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Abstract—Compositional Zero-Shot Learning (CZSL) aims to recognize novel compositions of seen primitives. Prior studies have
attempted to either learn primitives individually (non-connected) or establish dependencies among them in the composition
(fully-connected). In contrast, human comprehension of composition diverges from the aforementioned methods as humans possess
the ability to make composition-aware adaptation for these primitives, instead of inferring them rigidly through the aforementioned
methods. However, developing a comprehension of compositions akin to human cognition proves challenging within the confines of
real space. This arises from the limitation of real-space-based methods, which often categorize attributes, objects, and compositions
using three independent measures, without establishing a direct dynamic connection. To tackle this challenge, we expand the CZSL
distance metric scheme to encompass complex spaces to unify the independent measures, and we establish an imaginary-connected
embedding in complex space to model human understanding of attributes. To achieve this representation, we introduce an innovative
visual bias-based attribute extraction module that selectively extracts attributes based on object prototypes. As a result, we are able to
incorporate phase information in training and inference, serving as a metric for attribute-object dependencies while preserving the
independent acquisition of primitives. We evaluate the effectiveness of our proposed approach on three benchmark datasets,
illustrating its superiority compared to baseline methods. Our code is available at https://github.com/LanchJL/IMAX.

Index Terms—Compositional Zero-Shot Learning, Compositionality, Visual-Attribute, Complex Space, Open-World Classification
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1 INTRODUCTION

O BJECTS manifest in different attributes such as vary-
ing shapes, colors, and materials. Recognizing these

attributes is a skill that people acquire [1], [2], [3] while
machines find it challenging to master. The reason for this
difficulty lies in the fact that supervised learning requires
treating every composition of attributes and objects as a
new class. The sheer magnitude of possible compositions
makes it impractical to collect and label them all. Previous
methods have proposed Compositional Zero-Shot Learning
(CZSL) [4], [5] as a potential solution to this challenge. This
method is capable of generalizing to unseen compositions
by learning the seen attributes and objects.
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Prior to commencing, we encourage the reader to con-
template the following: as a “model pre-trained on large
amounts of data”, how would a human envision the vi-
sual characteristics of an black swan based on images of
black cat and white swan? Now, what if we modify the
scenario to imagine an old dog created from an old car
and an cute dog? In the case of the former, color is a fea-
ture that is constant across compositions, allowing humans
to cover swan directly with black to perceive a black
swan. Such primitives have a clear visual concept and show
minor variations in different compositions. In contrast, the
concept of old is highly abstract and manifests differently
in car and dog. When considering the concept of old in
various scenarios, human associations must integrate with
the inherent characteristics of the other primitives within
the composition because these primitives dynamically shift
in visual representation depending on the composition.

Based on the characteristics described above, attributes
can be broadly classified into consistent and dynamic types,
and humans use two distinct modes of cognition to infer
these attributes in unseen composition. This grants us to
make dynamic choices based on the specific sample at hand,
or we can refer to this mode of reasoning as composition-
aware adaptation. Furthermore, the aforementioned two
modes of human cognition have paved the way for the
development of the two prevailing approaches to CZSL.

Illustrated in Fig. 1, one of the prevalent approaches
aligns with the first of the above human cognition, which en-
tails the learning of primitives (attributes and objects) within
compositions [6], [7], [8]. For example, these methods are
based on the decomposing of primitives white and table
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Fig. 1. Illustration of the motivation of the proposed method. Real
Space Alignment: Two distinct real-space approaches (non-connected
and fully-connected) that align with different modes of human cognition.
The former learns primitives directly, while the latter learns composi-
tionally dependent structures. Nonetheless, these approaches remain
in three isolated measures, limiting their ability to make composition-
aware adaptation as humans do. Complex Space Alignment: We unify
the above three isolated measures into a single measure of the complex
space employing imaginary-connected embeddings.

to distinguish a white table. Since attribute and object
are embedded into two isolated measures, we refer to these
methods as non-connected approaches. Another approach
aligns with the second mode of human cognition [9], [10],
allowing models to learn globally consistent compositional
embeddings by leveraging the regularization of dependency
structures between attributes and objects. In these methods,
attributes are seamlessly integrated with objects within a
unified framework, treating each composition as an in-
dependent class and disregarding the underlying shared
concepts between seen and unseen classes. We classify these
methods as fully-connected approaches.

