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Summary

This paper presents a novel isogeometric modified method of characteristics for the
numerical solution of the two-dimensional nonlinear coupled Burgers’ equations.
The method combines the modified method of characteristics and the high-order
NURBS (non-uniform rational B-splines) elements to discretize the governing
equations. The Lagrangian interpretation in this isogeometric analysis greatly
reduces the time truncation errors in the Eulerian methods. A third-order explicit
Runge-Kutta scheme is used for the discretization in time. We present a detailed
description of the algorithm used for the calculation of departure points and the inter-
polation stage. Our focus is on constructing highly accurate and stable solvers for
the two-dimensional nonlinear coupled Burgers’ equations at high Reynolds num-
bers. A variety of benchmark tests and numerical examples are provided to show the
effectiveness, accuracy, and performance of the proposed modified method of char-
acteristics by virtue of potential advantages of isogeometric analysis. The method
developed is anticipated to provide new research directions to the practical calcula-
tion of incompressible flows and to studies of their physical behavior.
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1 INTRODUCTION

In general, convection-dominated viscous flows are characterized by some complicated features such as boundary layers which
involve very strong gradients. As a consequence, the formulation of a highly accurate computational analysis requires the adjust-
ment of the local scale difference between convection and diffusion terms. The standard Galerkin formulation has been used for
the treatment of such problems, but exhibits spurious instabilities, see for example1. Unfortunately, this carries over the isoge-
ometric counterpart approach as well. To handle this problem, several numerical methods have been introduced including the
well-known Streamline-upwind Petrov-Galerkin (SUPG) methods. The idea of SUPG methods is to increase the numerical sta-
bility without degrading the accuracy by insertion of residual-based modification of the Galerkin method. Authors in2 proposed
a SUPG-stabilized isogeometric analysis with reduced order for solving the unsteady convection-dominated diffusion reaction
problems. For the time discretization, authors in2 used the Crank-Nicholson scheme which is unconditionally stable but requires
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small time steps in order to achieve high accuracy. Similar ideas were proposed in3 for steady convection-diffusion problems.
In4, a space-time isogeometric analysis is proposed for parabolic equations in fixed and moving spatial computational domains.
Authors in5 have presented a numerical study based on finite elements and B-splines for one-dimensional advection-diffusion
problems. The isogeometric analysis has also been used in6 for elliptic boundary-value problems with singular parameter-
izations. In7, an isogeometric analysis with direction splitting has been investigated for non-stationary advection-diffusion
problems. In each space direction, a stabilized mixed method based on the residual minimization is used. Preconditioning
immersed isogeometric finite element methods have also been studied in8 by investigating the conditioning analysis of immersed
finite element methods for systems that are not symmetric positive definite, but the study is redirected to parabolic problems
and steady Navier-stokes equations. A class of algebraic flux correction procedures has been proposed in9 to overcome the
spurious oscillatory behavior appeared in the solutions of compressible flows problems. Authors in10 have also suggested to
use tensioned splines instead of NURBS or B-splines in order to reduce the non-physical oscillations for a class of steady
advection-diffusion problems. For incompressible flows, the isogeometric analysis has been investigated in many works, see for
instance11,12,13,14,15,16,17.

In this paper, given a two-dimensional bounded domain Ω ⊂ R2 with Lipschitz boundary Γ and a given time interval [0, 𝑇 ],
we are interested in solving the two-dimensional unsteady nonlinear coupled Burgers’ equations

𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖 − 1
𝑅𝑒

Δ𝒖 = 𝟎, (1)

where 𝒖 = (𝑢, 𝑣)⊤ the velocity field, 𝑢 the velocity in 𝑥-direction, 𝑣 the velocity in 𝑦-direction, and 𝑅𝑒 the Reynolds number.
Note that this nondimensional number is usually used to control the relative importance of convection compared to diffusion in
(1). To provide a well-posed mathematical problem, equations (1) are equipped with suitable boundary and initial conditions. In
general, it is challenging to solve this type of equations for small values of diffusion which correspond to high Reynolds num-
bers. In this case, the solution usually exhibits sharp gradients due to the formation of thin boundary layers in the computational
domain. Another challenge is the nonlinear nature of the problem which makes most conventional finite element methods not a
good choice as most of these methods require a linearization of the problem at each time step. Many research works have been
published in the literature to treat the nonlinear viscous Burgers equations. For example, a fourth-order numerical algorithm
based on the two-dimensional Hopf-Cole transformation to solve the system of two-dimensional Burgers’ equations with rela-
tively large Reynolds numbers has been presented in18. The Hopf-Cole transformation allows to avoid any linearization of the
equations as this transforms the problem to a class of linear heat equations. The resulting system is then solved using a forth-order
finite difference scheme. To maintain the forth-order accuracy, authors apply a Richardsons extrapolation for time discretization.
Apparently the main drawback in this work, is the extension to complex geometries since the authors adopt a finite difference
scheme to discretize the space. In19, the authors adopt the same Hopf-Cole transformation and use the spectral volume (SV)
method to discretize the spacial derivatives. In this case, no need to Richardsons extrapolation as the high-order accuracy is
guaranteed by the SV method. Apparently, a serious weakness with this argument, however, is the necessity to approximate the
initial and boundary conditions via a quadrature rule which may create accumulation of errors. Authors in20 have also presented
a MacCormack approach which can be interpreted as a predictor-corrector formulation to solve the two-dimensional coupled
Burgers’ equations. This method is powerful for small Reynolds numbers but it is only second-order accurate in time and space
for large Reynolds numbers. In21, a time splitting operator has been proposed to separate the nonlinear advection part from the
diffusion part in the two-dimensional coupled Burgers’ equations. The nonlinear part is linearized based on a special Taylor-
expansion approach whereas, the diffusion part is discretized using a finite element method. As in previous works, the values of
Reynolds number used are relatively small (up to 𝑅𝑒 = 100).

The main limitation of most of the previous works is the use of Eulerian-based discretizations which require small time steps
in order to achieve both numerical stability and the desired accuracy. As a result, the computational cost is increased, especially
for long-term flow simulations. Furthermore, some works have tended to focus on transport problems with linear, smooth and
constant velocity fields. The focus of the current study is on the numerical solution of highly convection-dominated problems
with nonlinear convection. In general, convective terms are recognized as being sources of oscillations, especially when the
velocity field exhibits sharp gradient. To deal with this problem, we suggest to treat the convective part by the modified method
of characteristics in which the non-uniform rational B-spline (NURBS) functions are used to interpolate the solution from
previous time steps. By doing so, no linearization procedures are required for the two-dimensional coupled Burgers’ equations
(1). Moreover, the main feature of modified method of characteristics is the ability to use large time steps in the simulations while
maintaining stability. This make this scheme an attractive choice for long-term flow simulations. The accuracy of the proposed
isogeometric modified method of characteristics is attributed to two facts: the first one is attributed to the reduced computational
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cost which is a powerful key of a Lagrangian-based method compared to its Eulerian counterpart, whereas the second one
is related to the NURBS basis functions used for space discretization. To increase the accuracy, we interpolate the solution
using high-order NURBS basis functions in the isogeometric analysis framework. For the space discretization, we implement
an isogeometric finite element approach. The main contribution in this work is using the NURBS functions to interpolate the
solution from previous time step using an𝐿2-projection procedure introduced in22,23. The idea behind the𝐿2-projection approach
consists of evaluating the solution at the departure points using a set of quadrature points distributed in the host patch. Thus, we
combine both main advantages of the modified method of characteristics related to the use of large time steps and the ability of
isogeometric analysis in preserving the geometry exact, no matter how much the mesh is coarse. Notice that the computational
treatment of the complex patterns resulting from dominated convection terms often requires efficient numerical algorithms
with high regularity. These advantages are achieved in the present work by using the 𝑘-refinement strategy which is unique to
isogeometric analysis and do not have analogue in conventional finite element methods. This approach offers high inter-element
continuity and the method has a potential approach to high-precision analysis over the standard 𝑝-refinement strategies, see24,25

among others. The performance of the proposed isogeometric modified method of characteristics is demonstrated for several
test examples of the two-dimensional coupled Burgers’ equations. To the best of our knowledge, combining an isogeometric
analysis and the modified method of characteristics for solving the nonlinear Burgers equations is proposed for the first time.

This paper is organized as follows. In section 2 we introduce tools used for the NURBS-based isogeometric analysis. For-
mulation of the isogeometric modified method of characteristics for solving the two-dimensional coupled Burgers’ equations is
presented in section 3. This section includes the calculation of departure points, the NURBS-based procedure for the convec-
tion stage and an explicit third-order Runge-Kutta scheme to solve the diffusion stage. Section 4 is devoted to numerical results
for several examples of two-dimensional unsteady nonlinear coupled Burgers’ equations. Our new approach is demonstrated to
enjoy the expected efficiency as well as the accuracy. Concluding remarks are summarized in section 5.

