions on
Systems, Man, and Cybernetics: Systems 51 (2021) 6669–6680.

[40] C. Peng, W. Zhang, L. Ma, Infinite horizon multiobjective optimal
control of stochastic cooperative linear-quadratic dynamic di�erence
games, Journal of the Franklin Institute 358 (2021) 8288–8307.

[41] L. Wei, D. Zhang, Q. Chen, A Least Wasted First Heuristic Algorithm
for The Rectangular Packing Problem, Computers & Operations
Research 36 (2009) 1608–1614.

Acknowledgment
This research was funded by the National Natural Sci-

ence Foundation of China under Grant 62303196, the Natu-
ral Science Foundation of Jiangsu Province of China under
Grant BK20231036, the Basic Research Funds of Wuxi
Taihu Light Project under Grant K20221005, and the 111
Project under Grant B23008.

Yuhao Liu received the B.Eng. de-
gree from the School of Internet of
Things Engineering, Jiangnan Univer-
sity, Wuxi, China, in 2022. He is cur-
rently working toward the M.Eng. degree
with the Key Laboratory of Advanced
Process Control for Light Industry (Min-
istry of Education), School of Internet
of Things Engineering, Jiangnan Univer-
sity, Wuxi, China. His research interests

include cloud resource scheduling and deep reinforcement
learning.

Yuqing Ni is an associate profes-
sor at the School of Internet of Things
Engineering, Jiangnan University, Wuxi,
China. She received the B.Eng. degree
from the College of Control Science
and Engineering, Zhejiang University,
Hangzhou, China, and the Ph.D. degree
in Electronic and Computer Engineer-
ing from the Hong Kong University of
Science and Technology, Hong Kong, in

2016, and 2020, respectively. From April 2019 to June
2019, she was a visiting student in the School of Electrical
Engineering and Computer Science, KTH Royal Institute
of Technology, Stockholm, Sweden. Prior to her current
position, she was a senior engineer at Huawei from 2020 to
2021. Her research interests include security and privacy in
cyber–physical system, networked state estimation, and deep
reinforcement learning.

Yuhao Liu et al.: Preprint submitted to Elsevier Page 12 of 13

Task Scheduling for Control System Based on Deep Reinforcement Learning

Chang Dong is an assistant professor
in Operations Management at Durham
University Business School. Before join-
ing Durham University, he obtained a
Ph.D. degree in Department of Industrial
Engineering and Decision Analytics at
Hong Kong University of Science and
Technology in 2019, and then worked
as a postdoctoral fellow in Chinese Uni-

versity of Hong Kong from 2020 to 2022. His research
interests broadly include topics in supply chain management,
marketing-operations interface, and innovations and new
business strategies.

Jun Chen received the B.Sc. de-
gree in automation from the Wuxi Insti-
tute of Light Industry, Wuxi, China, in
2003, and the M.Sc. and Ph.D. degrees
in control theory and control engineering
from Jiangnan University, Wuxi, China,
in 2005 and 2009, respectively. Currently,
she is an associate professor with the In-
stitute of Automation, Jiangnan Univer-
sity. Her research interests include fuzzy

control theory, advanced control theory and their applica-
tions.

Fei Liu received the B.Sc. degree in
electrical technology and the M.Sc. de-
gree in industrial automation from the
Wuxi Institute of Light Industry, Wuxi,
China, in 1987 and 1990, respectively,
and the Ph.D. degree in control science
and control engineering from Zhejiang
University, Zhejiang, China, in 2002. He
is currently a professor with the Insti-
tute of Automation, Jiangnan University,

WuXi, China. His main research interests include robust
control, process control system, Markov jumping system,
anti-disturbance control, and their applications.

Yuhao Liu et al.: Preprint submitted to Elsevier Page 13 of 13

Citation on deposit:

Liu, Y., Ni, Y., Dong, C., Chen, J., & Liu, F. (2024). Task
scheduling for control system based on deep
reinforcement learning. Neurocomputing, 610,
128609.

https://doi.org/10.1016/j.neucom.2024.128609

For final citation and metadata, visit Durham Research Online URL:
https://durham-repository.worktribe.com/output/3084273

Copyright Statement:

This accepted manuscript is licensed under the Creative Commons Attribution
4.0 licence. https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1016/j.neucom.2024.128609
https://durham-repository.worktribe.com/output/2982917

	NEUCOM-D-24-02134
	Citation page-V1-2023