However, as discussed above, humans possess the capa-
bility to composition-aware adaptation between these two
modes of cognition depending on the context, a flexibility
not present in the aforementioned methods. In CZSL, cer-
tain attributes (e.g., white, black, crushed) are more
compatible with the first approach, while others (e.g., huge,
old, ancient) align better with the second approach, or
some samples necessitate a combination of both. While some
prior research [11], [12] has attempted to merge the afore-
mentioned methods for prediction, these isolated branches
fail to interact and influence each other’s inference. This
paper aims to investigate an approach that integrates the
aforementioned frameworks while closely aligning with the
composition-aware adaptation of the human mind.

We drew inspiration from the representation of particle
attributes in physics [13], [14]. These methods adopted the
strategy of expressing the position and attribute of an object
simultaneously with a complex number, and we can regard

the compositions within CZSL as analogous concepts. We
follow the above structure to establish an embedding struc-
ture where the attribute embedding remains imaginary-
connected with the object embedding (obj. + iatt.) in
complex space, we refer to this as an imaginary-connected
compositional embedding, shown in the bottom of Fig. 1.
We treat each composition as an independent class rather
than as a subset of the primitives within the composition.
The attributes and objects belonging to the two independent
measures are expressed as real and imaginary numbers. Em-
bedding in complex space facilitates the knowledge transfer
between two independent measures, attribute, and object,
through phase information while maintaining their orthog-
onality. This unification enables the model to adaptively in-
tegrate non-connected and fully-connected inference strate-
gies, thereby more closely mimicking human cognition.

The embedding mentioned above requires the decom-
posing of attributes and objects from visual features. Recent
approaches [11], [15] commonly employ attention mecha-
nisms to achieve this. Building upon this foundation, we
leverage both spatial and channel locations to decompose
the primitive features of a specific location, which we re-
fer to as the Attention-Guided Visual Decoupler (AGV).
Nevertheless, as previously discussed, some attributes are
highly dynamic and can extensively intertwine with visual
features. Without sufficient data, models with fixed param-
eters struggle to learn attribute prototypes that bias visually
with different compositions, which impairs their ability to
generalize effectively across various compositions. To ad-
dress this issue, we suggest employing an Object-Guided
Attribute Extraction (OGA) module to facilitate attribute
separation. Specifically, we integrate the standard deviation
of the visual feature with respect to the object prototype to
capture the visual bias influenced by the attribute. Subse-
quently, we combine this information with a specific local
region to produce the decoupled attribute feature.

Apart from addressing seen classes, our proposed
method facilitates generalization to unseen classes through
the construction of an Affinity-based Pseudo Distribution
(APD) in the complex space. Thus, the semantic information
of the unseen compositions is incorporated into the train-
ing by leveraging the affinities among the compositions.
Building upon the aforementioned configuration, we pro-
pose our framework, where embeddings are IMAginary-
connected in CompleX Space for Unseen Attribute-Object
Discrimination (IMAX). This framework provides a more
straightforward approach compared to prior methods as
it avoids the need for constraints on input samples [8],
[11] or the pre-construction of graph-based datasets [5].
This framework can be trained to utilize the semantics of
both seen and unseen classes, showcasing its capability
to conduct inference by dynamically integrating primitives
and composition dependencies concurrently.

This paper introduces multiple significant contributions:
1) We present a novel method for attribute and object
identification in complex space, enabling knowledge trans-
fer between the independent measures of attribute and
object through phase information, while preserving their
orthogonality. 2) We model the impact of attributes by the
bias between visual feature and object prototype and fuse
with localized features to decompose attribute features that
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are deeply entangled with the objects. 3) Our proposed
method is extensively evaluated through experiments and
demonstrates superior performance compared to state-of-
the-art methods on various challenging benchmark datasets.