2 NURBS-BASED ISOGEOMETRIC ANALYSIS

In this section a brief overview of the IsoGeometric Analysis (IGA) is presented and more details on IGA can be found in25,26,24,27

among others. This includes the NURBS basis functions and the IGA space on which the approximate solution is defined. Thus,
given a knot vector Ξ which is defined as an ordered set of increasing parameter values Ξ =

{

𝜉1, 𝜉2,… , 𝜉𝑚𝑏+𝑝+1
}

, where 𝑚𝑏
denotes the number of basis functions and 𝑝 is the polynomial order, the associated set of B-spline basis functions

{

𝑁𝑝
𝑖
}𝑚𝑏

𝑖=1 are
defined recursively by the Cox-de-Boor formula as follows25,26:

Starting with the following zeroth-order basis function (𝑝 = 0)

𝑁0
𝑖 (𝜉) =

⎧

⎪

⎨

⎪

⎩

1, if 𝜉𝑖 ⩽ 𝜉 ⩽ 𝜉𝑖+1, 𝑖 = 1,… , 𝑚𝑏,

0, elsewhere,
(2)

the B-spline basis function of an order 𝑝 ⩾ 1 is defined by

𝑁𝑝
𝑖 (𝜉) =

𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

𝑁𝑝−1
𝑖 (𝜉) +

𝜉𝑖+𝑝+1 − 𝜉
𝜉𝑖+𝑝+1 − 𝜉𝑖+1

𝑁𝑝−1
𝑖+1 (𝜉). (3)

The first-order derivative of the B-spline basis function is also computed recursively from the lower order basis functions as
𝑑
𝑑𝜉

𝑁𝑝
𝑖 (𝜉) =

𝑝
𝜉𝑖+𝑝 − 𝜉𝑖

𝑁𝑝−1
𝑖 (𝜉) +

𝑝
𝜉𝑖+𝑝+1 − 𝜉𝑖+1

𝑁𝑝−1
𝑖+1 (𝜉). (4)

In the case of NURBS, the basis functions are derived from B-splines and defined as

𝑅𝑝
𝑖 (𝜉) =

𝑁𝑝
𝑖 (𝜉)𝜔𝑖

𝑊 (𝜉)
, (5)

where
{

𝑁𝑝
𝑖
}𝑚𝑏

𝑖=1 is the set of B-spline basis functions of order 𝑝,
{

𝜔𝑖
}𝑚𝑏

𝑖=1 is the set of NURBS weights and

𝑊 (𝜉) =
𝑚𝑏
∑

𝑖=1
𝑁𝑝

𝑖 (𝜉)𝜔𝑖,
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FIGURE 1 Illustration of mappings from parent space through the parametric space to the physical space.

The first-order derivative of a NURBS basis function 𝑅𝑝
𝑖 is obtained using the quotient rule as

𝑑
𝑑𝜉

𝑅𝑝
𝑖 (𝜉) = 𝜔𝑖

(𝑁𝑝
𝑖 )

′(𝜉)𝑊 (𝜉) −𝑁𝑝
𝑖 (𝜉)𝑊

′(𝜉)
𝑊 (𝜉)2

, (6)

where (𝑁𝑝
𝑖 )

′(𝜉) = 𝑑
𝑑𝜉

𝑁𝑝
𝑖 (𝜉) and 𝑊 ′(𝜉) =

𝑚𝑏
∑

𝑖=1
(𝑁𝑝

𝑖 )
′(𝜉)𝑤𝑖. The NURBS curves are constructed by a linear combination of

NURBS 𝑅𝑝
𝑖 (𝜉) as

(𝜉) =
𝑚𝑏
∑

𝑖=1
𝑅𝑝

𝑖 (𝜉)𝐵𝑖, (7)

where 𝐵𝑖 is the vector of control points with 𝑖 = 1,… , 𝑚𝑏. In the same manner, the NURBS surfaces are straightforwardly
constructed by considering the tensor product of two NURBS functions 𝑅𝑝

𝑖 (𝜉) and 𝑅𝑞
𝑖 (𝜂) as

(𝜉, 𝜂) =
𝑚𝑏
∑

𝑖=1

𝑙𝑏
∑

𝑗=1
𝑅𝑝

𝑖 (𝜉)𝑅
𝑞
𝑗 (𝜂)𝐵𝑖,𝑗 , (8)

where 𝐵𝑖,𝑗 is the vector of control points with 𝑖 = 1,… , 𝑚𝑏 and 𝑗 = 1,… , 𝑙𝑏. Here, 𝑚𝑏 and 𝑙𝑏 denote the total numbers of control
points in 𝑥-direction and 𝑦-direction, respectively. Note that (8) can also be rewritten in a compact form as

(𝜉, 𝜂) =
DoF
∑

𝑚=1
𝑅𝑝,𝑞

𝑚 (𝜉, 𝜂)𝐵𝑚, (9)

where 𝑅𝑝,𝑞
𝑚 is the basis function defined as 𝑅𝑝,𝑞

𝑚 (𝜉, 𝜂) = 𝑅𝑝
𝑖 (𝜉)𝑅

𝑞
𝑗 (𝜂) and DoF = 𝑚𝑏 × 𝑙𝑏 is the total number of control points.

Following the same procedure carried out in the conventional finite element analysis, each parent space is mapped to the master
space where all IGA computations are performed, see for instance25 and further details are therein. Thus, the construction of
NURBS as a basis function in a discretization framework requires the introduction of the parametric space which is absent in the
conventional finite element analysis. This would require an additional mapping to operate in the coordinates of the parent space.
An illustration of these two mappings is depicted in Figure 1 where 𝜙 ∶ Ω ←→ Ω̃ is the mapping from the parent space to the
parametric space, and 𝑆 ∶ Ω̃ ←→ Ω is the mapping from the parametric space to the physical space. Note that the mapping
𝐺 ∶ Ω ←→ Ω is given by the composition 𝑆◦�̄� . In case of the two-dimensional space, a patch Ω̃ = [𝜉𝑖, 𝜉𝑖+1]

⨂

[𝜂𝑖, 𝜂𝑖+1] is
mapped from the parent space to the parametric space using

𝜙 (𝜉, 𝜂) =
(1
2

(

(𝜉𝑖+1 − 𝜉𝑖)𝜉 + (𝜉𝑖+1 − 𝜉𝑖)
)

, 1
2

(

(𝜂𝑗+1 − 𝜂𝑗)𝜂 + (𝜂𝑗+1 − 𝜂𝑗)
))⊤

. (10)
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The determinant of the Jacobian associated with this mapping is given by
|

|

|

𝐽 𝜉,𝜂|
|

|

= 1
4
(

𝜉𝑖+1 − 𝜉𝑖
) (

𝜂𝑖+1 − 𝜂𝑖
)

, (11)

Similarly, the mapping from the parametric space to the physical space in one- and two-dimensional problems is given by (7)
and (8), respectively. In the case of two-dimensional problems, the determinant of the Jacobian associated with this mapping is
defined as

|

|

|

𝐽 𝜉,𝜂|
|

|

= 𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜂

− 𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜉

, (12)

with
𝜕𝑥
𝜕𝜉

=
𝑚𝑏
∑

𝑖=1
𝐵𝑖

𝜕𝑅𝑝
𝑖 (𝜉)
𝜕𝜉

, 𝜕𝑥
𝜕𝜂

=
𝑙𝑏
∑

𝑗=1
𝐵𝑗

𝜕𝑅𝑞
𝑗 (𝜂)

𝜕𝜂
,

𝜕𝑦
𝜕𝜉

=
𝑚𝑏
∑

𝑖=1
𝐵𝑖

𝜕𝑅𝑝
𝑖 (𝜉)
𝜕𝜉

,
𝜕𝑦
𝜕𝜂

=
𝑙𝑏
∑

𝑗=1
𝐵𝑗

𝜕𝑅𝑞
𝑗 (𝜂)

𝜕𝜂
.

Note that the mapping 𝐺 ∶ Ω ←→ Ω given by the composition 𝑆◦�̄� can straightforwardly be written as follows

𝐺𝑝,𝑞
 (𝜉, 𝜂) =

(DoF
∑

𝑚=1
𝐵𝑚𝑅

𝑝,𝑞
𝑚

(

𝜙

(

𝜉, 𝜂
))

)

|

|

|

|

|

, (13)

where the expression (⋅) ||
|

refers to the restriction in the element  . The determinant of the Jacobian associated with this
mapping is given by

|𝐽 | = |

|

|

𝐽 𝜉,𝜂|
|

|

|

|

|

𝐽 𝜉,𝜂|
|

|

. (14)

Using the mappings and their associated Jacobians defined above, the integral of a given generic function 𝑓 ∶ Ω → ℝ in the
physical space Ω is obtained as

∫
Ω

𝑓 (𝒙) 𝑑Ω =
𝑁𝑒
∑

𝑘=1
∫
Ω𝑘

𝑓 (𝒙) 𝑑Ω,

=
𝑁𝑒
∑

𝑘=1
∫
Ω̃𝑘

𝑓 (𝒙(𝜉, 𝜂)) ||
|

𝐽 𝜉,𝜂|
|

|

𝑑Ω̃,

=
𝑁𝑒
∑

𝑘=1
∫
Ω

𝑓 (𝒙(𝜙𝑘
(𝜉, 𝜂))) ||

|

𝐽 𝜉,𝜂|
|

|

|

|

|

𝐽 𝜉,𝜂|
|

|

𝑑Ω,

=
𝑁𝑒
∑

𝑘=1
∫
Ω

𝑓 (𝜉, 𝜂) |𝐽 | 𝑑Ω, (15)

where𝑁𝑒 denotes the total number of patches. It should also be stressed that the integration (15) is also used for the𝐿2-projection
procedure used in the isogeometric modified method of characteristics proposed in the present study.

3 ISOGEOMETRIC MODIFIED METHOD OF CHARACTERISTICS

To formulate the Isogeometric modified method of characteristics we first consider the convection part of the problem (1)
reformulated for the solution component 𝑢 using the material derivative as

𝐷𝑢
𝐷𝑡

∶= 𝜕𝑢
𝜕𝑡

+ 𝒖 ⋅ ∇𝑢 = 𝟎, (16)

where 𝐷𝑢
𝐷𝑡

is the total derivative which measures the rate of change of the solution 𝑢 following the trajectories of the flow
particles. It should be stressed that the main idea of the modified method of characteristics is to impose a regular mesh at the
new time level and to backtrack the flow trajectories to the previous time level. The quantities needed at the old time level are
approximated by interpolation from their known values on a regular mesh. In what follows we formulate the fundamental steps
of the Isogeometric modified method of characteristics proposed in the present study for the solution 𝑢 and its formulation for
the solution component 𝑣 is carried out in the same manner.
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FIGURE 2 Illustration of the main quantities required for the computation of the departure points. At the first stage, a quadrature
point is mapped from the patch 𝑘 to the patch ̃𝑘. In the second stage, as the NURBS lie in the parametric space, a mapping
according to the equation (10), from the parent patch into the parametric patch is required, and results in the departure point
 𝑛(𝜉𝑘,𝑔 , 𝜂𝑘,𝑔). Notice that the last transformation is required in order to evaluate the departure points in the parametric space.