2 RELATED WORK

2.1 Compositionality

Compositionality is that objects or concepts can be under-
stood through the combination of their constituent parts,
essentially decomposing an observation into its primitives
[16], [17]. Recent studies have explored compositionality in
various tasks. At the visual level, several studies [18], [19],
[20] have demonstrated improved generalization to diverse
classes by learning prototypes of shared primitives between
classes, these primitives are usually certain regions or fea-
tures of the object. Applications at the semantic level have
emerged, with recent studies [21], [22] employing Large
Language Models to decompose class names into multi-
perspective descriptive semantics, which serve as semantic
primitives. These primitives can be accurately and intu-
itively captured by visual-semantic models, such as CLIP
[23], thus directly providing interpretability for the model
inference process. With objectives that differ slightly from
previous approaches, CZSL extends the aforementioned
concepts by imposing stricter constraints on compositional
forms. CZSL employs objects and attributes as shared prim-
itives across classes, emphasizing the ability to generalize to
novel classes without exposure to training samples.

2.2 Zero-Shot Learning (ZSL)

The objective of ZSL is to transfer knowledge from seen
classes to unseen classes [24], [25], [26], [27]. This general-
ization is primarily accomplished through semantic descrip-
tions [28] or manually defined semantic attributes [29], [30].
From a compositional point of view, each class is decom-
posed into multiple primitives (hundreds or thousands),
facilitating knowledge transfer across classes. For example,
multiple attribute prototypes are utilized in APN [31] to
extract the corresponding attributes from the localities of
visual features. [32] leverages object detection [33] to decom-
pose attribute-related regions in the feature to align with
attributes. Unlike CZSL, ZSL methods seldom consider the
visual bias introduced by the interaction of primitives as
a major challenge. This is because these primitives gen-
erally correspond to more fixed semantic content, making
ZSL often a regression task for attribute prediction. This
disparity directly contributes to the difficulty of applying
ZSL methods to CZSL.

2.3 Compositional Zero-Shot Learning (CZSL)

CZSL extends ZSL by incorporating compositionality, where
each class is decomposed into two primitives: an object and
an attribute. Unlike ZSL, the primitives in CZSL present
greater visual complexity, because of the intricate visual
interrelations among these primitives.

In response to this challenge, various studies have pro-
posed different approaches, such as learning primitive clas-
sifiers and then combining them for the final inference [4],

[34], [35], [36]. These approaches are referred to as non-
connected methods. In this instance, causal inference has
been introduced into CZSL for the decoupling of visual
samples [6], [37], [38]. [7] decouples objects and attributes
from images using Siamese networks, while [8] proposes a
novel decoupling structure and uses the decoupled features
to synthesize unseen class samples. These methods directly
classify primitives in a composition, but neglecting the
dependencies between them makes it difficult to handle the
challenges of dynamic attributes.

The opposite approach considers the dependency struc-
ture between attributes and objects, treating each com-
position as a separate class, we refer to them as fully-
connected methods. [10], [39] concatenate the word vec-
tors of attributes and objects and embed them in a joint
embedding space for classification. [5], [9] introduce Graph
Convolutional Networks in CZSL, which use graph embed-
dings for compositions. Recent research treats attributes as
direct conditions influencing object features. For example,
[12] uses objects as conditions for generating attributes,
while [15] emphasizes attribute-specific visual features by
incorporating hierarchical guidelines within the visual at-
tributes. These strategies aim to prompt the model to learn
dependencies between primitives. However, unlike the non-
connected approaches, they cannot focus on the shared
primitives between classes.

With the recent advance in pre-trained vision-language
models like CLIP [23], many methods show more prominent
competitiveness. For instance, [40] introduces soft prompts
[41] to mitigate the visual bias of primitives. [42] integrate
language features with image features to reduce the domain
gap between seen and unseen sets. [43] utilizes language-
informed distribution to capture the intra-class diversity
and inter-class correlation between primitives. These meth-
ods aim to fully leverage the zero-shot generalization capa-
bilities of CLIP, benefiting from its large-scale pre-training
data, and extend to more complex CZSL scenarios. As a
method not tied to a specific visual or textual encoder, IMAX
can similarly leverage the visual-semantic connections in
CLIP for alignment in the complex space.