3.1 Approximation of departure points

For the space discretization, the computational domain Ω is partitioned into a set of patches 𝑘 as Ω = ∪𝑁𝑒
𝑘=1Ω𝑘

, with 𝑁𝑒 is
the total number of quadrilateral-shaped patches. In the present study, the mesh distribution in the physical space is formed
of quadrilaterals constructed by the cross-product of two one-dimensional NURBS functions as illustrated in Figure 2. We
also divide the time interval into sub-intervals [𝑡𝑛, 𝑡𝑛+1] with a length Δ𝑡. Note that in general, since the control points do
not lie on the physical geometry, the NURBS polynomials are not interpolatory, see for instance28. In the present study, to
overcome this drawback in the NURBS we consider the 𝐿2-projection approach introduced in22. Thus, for each patch 𝑘 in the
computational domain Ω we consider its associated quadrature points 𝒙𝑘,𝑔 =

(

𝑥𝑘,𝑔 , 𝑦𝑘,𝑔
)⊤ with the corresponding weights 𝜔𝑘,𝑔

for 𝑔 = 1,… , 𝑁𝑘,𝑔 with 𝑁𝑘,𝑔 is the total number of quadrature points in the patch 𝑘. Hence, the characteristic curves  (𝜏,𝒙𝑘,𝑔)
associated with the convection problem (1) are calculated for each quadrature point 𝒙𝑘,𝑔 by solving the backward differential
equations

𝑑 (𝜏,𝒙𝑘,𝑔)
𝑑𝜏

= 𝒖( (𝜏,𝒙𝑘,𝑔)), ∀ 𝜏 ∈ [𝑡𝑛, 𝑡𝑛+1],
(17)

 (𝑡𝑛+1,𝒙𝑘,𝑔) = 𝒙𝑘,𝑔 ,

where  (𝜏,𝒙𝑘,𝑔) =
(

𝑋(𝜏,𝒙𝑘,𝑔), 𝑌 (𝜏,𝒙𝑘,𝑔)
)⊤ is the departure point defined at time 𝜏 of a particle that will reach 𝒙𝑘,𝑔 =

(

𝑥𝑘,𝑔 , 𝑦𝑘,𝑔
)⊤ at time 𝑡𝑛+1. It should be noted that the modified method of characteristics does not follow the flow particles forward

in time as a Lagrangian method does, instead it traces backwards the position at time 𝑡𝑛 of particles that will reach the points of
a fixed mesh at time 𝑡𝑛+1, see Figure 2 for an illustration. Therefore, the modified method of characteristics avoids the grid dis-
tortion difficulties that the conventional Lagrangian schemes have. It should be stressed that, in a purely Lagrangian approach,
the mesh is expected to be distorted to a degree that invalidates computational results and it necessitates remeshing in order to
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update the solution at the next time level. However, remeshing is computationally very demanding and can often lead to inac-
curacies in the computed solutions that are projected onto a new mesh29. It is also well known that, in the purely Lagrangian
schemes, the fluid particles are followed forward in time. Thus, the computational mesh should be deformed at every time step
in order to adapt it to a new configuration. This is not the case for the proposed modified method of characteristics (also known
in the literature by semi-Lagrangian methods) as the particles are followed in a backward manner according to the initial-value
problem (17). Hence, the mesh remains fixed and do not move during the time evolution and this is one of the main advantages
of semi-Lagrangian methods compared to its purely Lagrangian counterparts.

Note that accurate approximations of the characteristic curves  (𝜏,𝒙𝑘,𝑔) are crucial to the overall accuracy of the modified
method of characteristics. In22,23, a second-order extrapolation based on the mid-point rule is used to approximate the solution
of (17), but this method involves an iterative procedure which may become computationally demanding. In the current work,
we consider the third-order explicit Runge-Kutta method proposed in30. Thus, the procedure to approximate the solution of the
differential equations (17) can be achieved by

𝐊(1)
𝑘,𝑔 = 𝒙𝑘,𝑔 − Δ𝑡𝒖𝑛

(

𝒙𝑘,𝑔
)

,

𝐊(2)
𝑘,𝑔 = 3

4
𝒙𝑘,𝑔 +

1
4
𝐊(1)

𝑘,𝑔 −
1
4
Δ𝑡𝒖𝑛

(

𝐊(1)
𝑘,𝑔

)

, (18)

 (𝑡𝑛,𝒙𝑘,𝑔) =
1
3
𝒙𝑘,𝑔 +

2
3
𝐊(2)

𝑘,𝑔 −
2
3
Δ𝑡𝒖𝑛

(

𝐊(2)
𝑘,𝑔

)

.

In general the departure points  (𝑡𝑛,𝒙𝑘,𝑔) do not coincide with the spatial position of the point 𝒙𝑘,𝑔 . To find the host element
where such point is located we adapt the search-locate algorithm proposed in31 for quadrilateral elements. Note that the NURBS
do not provide a direct way to compute the coordinates in the parametric space given its physical space location and there-
fore a nonlinear equation is needed to be solved using the Gauss-Newton method, see32 among others. Hence, integrating the
convection equation (16) along the characteristic curves yields

𝑢𝑛+1(𝒙) = 𝑢𝑛◦ 𝑛(𝒙), (19)

where  𝑛(𝒙) =  (𝑡𝑛,𝒙) is a notation to emphasis the dependence of the departure points  on the mesh point 𝒙. In the current
study, the solution at the next time level is obtained by a weak formulation using the 𝐿2-projection. Thus, multiplying both sides
of (19) by the NURBS function 𝑅𝑝,𝑞

𝑚 and integrating the resulting equation over Ω, it leads to the following weak form

∫
Ω

𝑢𝑛+1(𝒙)𝑅𝑝,𝑞
𝑚 (𝒙) 𝑑Ω = ∫

Ω

𝑢𝑛( 𝑛)𝑅𝑝,𝑞
𝑚 (𝒙) 𝑑Ω, 𝑚 = 1,… ,DoF. (20)

Thus, the isogeometric finite element solution 𝑢𝑛+1(𝒙) can be formulated as

𝑢𝑛+1(𝒙) =
DoF
∑

𝑙=1
𝑈 𝑛+1

𝑙 𝑅𝑝,𝑞
𝑙 (𝒙), (21)

where 𝑈 𝑛+1
𝑙 are the unknown nodal coefficients of the solution. Next, replacing (21) in the left-hand side of (20) we obtain

∫
Ω

𝑢𝑛+1(𝒙)𝑅𝑝,𝑞
𝑚 (𝒙) 𝑑Ω = ∫

Ω

DoF
∑

𝑙=1
𝑈 𝑛+1

𝑙 𝑅𝑝,𝑞
𝑙 (𝒙)𝑅𝑝,𝑞

𝑚 (𝒙) 𝑑Ω,

=
DoF
∑

𝑙=1
𝑈 𝑛+1

𝑙 ∫
Ω

𝑅𝑝,𝑞
𝑙 (𝒙)𝑅𝑝,𝑞

𝑚 (𝒙) 𝑑Ω,

∶=
DoF
∑

𝑙=1
𝑎𝑚𝑙𝑈

𝑛+1
𝑙 , (22)

with 𝑎𝑚𝑙 = ∫Ω 𝑅𝑝,𝑞
𝑙 (𝒙)𝑅𝑝,𝑞

𝑚 (𝒙) 𝑑Ω. The crucial idea behind the 𝐿2-projection approach is the computation of the right-hand
integral in (20). In a general framework, it is challenging to evaluate this integral exactly and one has to use the quadrature rules.
Numerical integration is one of the most issues affecting the efficiency and accuracy in Galerkin-based finite element methods.
In addition to the isogeometric paradigm of assembling systems of equations which requires the calculation of integrals in the
mass and stiffness matrices, the 𝐿2-projection approach necessitates the calculation of integrals in the right-hand side of (20).
For this purpose, Gauss-based quadrature rules have extensively been used to approximate these integrals for quadrilateral and
tetrahedral elements, see for example33. In34 a class of optimal Gauss-based quadrature rules (Gauss-Radau rule) has been
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developed for spline spaces which usually occur in Galerkin-based finite element discretizations for which the original spaces
are 1 quadratics or 2 cubics. In the current work, we adopt the Gauss-Jacobi quadrature rule used also in35,36,37,38 among
others. It should also be noted that the Gauss-based quadrature rules are known to exhibit fast convergence, and the full tensor
product Gauss-Jacobi quadrature rule is proven to converge exponentially and it is exact for polynomials of degree up to 2𝑚−1,
see for instance36. Hence, using Gauss-Jacobi quadrature rule, the integral in right-hand side of (20) is evaluated as

∫
Ω

𝑢𝑛( 𝑛)𝑅𝑝,𝑞
𝑚 (𝒙) 𝑑Ω =

𝑁𝑒
∑

𝑘=1
∫
Ω𝑘

𝑢𝑛◦ 𝑛(𝒙)𝑅𝑝,𝑞
𝑚 (𝒙) 𝑑Ω,

=
𝑁𝑒
∑

𝑘=1
∫
Ω̄

𝑢𝑛◦ 𝑛(𝜉, �̄�)𝑅𝑝,𝑞
𝑚 (𝜉, �̄�) |

|

𝐽 (𝜉, �̄�)|
|

𝑑Ω̄,

≈
𝑁𝑒
∑

𝑘=1

𝑁𝑘,𝑔
∑

𝑔=1
𝑤𝑘,𝑔𝑢

𝑛◦ 𝑛(𝜉𝑔 , �̄�𝑔)𝑅𝑝,𝑞
𝑚 (𝜉𝑔 , �̄�𝑔)

|

|

|

𝐽 (𝜉𝑔 , �̄�𝑔)
|

|

|

,

≈
𝑁𝑒
∑

𝑘=1

𝑁𝑘,𝑔
∑

𝑔=1
𝑤𝑘,𝑔 �̃�

𝑛
𝑘,𝑔𝑅

𝑝,𝑞
𝑚 (𝜉𝑔 , �̄�𝑔)

|

|

|

𝐽 (𝜉𝑔 , �̄�𝑔)
|

|

|

∶= 𝑟𝑛𝑚, 𝑚 = 1,… ,DoF, (23)

where �̃�𝑛𝑘,𝑔 = 𝑢𝑛( 𝑛(𝒙𝑘,𝑔)) denotes the solution calculated at the departure point  𝑛(𝒙𝑘,𝑔). Here, the values �̃�𝑛𝑘,𝑔 are computed as

�̃�𝑛𝑘,𝑔 ∶= 𝑢𝑛( 𝑛(𝒙𝑘,𝑔)) =
𝑁𝑝
∑

𝑑=1
𝑢𝑛(𝜉∗𝑘,𝑑 , 𝜂

∗
𝑘,𝑑)𝑅

𝑝,𝑞
𝑑 ( 𝑛(𝒙𝑘,𝑔)), (24)

where 𝑢𝑛(𝜉∗𝑘,𝑑 , 𝜂
∗
𝑘,𝑑) are the known solutions at the control points (𝜉∗𝑘,𝑑 , 𝜂

∗
𝑘,𝑑) of the host patch ∗

𝑘 where the departure point
 𝑛(𝒙𝑘,𝑔) belongs. Here, 𝑁𝑝 is the total number of control points affecting the host patch ∗

𝑘 which is immediately related to the
order of NURBS basis functions, see Figure 2 for an illustration. Thus, injecting the approximations (22) and (23) in (20) yields

DoF
∑

𝑙=1
𝑎𝑚𝑙𝑈

𝑛+1
𝑙 = 𝑟𝑛𝑚, 𝑚 = 1,… ,DoF, (25)

where

𝑟𝑛𝑚 =
𝑁𝑒
∑

𝑘=1

𝑁𝑘,𝑔
∑

𝑔=1
𝑤𝑘,𝑔 �̃�

𝑛
𝑘,𝑔𝑅

𝑝,𝑞
𝑚 (𝜉𝑔 , �̄�𝑔)

|

|

|

𝐽 (𝜉𝑔 , �̄�𝑔)
|

|

|

, (26)

and

𝑎𝑚𝑙 = ∫
Ω

𝑅𝑝,𝑞
𝑙 (𝒙)𝑅𝑝,𝑞

𝑚 (𝒙) 𝑑Ω,

=
𝑁𝑒
∑

𝑘=1
∫
Ω𝑘

𝑅𝑝,𝑞
𝑙 (𝒙)𝑅𝑝,𝑞

𝑚 (𝒙) 𝑑Ω𝑘
,

=
𝑁𝑒
∑

𝑘=1
∫
Ω̄

𝑅𝑝,𝑞
𝑙 (𝜉, �̄�)𝑅𝑝,𝑞

𝑚 (𝜉, �̄�) |
|

𝐽 (𝜉, �̄�)|
|

𝑑Ω̄,

≈
𝑁𝑒
∑

𝑘=1

𝑁𝑘,𝑔
∑

𝑔=1
𝑤𝑘,𝑔𝑅

𝑝,𝑞
𝑙 (𝜉𝑔 , �̄�𝑔)𝑅𝑝,𝑞

𝑚 (𝜉𝑔 , �̄�𝑔)
|

|

|

𝐽 (𝜉𝑔 , �̄�𝑔)
|

|

|

. (27)

Note that the equation (25) can also be assembled in a global matrix-vector form as

[𝐌]
{

𝑼 𝑛+1} = {𝐫𝑛} , (28)

where [𝐌] is the DoF×DoF-valued isogeometric 𝐿2-projection mass matrix with entries 𝑎𝑚𝑙,
{

𝑼 𝑛+1} is the DoF-valued vector
of unknown nodal values of the solution 𝑈 𝑛+1

𝑚 at time 𝑡𝑛+1, and {𝐫𝑛} is the DoF-valued vector of the known right-hand side with
entries 𝑟𝑛𝑚. Notice that the integrals 𝑎𝑚𝑙 and the components 𝑟𝑛𝑚 of the right-hand side in equations (26) and (27) can be evaluated
using the Gauss-Jacobi quadrature rule as explained in (15). In summary, the Isogeometric modified method of characteristics
to solve the convection problem (16) is carried out in the steps described in Algorithm 1. These same steps are also performed
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to compute solution component 𝑣𝑛+1 in the convection part (16) of the Burgers’ system. For convenience of the reader, the
Gauss-Jacobi quadrature rule used in our Isogeometric modified method of characteristics is provided in the appendix.

Algorithm 1 Algorithm for the Isogeometric modified method of characteristics.

1: Compute 𝑎𝑚𝑙 using (27) and assemble the L2-projection mass matrix [𝐌].
2: Assuming the nodal solution 𝐔𝑛 is known.
3: for For each patch 𝑘 (𝑘 = 1… , 𝑁𝑒) in the computational mesh do
4: Generate the quadrature points and corresponding weights

(

𝒙𝑘,𝑔 , 𝑤𝑘,𝑔
)

(𝑔 = 1,… , 𝑁𝑔).
5: for For each quadrature point 𝒙𝑘,𝑔 , 𝑔 = 1,… , 𝑁𝑔 do
6: Compute the departure point  𝑛(𝒙𝑘,𝑔) by solving the initial-value problem (17).
7: Identify the host patch ∗

𝑘 where the departure point  𝑛(𝒙𝑘,𝑔) belongs.
8: Compute the parametric coordinates  𝑛(𝜉𝑘,𝑔 , 𝜂𝑘,𝑔) associated with the parent coordinates  𝑛(𝒙𝑘,𝑔) using (10).
9: Evaluate the NURBS functions 𝑅( 𝑛(𝜉𝑘,𝑔 , 𝜂𝑘,𝑔)) using the tensor product of (5).

10: Calculate the solution value �̃�𝑘,𝑔 using the approximation (24).
11: end for
12: Compute the elements 𝑟𝑛𝑚 using (26) and assemble the right hand-side vector {𝐫𝑛}.
13: end for
14: Solve the linear system (28) to obtain the solution

{

𝐔𝑛+1}.
15: Calculate the solution component 𝑢𝑛+1 at time 𝑡𝑛+1 using (21).

3.2 Solution of the diffusion part

In the current study, to solve the diffusive part in the Burgers’ equations (1) we consider the explicit third-order Runge-
Kutta method along the characteristics. Thus, assuming the convection part in (1) is dealt with using the modified method of
characteristic as described above, then the weak formulation reads as follows: Find

(

𝑢ℎ, 𝑣ℎ
)

∈ ℎ ×ℎ such that

∫
Ω

𝐷𝑢ℎ
𝐷𝑡

𝜙ℎ 𝑑Ω + 1
𝑅𝑒 ∫

Ω

∇𝑢ℎ ⋅ ∇𝜙ℎ 𝑑Ω = 0, ∀ 𝜙ℎ ∈ ℎ, (29a)

∫
Ω

𝐷𝑣ℎ
𝐷𝑡

𝜙ℎ 𝑑Ω + 1
𝑅𝑒 ∫

Ω

∇𝑣ℎ ⋅ ∇𝜙ℎ 𝑑Ω = 0, ∀ 𝜙ℎ ∈ ℎ, (29b)

where ℎ is the conforming finite element space. Note that an advantage of the modified method of characteristics lies on
the fact that the equations (29a)-(29b) are decoupled and can be solved separately for each solution component. Therefore, for
brevity in the presentation, the method is formulated only for the component 𝑢 and the same procedure is carried out for the
component 𝑣. Hence, the approximation of the solution 𝑢 is written in terms of the NURBS basis functions as

𝑢ℎ(𝒙) =
DoF
∑

𝑙=1
𝑈𝑙𝑅

𝑝,𝑞
𝑙 (𝒙), (30)

where {𝑈𝑙} represents the set of all unknown control variables. Likewise, the test function is discretized as

𝑤ℎ(𝒙) =
DoF
∑

𝑚=1
𝑊𝑚𝑅

𝑝,𝑞
𝑚 (𝒙). (31)

Substituting the equations (31) and (30) into (29a), the semi-discrete form is now written as

𝐷
𝐷𝑡

⎛

⎜

⎜

⎝

DoF
∑

𝑚=1

DoF
∑

𝑙=1
∫
Ω

𝑅𝑝,𝑞
𝑙 𝑅𝑝,𝑞

𝑚 𝑑Ω
⎞

⎟

⎟

⎠

𝑈𝑙 +
1
𝑅𝑒

⎛

⎜

⎜

⎝

DoF
∑

𝑚=1

DoF
∑

𝑙=1
∫
Ω

∇𝑅𝑝,𝑞
𝑙 ⋅ ∇𝑅𝑝,𝑞

𝑚 𝑑Ω
⎞

⎟

⎟

⎠

𝑈𝑙 = 0, (32)
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for 𝑙 = 1,… ,DoF. In a matrix compact form, the semi-discrete form (32) can be expressed as

[𝐌] 𝐷𝐔
𝐷𝑡

+ 1
𝑅𝑒

[𝐒]𝐔 = 𝟎, (33)

with a similar system for the solution component 𝑣. Here, 𝐔 =
(

𝑈1,… , 𝑈DoF
)𝑇 , [𝐌] and [𝐒] are the well-known mass and

stiffness matrices the elements of which are given by

𝑎𝑚𝑙 = ∫
Ω

𝑅𝑝,𝑞
𝑙 𝑅𝑝,𝑞

𝑚 𝑑Ω, 𝑚, 𝑙 = 1, 2… ,DoF,

and
𝑚𝑙 = ∫

Ω

∇𝑅𝑝,𝑞
𝑙 ⋅ ∇𝑅𝑝,𝑞

𝑚 𝑑Ω, 𝑚, 𝑙 = 1, 2… ,DoF,

respectively. Note that the assembly of matrices [𝐌] and [𝐒] is performed using the parent coordinate system along with the
mappings from the physical space to the parametric space to the parent space and its associated Jacobian matrices. The time
integration of the system (33) is complete once a time-stepping scheme is chosen for the numerical solution. In the present work,
we solve the system (33) using the third-order explicit Runge-Kutta method as

 (1) = �̃�𝑛 + Δ𝑡𝐅
(

�̃�𝑛
)

,

 (2) = 3
4
�̃�𝑛 + 1

4
 (1) + 1

4
Δ𝑡𝐅

(

 (1)) , (34)

𝐔𝑛+1 = 1
3
�̃�𝑛 + 2

3
 (2) + 2

3
Δ𝑡𝐅

(

 (2)) ,

where 𝐅 (𝐔) is the right-hand-side function associated with (33) as

𝐅 (𝐔) = 1
𝑅𝑒

[𝐌]−1 [𝐒]𝐔,

and �̃�𝑛 is solution vector with entries �̃�𝑛𝑘,𝑔 computed in (24). Note that the main advantage of this scheme lies on the fact that
(34) is a convex combination of the first-order Euler steps which exhibits strong stability properties. Therefore, the scheme (34)
is TVD, third-order accurate in time, and stable under the conventional Courant-Friedrichs-Lewy (CFL) condition. It should be
noted that the inverse of the matrix [𝐌] in (33) is required to be computed and stored once during the time-stepping procedure.
Here, the system matrix may be decomposed at the first time step and retained to be reused with just updating the right-hand
side of the linear system of equations at all the following time steps.