Many of the methods described above demonstrate dif-
ferent forms of modeling of compositions. For example,
non-connected approaches [6], [7], [38] treat composition as
a category mapping of primitives and do not perform di-
rect inference on them. While the fully-connected approach
differs, [44] view an attribute as a conditional operator,
transforming it into a transformation operation linked to an
object. In contrast, [5] conceptualizes their relationship using
graphs. Additionally, [12] models the changes in attributes
across different targets through conditional generation. The
primary distinction between IMAX and these methods is
its consideration of attributes as imaginary conditions asso-
ciated with objects. This approach facilitates the learning
of independent primitive prototypes and their inherent
connections in a single framework. Consequently, IMAX
integrates the advantages of both methods into a unified
prediction system.

2.4 Complex Space
Various tasks in deep learning incorporate the use of com-
plex space. For instance, [45] defines each relationship
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Fig. 2. The data flow of our approach is illustrated. The input visual features Zp and Zc are decomposed by the AGV and OGA modules to derive
za and zo. The class labels aj and oj are encoded as pa

i and po
j . Both features are then projected into complex space and real space for visual-

semantic alignment. Specific details of the AGV and OGA are also presented. AGV takes Zp and Zc as inputs and generates local activation
maps for spatial and channel dimensions, denoted as Asp and Ach, respectively, where matrix multiplication is represented by ⊗, element-wise
product by ⊙, and element-wise summation by ⊕. As for the OGA module, Zp undergoes a conv1×1 operation with noise filtering to obtain Z̄p.
The variance is then computed at each spatial location using the object prototype po

j as the visual bias and weighted through Eq. 7. B is fused with
the output of the AGV module to obtain the final attribute feature. The visual-semantic alignment for complex space and real space is demonstrated
in Fig. 3.

within the knowledge graph as a rotation from a source
entity to a target entity in a complex vector space. In the
context of Domain Generalization [46], several methods
represent style using imaginary numbers. For instance, [47]
considers the domain as a style in the frequency domain
and introduces filters to mitigate its impact. Additionally,
[48] leverages the frequency domain to enhance data in
the target domain. Similarly, [49] examine the quantita-
tive phase variation of normalization through mathematical
derivation of the Fourier transform formula and eliminate
style while preserving content through spectral decomposi-
tion. Although these methods aim to model style using the
Fourier transform in the frequency domain, they do not di-
rectly involve classification in complex space. To the best of
our knowledge, no existing method represents embeddings
in complex space for the CZSL task.

3 APPROACH

In CZSL, every image in the dataset is annotated with an
attribute and an object label, such as old (attribute) and dog
(object), respectively. The task of CZSL requires recogniz-
ing novel compositions consisting of attributes and objects
from the seen compositions. The complex interdependence
between attributes and objects adds to the challenge of this
task. Below we provide a full description of our approach.

3.1 Task Formulation
In CZSL, labels are often compositions of attributes and
objects. We denote the possible attributes and objects as a
and o respectively and use y = (a, o) to represent the corre-
sponding labels of images. The label set can be expressed as

C = A×O = {(a, o)|a ∈ A, o ∈ O}. An input sample x ∈ X
is an image in the space X . The set of training images can be
denoted as Xt ⊂ X and the corresponding labels as Ct ⊂ C.
Therefore, T = {(x, y)|x ∈ Xt, y ∈ Ct} is the training set
used to train a mapping function X → Cn, where Cn ⊆ C
represents the test compositions. It is important to note
that Cn may contain compositions that are not present in
Ct. Depending on the relationship between Cn and C, the
following tasks can be defined: 1) Generalized CZSL follow-
ing [50], which can also be denoted by Closed-World CZSL
(CW-CZSL), where Cn ⊂ C and the test class includes both
feasible existing seen and unseen classes. Most recent works
[5], [7], [8] have followed this setting. (2) Open World CZSL
(OW-CZSL) following [10], which requires Cn ≡ C. It is a
more challenging task due to the presence of a large number
of interference compositions. Notably, most recent works
[5], [10] on CZSL consider the set of unseen compositions
in Cn is assumed to be known a priori. Consequently, IMAX
retains this setup.