4 NUMERICAL RESULTS

In this section we assess the numerical performance of the new isogeometric modified method of characteristics using three
examples in different computational domains. For these test examples, the analytical solutions are known, so that we can evaluate
the relative 𝐿1-error and 𝐿2-error at time 𝑡𝑛 as

𝐿1-error =
∫
Ω

|

|

|

𝑢𝑛ℎ − 𝑢exact(𝒙ℎ, 𝑡𝑛)
|

|

|

𝑑𝒙

∫
Ω

|

|

|

𝑢𝑛exact(𝒙ℎ, 𝑡𝑛)
|

|

|

𝑑𝒙
, 𝐿2-error =

⎛

⎜

⎜

⎝

∫
Ω

|

|

|

𝑢𝑛ℎ − 𝑢𝑛exact(𝒙ℎ, 𝑡𝑛)
|

|

|

2
𝑑𝒙

⎞

⎟

⎟

⎠

1
2

⎛

⎜

⎜

⎝

∫
Ω

|

|

|

𝑢𝑛exact(𝒙ℎ, 𝑡𝑛)
|

|

|

2
𝑑𝒙

⎞

⎟

⎟

⎠

1
2

, (35)

where 𝑢exact(𝒙ℎ, 𝑡𝑛) and 𝑢𝑛ℎ are respectively, the exact and numerical solutions at time 𝑡𝑛 in the mesh point 𝒙ℎ. We also define the
CFL number associated with the equations (1) as

CFL = max
(

max
𝒙

√

|𝑢𝑛|2 + |𝑣𝑛|2
Δ𝑡𝑛
ℎ

,
Δ𝑡𝑛

𝑅𝑒ℎ𝑝+1

)

. (36)

Note that the last term in the condition (36) accounts for the explicit treatment of the diffusion part in the Burgers equations by the
explicit Runge-Kutta scheme (18). In all results reported in this section, the CFL number is fixed to CFL = 3 and a variable time
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step Δ𝑡𝑛 is used in the simulations according to the condition (36). It should be stressed that the CFL number in (36) accounts
for both the convection and diffusion parts in the problem (1). Similar estimates have been derived in39 for convection-diffusion
equations. All our computations were performed on an Intel‸ Core(TM) i7-7500U @ 2.70GHz with 16 GB of RAM.

4.1 Example 1

We solve the coupled Burgers’ equations (1) in a squared domain Ω = [−2, 2] × [−2, 2] with initial and Dirichlet boundary
conditions obtained from the following analytical solution

𝑢(𝑥, 𝑦, 𝑡) = 1
2

(

1 − tanh
(𝑅𝑒

4
(𝑥 + 𝑦 − 𝑡)

))

,
(37)

𝑣(𝑥, 𝑦, 𝑡) = 1
2

(

1 − tanh
(𝑅𝑒

4
(𝑥 + 𝑦 − 𝑡)

))

.

This example has been widely used in the literature to examine numerical methods for solving the two-dimensional Burgers’
equations, see for instance18,19,20,21. Here, the exact solution (37) is used to quantify the errors in the proposed isogeometric
modified method of characteristics for solving the Burgers’ system for three different Reynolds numbers 𝑅𝑒 = 101, 𝑅𝑒 = 104

and 𝑅𝑒 = 108 at time 𝑡 = 1 using different NURBS degrees. In all our simulations, a uniform mesh consisting of 32×32 grids
of square patches with patch side length ℎ = 1∕32 is considered. Refinements are performed by the 𝑘-refinement method, and
the numerical solutions are computed using different degrees ranging from 𝑝 = 1 to 𝑝 = 5. In all cases, we omit the results for
the component 𝑣 and we present the numerical solution of the component 𝑢 only for brevity in the presentation.

In Figure 3 we present the solution 𝑢 obtained using NURBS of orders 𝑝 = 2, 3 and 4 at time 𝑡 = 1 using a uniform mesh with
32 × 32 elements. For comparison reasons, analytical solutions are also presented in this figure. The clear indication from these
results is that at Reynolds numbers 𝑅𝑒 = 10 and 𝑅𝑒 = 104, no significant differences between the results obtained using the
selected polynomial orders. However, at Reynolds number 𝑅𝑒 = 108, the results obtained using the quadratic and cubic poly-
nomials exhibit oscillations at the shock areas where large gradients appear. On the other hand, the solution obtained using the
quartic polynomial is in good agreement with the exact solution for this case with 𝑅𝑒 = 108. Note that at high Reynolds numbers,
the convection terms in the Burgers system (1) become highly dominant for which non-physical oscillations are expected when
using high polynomial orders in the discretization, see for example1,40. This is not the case in the proposed isogeometric modi-
fied method of characteristics mainly because (i) the modified method of characteristics is proven to be unconditionally stable,
see for instance41,42,43, and (ii) the potential of the 𝑘-refinement strategy in offering high inter-element continuity by providing
smoother functions than the conventional finite element methods, see24,25,44 among others. The corresponding cross-sections at
the main diagonal 𝑦 = 1 − 𝑥 of the solution 𝑢 are displayed in Figure 4 using linear, quadratic, cubic and quartic NURBS poly-
nomials. As expected, solutions obtained using linear NURBS polynomials exhibits large numerical dissipation near the shock
areas for 𝑅𝑒 = 10 and 𝑅𝑒 = 104 whereas, solutions obtained using cubic and quartic NURBS polynomials show a good behav-
ior compared to the exact solution. Again for 𝑅𝑒 = 108, solutions obtained using 𝑝 = 1, 2 and 3 exhibit non-physical oscillations
at zones with sharp gradients and fail to preserve the monotonicity of the computed solutions, compare the overshots and under-
shoots in the results shown in Figure 4. However, increasing the NURBS degree to 𝑝 = 4, the non-physical oscillations in the
computed solutions disappear and the shock is very well captured. The resolution of the proposed isogeometric modified method
of characteristics is highly observed for this example and no oscillations have been detected in the vicinity of steep gradients.

To study the convergence behavior of the proposed isogeometric modified method of characteristics, we report in Table 1 the
𝐿1-error and the corresponding convergence rates using different NURBS orders and different Reynolds numbers. It is clear
that, maintaining the NURBS order fixed and adopting the ℎ-refinement yields a decay of all computed errors. For instance, at
the low Reynolds number 𝑅𝑒 = 10 for which the diffusion is relatively dominated, obtaining satisfactory results is evident in
this situation and we believe that the 𝑝-refinement strategy is precise enough in this case. Indeed, the optimal convergence rates
are captured for all NURBS orders at the considered Reynolds numbers. At the moderate Reynolds number 𝑅𝑒 = 104 which can
be considered as a critical value for which shocks are observed in the computed solutions, it can be noticed from Table 1 that all
optimal orders are still achieved. At the high Reynolds number 𝑅𝑒 = 106 corresponding to strong shock and thus less accuracy
is observed in the shock zones in the computed solutions. Consequently, the accuracy of the numerical results is reduced for
such values of Reynolds numbers. This can immediately be observed in the reduction of convergence rates for 𝑅𝑒 = 106. Similar
features have also been observed in the results, not reported here for brevity, obtained using the 𝐿2-error.
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FIGURE 3 Results for the solution 𝑢 in Example 1 at time 𝑡 = 1 obtained using a mesh of 32 × 32 elements with 𝑝 = 2 (first
row), 𝑝 = 3 (second row), 𝑝 = 4 (third row) and the exact solution (fourth row). Here, 𝑅𝑒 = 10 (first column), 𝑅𝑒 = 104 (second
column) and 𝑅𝑒 = 108 (third column).
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FIGURE 4 Cross-sections at the diagonal 𝑦 = 1 − 𝑥 of the solution 𝑢 obtained for Example 1 at time 𝑡 = 1 (top) and 𝑡 = 2
(bottom) on a mesh of 32 × 32 elements using different NURBS degrees for 𝑅𝑒 = 10 (left plot), 𝑅𝑒 = 104 (middle plot) and
𝑅𝑒 = 108 (right plot).

4.2 Example 2

In this example we solve the coupled Burgers’ equations (1) in the squared domain Ω = [0, 1] × [0, 1] with initial and Dirichlet
boundary conditions obtained from the following analytical solution

𝑢(𝑥, 𝑦, 𝑡) = 3
4
− 1

4
(

1 + exp
(

−
(4𝑥 − 4𝑦 + 𝑡)𝑅𝑒

32

)) ,

(38)
𝑣(𝑥, 𝑦, 𝑡) = 3

4
+ 1

4
(

1 + exp
(

−
(4𝑥 − 4𝑦 + 𝑡)𝑅𝑒

32

)) .

The exact solution (38) is used to quantify the errors in the proposed isogeometric modified method of characteristics for solving
the Burgers’ equations for four different Reynolds numbers 𝑅𝑒 = 102, 103, 104 and 105 at time 𝑡 = 1 using different NURBS
degrees. In all our calculations, the mesh is uniform consisting of a 32×32 mesh of squared patches, with patch side length
ℎ = 1∕32. Refinements are also performed by the 𝑘-method and numerical results are presented for different degrees 𝑝. Again
for brevity, we omit the results for the component 𝑣 and we present the numerical results for the component 𝑢 only. In Table
2 we summarize the relative 𝐿1-error, relative 𝐿2-error and convergence rates for the proposed isogeometric modified method
of characteristics using 𝑅𝑒 = 102 and 𝑅𝑒 = 103. Those results obtained using 𝑅𝑒 = 104 and 𝑅𝑒 = 105 are presented in
Table 3. It is clear that refining the mesh or NURBS degree results in a decrease in the relative 𝐿1-error and 𝐿2-error for all
considered Reynolds numbers. In addition, better convergence rates are obtained for all considered meshes for the simulations
using low Reynolds numbers (𝑅𝑒 = 102 and 𝑅𝑒 = 103) than using high Reynolds numbers (𝑅𝑒 = 104 and 𝑅𝑒 = 105).
Moreover, the optimal convergence rates are achieved after some saturation for the selected NURBS degrees. It is also evident
from the results reported in Table 2 and Table 3 that the convergence rates in the proposed isogeometric modified method of
characteristics are not highly affected by the Reynolds numbers taken in the simulations. Therefore, fixing the NURBS degree
and adopting ℎ-refinement results in a decrease of all errors for the considered Reynolds numbers. It also is evident that the new
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TABLE 1 Results for Example 1 obtained using different meshes and NURBS degrees for three different Reynolds numbers at
time 𝑡 = 1.

𝑅𝑒 = 10 𝑅𝑒 = 104 𝑅𝑒 = 106

𝑝 # patches 𝐿1-error Rate 𝐿1-error Rate 𝐿1-error Rate

1

2×2 2.99585E-01 — 5.79140E-01 — 5.86201E-01 —
4×4 1.39068E-01 1.1072 4.18147E-01 0.4699 4.22094E-01 0.4738
8×8 6.44202E-02 1.1102 3.76509E-01 0.1513 3.79003E-01 0.1554

16×16 3.00010E-02 1.1025 1.79402E-01 1.0695 1.84012E-01 1.0424
32×32 1.37400E-02 1.1266 9.42409E-02 0.9288 9.49514E-02 0.9545

2

2×2 2.50535E-01 — 5.22051E-01 — 5.30112E-01 —
4×4 1.01068E-01 1.3097 3.25530E-01 0.6814 3.29814E-01 0.6846
8×8 2.51202E-02 2.0084 1.27176E-01 1.3560 1.34270E-01 1.2965

16×16 6.08010E-03 2.0467 5.61230E-02 1.1802 5.70114E-02 1.2358
32×32 1.46750E-03 2.0507 9.94120E-03 2.4971 9.98347E-03 2.5136

3

2×2 4.07337E-02 — 8.12345E-02 — 8.20766E-02 —
4×4 1.30294E-02 1.6445 2.76539E-02 1.5546 2.80322E-02 1.5499
8×8 2.94538E-03 2.1452 5.34985E-03 2.3699 5.41033E-03 2.3733

16×16 2.55297E-04 3.5282 5.13475E-04 3.3811 5.22512E-04 3.3722
32×32 2.10699E-05 3.5989 4.14879E-05 3.6295 5.22118E-05 3.3230

4

2×2 2.78277E-02 — 5.26985E-02 — 5.32778E-02 —
4×4 5.02555E-03 2.4692 1.02598E-02 2.3608 1.13432E-02 2.2317
8×8 3.04425E-04 4.0451 6.11340E-04 4.0689 6.91287E-04 4.0364

16×16 1.80312E-05 4.0775 3.35463E-05 4.1877 3.90877E-05 4.1445
32×32 1.05456E-06 4.0958 2.23482E-06 3.9079 2.39910E-06 4.0261

5

2×2 2.50257E-03 — 5.03415E-03 — 5.41230E-03 —
4×4 3.03302E-04 3.0446 6.16575E-04 3.0294 6.70621E-04 3.0127
8×8 1.77803E-05 4.0924 3.24607E-05 4.2475 3.49711E-05 4.2613

16×16 5.82775E-07 4.9312 1.71385E-06 4.2434 2.00211E-06 4.1266
32×32 1.78082E-08 5.0323 3.28485E-08 5.7053 6.01744E-08 5.0562

isogeometric modified method of characteristics shows an accuracy of the expected orders. Notice that, coarse meshes are used
in our simulations to illustrate the 𝑝-convergence of the proposed isogeometric modified method of characteristics for solving
the Burgers’ equations. Using finer meshes than those used in Table 2 and Table 3 would not improve the achieved convergence
rates.

Next we examine the performance of the proposed isogeometric modified method of characteristics for solving the Burgers’
equations in complex domains. To this end, we solve the equations (1) in a unit circular domain centered at (0.5, 0.5)⊤ for which
the initial and boundary conditions are obtained from the analytical solution (38). Again the computational mesh consists of
32×32 patches. Note that for the considered circular domain, the curved geometry is recovered using the approach based on four
rational quadratic segments presented in24 among others. Thus, for the Burgers’ equations in the circular domain, the bases are
rational and quadratic in each parametric direction and the knot vectors are given by

Ξ1 =
{

0, 0, 0, 1, 1, 1
}

, Ξ2 =
{

0, 0, 0, 1, 1, 1
}

.

The corresponding control points and weights for the unit circle centered at (0.5, 0.5) are listed in Table 4. In Figure 5 we display
the numerical results for the solution 𝑢 obtained at time 𝑡 = 1 for three different Reynolds numbers 𝑅𝑒 = 102, 104 and 108 using
three NURBS degrees 𝑝 = 2, 3 and 4. For comparison reasons, analytical results are also included in this figure. It is clear that
for relatively small Reynolds numbers (𝑅𝑒 = 102 and 𝑅𝑒 = 104) no significant differences between quadratic, cubic and quartic
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TABLE 2 Results for Example 2 obtained using different meshes and NURBS degrees for two Reynolds numbers 𝑅𝑒 = 102

and 𝑅𝑒 = 103 at time 𝑡 = 1.

𝑅𝑒 = 102 𝑅𝑒 = 103

𝑝 # patches 𝐿1-Error Rate 𝐿2-Error Rate 𝐿1-Error Rate 𝐿2-Error Rate

1

2×2 2.92823E-02 — 3.60456E-02 — 3.50042E-02 — 5.04156E-02 —
4×4 1.51856E-02 0.9473 2.26892E-02 0.6678 2.08144E-02 0.7499 4.07903E-02 0.3056
8×8 5.61076E-03 1.4364 9.44974E-03 1.2637 1.10104E-02 0.9187 3.50227E-02 0.2199

16×16 2.05832E-03 1.4467 3.71409E-03 1.3473 5.43884E-03 1.0175 1.76290E-02 0.9903
32×32 7.32787E-04 1.4900 1.37643E-03 1.4321 1.90858E-03 1.5108 7.71762E-03 1.1917

2

2×2 2.10443E-02 — 3.43412E-02 — 3.11002E-02 — 4.67234E-02 —
4×4 1.00033E-02 1.0730 2.06245E-02 0.7356 1.53232E-02 1.0212 2.15173E-02 1.1186
8×8 4.45796E-03 1.1660 7.11201E-03 1.5360 7.16484E-03 1.0967 7.32788E-03 1.5540

16×16 1.11417E-03 2.0004 1.64425E-03 2.1128 2.24528E-03 1.6740 1.78253E-03 2.0395
32×32 2.10187E-04 2.4062 4.00432E-04 2.0378 4.22112E-04 2.4112 4.12567E-04 2.1112

3

2×2 2.01213E-02 — 3.22019E-02 — 2.89482E-02 — 4.32090E-02 —
4×4 9.93412E-03 1.0183 1.21344E-02 1.4080 1.22117E-02 1.2452 1.44712E-02 1.5781
8×8 4.31384E-03 1.2034 4.33762E-03 1.4841 4.49237E-03 1.4427 4.45210E-03 1.7006

16×16 7.11417E-04 2.6002 1.00365E-03 2.1116 9.15286E-04 2.2952 1.16008E-03 1.9403
32×32 8.26734E-05 3.1052 1.22322E-04 3.0365 9.94902E-05 3.2016 1.41611E-04 3.0342

4

2×2 1.98056E-02 — 3.14227E-02 — 2.20211E-02 — 4.02114E-02 —
4×4 9.55234E-03 1.0520 9.64118E-03 1.7045 9.78710E-03 1.1699 9.98733E-03 2.0094
8×8 2.30012E-03 2.0541 2.40123E-03 2.0054 2.45118E-03 1.9974 2.47154E-03 2.0147

16×16 2.28201E-04 3.3333 2.30211E-04 3.3827 2.54034E-04 3.2704 2.60748E-04 3.2447
32×32 1.26018E-05 4.1786 1.43812E-05 4.0007 1.30766E-05 4.2800 1.55671E-05 4.0661

5

2×2 1.72109E-02 — 2.01327E-02 — 2.00472E-02 — 3.89743E-02 —
4×4 9.01122E-03 0.9335 9.23423E-03 1.1245 9.31219E-03 1.1062 9.78812E-03 1.9934
8×8 1.55344E-03 2.5363 1.57514E-03 2.5515 1.78201E-03 2.3856 1.89615E-03 2.3680

16×16 1.01422E-04 3.9370 1.02171E-04 3.9464 1.94216E-04 3.1978 1.98766E-04 3.2539
32×32 3.04118E-06 5.0596 3.12334E-06 5.0318 6.01110E-06 5.0139 6.23102E-06 4.9955

solutions are observed. Indeed the three numerical solutions are in good agreement with the exact solution. This can be related
to the relatively small values of the Reynolds numbers which result in smooth solutions. At the high Reynolds number 𝑅𝑒 = 108,
the quadratic and cubic NURBS fail to produce good results and only the quartic result matches the analytical solution. Note
that for the case with 𝑅𝑒 = 108, the computational solution develop a strong shock which can not be captured by NURBS of
low degrees. To further highlight the effect of the 𝑘-refinement on the numerical solutions for this example, we present in Figure
6 the cross-sections of the numerical solutions at the main diagonal 𝑦 = 1 − 𝑥 using 𝑝 = 2, 3 and 4 at two different instants
𝑡 = 0.5 and 𝑡 = 1. No significant differences are observed at time 𝑡 = 0.5 using 𝑅𝑒 = 102. However, when advancing in time,
the numerical dissipation becomes visible in the quadratic and cubic solutions and the shock location is shifted compared to the
exact solution. Again, the NURBS of quadratic and cubic orders are clearly not enough to maintain the stability of the computed
solutions as spurious oscillations appear in the shock areas when high Reynolds numbers are considered, compare the results
obtained for 𝑅𝑒 = 108 in Figure 6. From the same results we can confirm that the NURBS of quartic order are suitable to capture
the sharp gradients in the solutions and produce satisfactory results.
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FIGURE 5 Results for the solution 𝑢 in Example 2 at time 𝑡 = 1 obtained using a mesh of 32 × 32 elements with 𝑝 = 2 (first
row), 𝑝 = 3 (second row), 𝑝 = 4 (third row) and the exact solution (fourth row). Here, 𝑅𝑒 = 102 (first column), 𝑅𝑒 = 104

(second column) and 𝑅𝑒 = 108 (third column).



I. Asmouh, M. El-Amrani, M. Seaid, N. Yebari 17

TABLE 3 Results for Example 2 obtained using different meshes and NURBS degrees for two Reynolds numbers 𝑅𝑒 = 104

and 𝑅𝑒 = 105 at time 𝑡 = 1.

𝑅𝑒 = 104 𝑅𝑒 = 105

𝑝 # patches 𝐿1-Error Rate 𝐿2-Error Rate 𝐿1-Error Rate 𝐿2-Error Rate

1

2×2 3.77514E-02 — 5.44018E-02 — 3.79701E-02 — 5.48730E-02 —
4×4 2.29547E-02 0.7177 4.42486E-02 0.2980 2.31434E-02 0.7143 4.46592E-02 0.2971
8×8 1.23423E-02 0.8952 4.22031E-02 0.0683 1.74666E-02 0.4060 4.23513E-02 0.0766

16×16 6.13404E-03 1.0087 2.49374E-02 0.7590 8.70146E-03 1.0053 2.74143E-02 0.6275
32×32 2.93302E-03 1.0645 1.63361E-02 0.6102 4.27672E-03 1.0248 1.81790E-02 0.5927

2

2×2 3.54916E-02 — 5.31807E-02 — 3.50481E-02 — 5.31680E-02 —
4×4 1.54345E-02 1.2013 2.34005E-02 1.1844 1.62733E-02 1.1068 2.42771E-02 1.1310
8×8 7.39987E-03 1.0606 7.45661E-03 1.6499 7.44587E-03 1.1280 7.60211E-03 1.6751

16×16 2.70011E-03 1.4545 2.75093E-03 1.4386 2.84321E-03 1.3889 2.82105E-03 1.4307
32×32 6.01315E-04 2.1668 6.25344E-04 2.1372 6.21406E-04 2.1939 6.30219E-04 2.1623

3

2×2 3.32702E-02 — 5.11754E-02 — 3.42119E-02 — 5.16232E-02 —
4×4 1.33839E-02 1.3137 1.97307E-02 1.3750 1.46655E-02 1.2221 1.99659E-02 1.3705
8×8 4.57091E-03 1.5499 4.66211E-03 2.0814 4.62120E-03 1.6661 4.78012E-03 2.0624

16×16 9.73823E-04 2.2307 9.83012E-04 2.2457 9.80091E-04 2.2373 9.92167E-04 2.2684
32×32 9.98013E-05 3.2865 9.99875E-05 3.2974 9.99788E-05 3.2932 1.09213E-04 3.1834

4

2×2 3.11324E-02 — 5.00234E-02 — 3.31004E-02 — 5.02145E-02 —
4×4 9.94301E-03 1.6467 9.98765E-03 2.3244 9.97865E-03 1.7299 1.78944E-02 1.4886
8×8 2.61002E-03 1.9296 2.68010E-03 1.8979 2.73112E-03 1.8694 2.73201E-03 2.7115

16×16 2.70114E-04 3.2724 2.78389E-04 3.2671 2.84503E-04 3.2630 2.82251E-04 3.2749
32×32 1.55845E-05 4.1154 1.69455E-05 4.0381 1.68219E-05 4.0800 1.77003E-05 3.9951

5

2×2 2.93365E-02 — 4.87946E-02 — 3.21201E-02 — 4.89482E-02 —
4×4 9.44181E-03 1.6356 9.90692E-03 2.3002 9.54210E-03 1.7511 9.95722E-03 2.2974
8×8 1.91921E-03 2.2986 1.98845E-03 2.3168 1.98477E-03 2.2653 1.99840E-03 2.3169

16×16 2.02114E-04 3.2473 2.43289E-04 3.0309 2.23125E-04 3.1530 2.48655E-04 3.0066
32×32 6.32128E-06 4.9988 7.27206E-06 5.0642 6.97981E-06 4.9985 7.75788E-06 5.0023

4.3 Example 3

Our final example consists of solving the Burgers’ system (1) in an L-shape computational domain defined by Ω = [−2, 2] ×
[−2, 2]∖[0, 2] × [0, 2] subject to initial and Dirichlet boundary conditions obtained from the following analytical solution

𝑢(𝑥, 𝑦, 𝑡) = −
4𝜋 exp

(

−5𝜋2𝑡
𝑅𝑒

)

cos(2𝜋𝑥) sin(𝜋𝑦)

𝑅𝑒
(

2 + exp
(

−5𝜋2𝑡
𝑅𝑒

)

sin(2𝜋𝑥) sin(𝜋𝑦)
) ,

(39)

𝑣(𝑥, 𝑦, 𝑡) = −
2𝜋 exp

(

−5𝜋2𝑡
𝑅𝑒

)

sin(2𝜋𝑥) cos(𝜋𝑦)

𝑅𝑒
(

2 + exp
(

−5𝜋2𝑡
𝑅𝑒

)

sin(2𝜋𝑥) sin(𝜋𝑦)
) .

A similar geometry has been considered in45 among others. This problem has also been widely used in the literature to analyze
the performance of numerical methods for solving coupled Burgers’ equations, see for instance20,18. A uniform mesh with 512
squared patches and patch side length ℎ = 0.042 is used in our simulations. As in the previous test examples, the 𝑘-refinement
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TABLE 4 Control points and weights used in the quadrature formula for a unit circle centered at (0.5, 0.5).

i 𝐵𝑖 𝜔𝑖

1 (0.1464, 0.1464) 1

2 (0.5000, 0.0000) 1∕
√

2

3 (0.8536, 0.1464) 1

4 (0.0000, 0.5000) 1∕
√

2

5 (0.5000, 0.5000) 1

6 (1.0000, 0.5000) 1∕
√

2

7 (0.1464, 0.8536) 1

8 (0.5000, 1.0000) 1∕
√

2

9 (0.8536, 0.8536) 1

FIGURE 6 Cross-sections at the diagonal 𝑦 = 1 − 𝑥 of the solution 𝑢 obtained for Example 2 at time 𝑡 = 0.5 (top) and 𝑡 = 1
(bottom) on a mesh of 32 × 32 elements using different NURBS degrees for 𝑅𝑒 = 102 (left plot), 𝑅𝑒 = 104 (middle plot) and
𝑅𝑒 = 108 (right plot).

method is used for refinements and numerical results are presented for the solution component 𝑢 using different degrees 𝑝 at
four different Reynolds numbers.

In Figure 7 we display the results of the solution 𝑢 using 𝑝 = 1, 3 and 5 at time 𝑡 = 1 for two different Reynold numbers
𝑅𝑒 = 10 and 𝑅𝑒 = 103. Note that for this example, the solutions (39) vanish when the Reynolds number reaches high values. The
clear indication from Figure 7 is that the numerical diffusion is clearly visible in the results obtained using linear polynomials
(𝑝 = 1) for both Reynolds numbers 𝑅𝑒 = 10 than 𝑅𝑒 = 103. From the same figure, the numerical solutions obtained using the



I. Asmouh, M. El-Amrani, M. Seaid, N. Yebari 19

FIGURE 7 Results for the solution 𝑢 in Example 3 at time 𝑡 = 1 obtained using a mesh of 512 elements with 𝑝 = 2 (first
column), 𝑝 = 3 (second column), 𝑝 = 4 (third column) and the exact solution (fourth column). Here, 𝑅𝑒 = 10 (first row) and
𝑅𝑒 = 103 (second row).

FIGURE 8 Cross-sections at the diagonal 𝑦 = 𝑥 of the solution 𝑢 obtained for Example 3 at time 𝑡 = 1 on a mesh of 512
elements using different NURBS degrees for 𝑅𝑒 = 10 (left plot) and 𝑅𝑒 = 103 (right plot).

cubic polynomials reduce this numerical dissipation and those results obtained using the quintic polynomials appear to provide
the most accurate results compared to the analytical solutions. To further demonstrate these features for this test example, cross-
sections of these solutions along the main diagonal 𝑦 = 𝑥 are shown in Figure 8. It is clear that the linear NURBS fail to resolve
this test example at the considered Reynolds numbers whereas, the NURBS of cubic and quintic orders accurately capture the
features of the numerical solutions. No visible differences have been detected in Figure 8 for the results obtained NURBS of
quintic order and analytical solutions.

To quantify the errors for this example, we present in Table 5 the 𝐿1-error and the corresponding convergence rates using
four different Reynolds numbers and different NURBS orders. It is evident that, fixing the polynomial order and refining the
mesh using ℎ-refinement results in a decay of all errors and as expected, the optimal convergence rates are also achieved for the
selected NURBS orders at all considered Reynolds numbers 𝑅𝑒 = 10, 𝑅𝑒 = 102, 𝑅𝑒 = 103 and 𝑅𝑒 = 104. It should also be
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TABLE 5 Results for Example 3 obtained using different meshes and NURBS degrees for four Reynolds numbers 𝑅𝑒 = 10,
𝑅𝑒 = 102, 𝑅𝑒 = 103 and 𝑅𝑒 = 104 at time 𝑡 = 1.

𝑅𝑒 = 10 𝑅𝑒 = 102 𝑅𝑒 = 103 𝑅𝑒 = 104

𝑝 # patches 𝐿1-Error Rate 𝐿1-Error Rate 𝐿1-Error Rate 𝐿1-Error Rate

1

2×2 1.97185E+00 — 1.62819E+01 — 2.43326E+00 — 1.46467E-01 —
4×4 1.04903E+00 0.9105 8.27898E+00 0.9757 1.13638E+00 1.0984 6.38093E-02 1.1987
8×8 5.20114E-01 1.0122 3.62096E+00 1.1931 5.19759E-01 1.1285 2.77441E-02 1.2016

16×16 2.50768E-01 1.0525 1.58653E+00 1.1905 2.35802E-01 1.1403 8.75626E-03 1.6638
32×32 7.68309E-02 1.7066 5.31663E-01 1.5773 1.03409E-01 1.1892 2.70506E-03 1.6947

2

2×2 1.83075E+00 — 1.44829E+01 — 1.51168E+00 — 1.21442E-01 —
4×4 8.73670E-01 1.0673 3.59189E+00 2.0115 3.56541E-01 2.0840 2.91737E-02 2.0575
8×8 1.90416E-01 2.1979 5.30333E-01 2.7598 8.13758E-02 2.1314 6.66073E-03 2.1309

16×16 3.99399E-02 2.2533 6.75898E-02 2.9720 1.37134E-02 2.5690 1.49639E-03 2.1542
32×32 7.54893E-03 2.4035 8.89929E-03 2.9250 1.98022E-03 2.7919 3.32916E-04 2.1683

3

2×2 8.69466E-01 — 6.32981E+00 — 9.99346E-01 — 8.54428E-02 —
4×4 1.65846E-01 2.3903 8.68885E-01 2.8649 1.10091E-01 3.1823 1.60801E-02 2.4097
8×8 1.83075E-02 3.1793 9.87625E-02 3.1371 1.09701E-02 3.3270 1.87336E-03 3.1016

16×16 1.91796E-03 3.2548 1.05026E-02 3.3232 1.02664E-03 3.4176 2.01857E-04 3.2142
32×32 1.55222E-04 3.6272 1.03141E-03 3.3480 9.50853E-05 3.4326 2.14757E-05 3.2326

4

2×2 7.82473E-01 — 5.47265E+00 — 8.00651E-01 — 6.49480E-02 —
4×4 9.52567E-02 3.0381 6.34125E-01 3.1094 4.81531E-02 4.0555 5.43134E-03 3.5799
8×8 9.21164E-03 3.3703 3.62189E-02 4.1300 2.61681E-03 4.2017 3.33107E-04 4.0273

16×16 5.56703E-04 4.0485 2.04925E-03 4.1436 1.35048E-04 4.2763 2.02092E-05 4.0429
32×32 3.20051E-05 4.1205 1.06476E-04 4.2665 7.00511E-06 4.2689 1.20457E-06 4.0684

5

2×2 7.11369E-01 — 4.94090E+00 — 6.67355E-01 — 4.81706E-02 —
4×4 8.11106E-02 3.1326 5.64757E-01 3.1291 2.05435E-02 5.0217 1.47014E-03 5.0341
8×8 9.60609E-03 3.0779 2.80919E-02 4.3294 6.12976E-04 5.0667 4.28819E-05 5.0994

16×16 7.90226E-04 3.6036 8.34701E-04 5.0727 1.60181E-05 5.2581 1.25041E-06 5.0999
32×32 2.43422E-05 5.0207 2.26406E-05 5.2043 4.67311E-07 5.0992 3.38080E-08 5.2089

pointed out that a slow decay in the computed errors is detected in the results obtained at 𝑅𝑒 = 10 using the quintic NURBS.
Similar remarks have been observed for results obtained using the 𝐿2-error and not reported here for brevity. Note that, the
proposed isogeometric modified method of characteristics is typically designed to solve this class of convection-dominated flow
problems using time steps ten to twenty times larger than its Eulerian counterparts. It should also be stressed that the performance
of the proposed isogeometric modified method of characteristics is very attractive since the computed solutions remain stable
and highly accurate even when coarse meshes and high Reynolds numbers are used without requiring nonlinear solvers or small
time steps to be taken in the simulations.

5 CONCLUDING REMARKS

A novel isogeometric modified method of characteristics has been investigated for numerical solution of the two-dimensional
coupled Burgers’ equations. The proposed method exploits the interesting features offered by both techniques the modified
method of characteristics and the high-order NURBS elements to construct a highly accurate algorithm for the numerical treat-
ment of nonlinear convection-dominated problems. The main advantage of the new method is that, the nonlinear convective
term that has to be treated carefully in most of Eulerian-based finite element methods has been removed from the new method
by using the modified method of characteristics to interpret the transport nature of the governing equations. This has also
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FIGURE 9 Distribution of 3 × 3 Gauss-Jacobi nodes in a mesh with 4 × 4 patches for linear space in a squared domain (left
plot) and quadratic space in a circular domain (right plot).

allowed for large time steps to be used in the simulations resulting in a reduction for the computational costs. The time integra-
tion has been carried out using a third-order explicit Runge-Kutta scheme. To demonstrate the computational efficiency of the
novel method, we have considered two-dimensional coupled Burgers’ equations in both regular and complex geometries. Prob-
lems with known analytical solutions have been selected to illustrate the accuracy, robustness and performance of the proposed
method. It has been shown that the proposed isogeometric modified method of characteristics enjoys the computational advan-
tages and achieves accurate solutions for high Reynolds numbers up to 𝑅𝑒 = 108. Furthermore, the computed results support
our expectations for a stable and highly accurate isogeometric finite element method for two dimensional nonlinear coupled
Burgers’ equations. This fact, as well as its favorable stability properties, make it an attractive alternative for flow solvers based
on finite element discretizations. Future work will concentrate on developing high-order time integration schemes for isogeo-
metric modified method of characteristics and extension of these techniques to incompressible Navier-Stokes equations in the
primitive variables. It is worth noting that developing an isogeometric analysis modified method of characteristics for solving
the incompressible Navier-Stokes equations is not trivial for several reasons. First, the presence of the pressure in the equations
with no evolution for its dynamics requires special treatment such as the projection methods. Second, the incompressibility con-
dition of the flow needs to be satisfied for the isogeometric discretized systems. Third, stabilized finite element methods for the
incompressible Navier-Stokes equations are needed to be in the mixed form since the unified finite element methods do not in
general satisfy the discrete inf-sup condition. This would require that the finite element space for the pressure should be one
degree less than the space for the velocity and this should also be achieved using the NURBS basis functions.

APPENDIX

A GAUSS-JACOBI QUADRATURE RULES

Consider a smooth function 𝑓 on the domain [−1, 1]. The Gauss-Jacobi rule implemented in the present study is defined as

1

∫
−1

(1 − 𝒙)𝛼(1 + 𝒙)𝛽𝑓 (𝒙)𝑑𝒙 =
𝑁𝑔
∑

𝑔=1
𝑤𝑔𝑓 (𝒙𝑔) + 𝜖, (A1)
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where 𝛼 and 𝛽 are real exponents, 𝑁𝑔 is the total number of quadrature points used, and 𝜖 is the error term, see for instance36.
The weights 𝑤𝑔 are given by

𝑤𝑔 = −
2𝑁𝑔 + 𝛼 + 𝛽 + 2
2𝑁𝑔 + 𝛼 + 𝛽 + 1

𝛾(𝑁𝑔 + 𝛽 + 1)𝛾(𝑁𝑔 + 𝛼 + 𝛽 + 1)
(𝑁𝑔 + 1)!𝛾(𝑁𝑔 + 𝛼 + 𝛽 + 1)

2𝛼+𝛽

𝑃 (𝛼+𝛽)′
𝑁𝑔

(𝒙𝑔)𝑃
(𝛼+𝛽)
𝑁𝑔+1

(𝒙𝑔)
, (A2)

where 𝛾 denotes the 𝛾-function given by 𝛾(𝑁𝑔) = (𝑁𝑔 − 1)!. The series form of Jacobi polynomials 𝑃 (𝛼,𝛽) are defined by46

𝑃 (𝛼,𝛽)(𝒙) = 1
2𝑁𝑔

[𝑁𝑔∕2]
∑

𝑖=0

⎛

⎜

⎜

⎝

𝑁𝑔 + 𝛼

𝑖

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑁𝑔 + 𝛽

𝑁𝑔 − 𝑖

⎞

⎟

⎟

⎠

(𝒙 − 1)𝑁𝑔−𝑖(𝒙 + 1)𝑖. (A3)

The error term 𝜖𝑁𝑔 in the 𝑁𝑔-points rule is given by

𝜖𝑁𝑔 =
𝛾(𝑁𝑔 + 𝛼 + 1)𝛾(𝑁𝑔 + 𝛽 + 1)𝛾(𝑁𝑔 + 𝛼 + 𝛽 + 1)

(2𝑁𝑔 + 𝛼 + 𝛽 + 1)[𝛾(2𝑁𝑔 + 𝛼 + 𝛽 + 1)]2
𝑁𝑔!22𝑁𝑔+𝛼+𝛽+1

(2𝑁𝑔)!
𝑓 2𝑁𝑔 (𝜁 ), 𝜁 ∈ (−1, 1). (A4)

In a special case, the above rule is reduced to the Gauss-Legendre quadrature for 𝛼 = 𝛽 = 0 and for 𝛼 = 𝛽 = ± 1
2

it results in
the Chebyshev quadrature rule. An illustration of 4 × 4 Gauss-Jacobi nodes in a mesh with 4 × 4 patches for the linear space in
a squared domain is depicted in the left plot of Figure 9. For the quadratic space in a circular domain, an illustration of 3 × 3
quadrature nodes is shown in the right plot of Figure 9.
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