This paper addresses both CW-CZSL and OW-CZSL
settings. Particularly, OW-CZSL poses additional challenges
as the number of compositions tested (Cn) exceeds the
number of compositions in training (Ct) by a significant
margin. Moreover, OW-CZSL involves a high proportion
of infeasible compositions (over 90% in MIT-States [51]).
Consequently, the model needs to go beyond recognizing
attributes and objects alone and also consider the feasibility
between them.

3.2 Method Overview
For an input sample x and its label is yj = (aj , oj), we
utilize a pre-trained backbone, such as ViT-B-16 (ViT-B),
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Fig. 3. Illustration of visual-semantic alignment in real space and complex space. In real alignment, the visual and semantic embeddings for objects
and attributes are projected into their respective real spaces to compute cosine similarity. Additionally, we combine zo and za into compositional
forms that align with the compositional semantics after embedding, serving as an auxiliary loss. In complex alignment, za and zo are embedded in
the complex space and represented as the imaginary-connected form. The semantic embedding is also expressed in the same form in the complex
space. The computation of visual-semantic similarity in complex space incorporates two elements: the direct similarity between the primitives
(ρs(zc,pc

j)) and the utilization of phase information to model the attribute-object dependency (ρp(zc,pc
j)).

ResNet-18 (R-18) [52] or ViT-L-14 (ViT-L) [53] in CLIP [23],
to extract visual features, as depicted in Fig. 2. If ViT is used
as the backbone, we can obtain a patch token, and reshape
it to Zp ∈ RH×W×D . We can also obtain a class token
(i.e., [CLS]) Zc ∈ RD , where D representing the channel
number.

When R-18 is used as the backbone, we extract the visual
feature map after layer 4, represented by Zp ∈ RH×W×D .
To align with ViT’s methodology, we consider the features
obtained after applying Avgpool as a vector similar to the
class token, represented as Zc = Avgpool(Zp) ∈ RD. It
should be noted that the values of H , W , and D differ when
using R-18 and ViT, this setting is solely intended to facilitate
the subsequent presentation.

For the semantic branch, we utilize GloVe [54] followed
by two FC-layers or CLIP text encoder [23] to embed the
label yj = (aj , oj) to latent space, thus we can obtain the
word embeddings which work as the attribute and object
prototypes, i.e., pa

j ,p
o
j ∈ RD .

The aforementioned aligns principally with the previous
CZSL approach [11], [15], serving as a rudimentary module.
In subsequent modules, previous approaches typically use
attention mechanisms [8], [11], [15] or linear functions [6],
[7] to decompose or map visual features. In IMAX, because
of the deep entanglement of attributes and objects, we pro-
pose the OGA (Sec. 3.4) module by decomposing features
about attributes through the standard deviation of visual
features and object prototypes, outside the use of attention
mechanisms (AGV, Sec. 3.3). In the process of learning
compositional prototypes, we overcome the limitations of
the real space, it lacks the dynamics to combine dependen-
cies and primitives for classification. Instead, we leverage a
complex space to the synergy between the above two, i.e., in
the form of imaginary-connected compositional embedding
in complex space (Sec. 3.6). Pseudo-distributions for unseen
classes can be constructed in complex spaces by leveraging
the affinities between compositions, enabling guidance for
generalization (Sec. 3.8).

3.3 Attention-Guided Visual Decoupler (AGV)

Compared to attributes, objects have explicit texture features
as well as boundaries in the image, which is easier to
perceive directly in the local regions. AGV encompasses
attention mechanisms based on convolution kernels [55],
targeting the precise activation of pertinent spatial regions.
Unlike previous methods, AGV incorporates a channel
activation module [56] that originates from the feature’s
global information. The intersection of these two compo-
nents yields our ultimate decoupling outcome.

Specifically, when provided with a visual feature Zp,
we train filters to evaluate its degree of association with
the corresponding primitives in the spatial location of the
feature. This evaluation is then fed into a batch normaliza-
tion (BN) layer and activated using a Sigmoid function to
highlight the relevant regions. As a result, we obtain the
spatial activation map Asp:

Asp = Sigmoid(BN(Conv1×1(Z
p))) ∈ RH×W , (1)

the conv1×1 serves as the primitive-aware filters and its
output dimension is 1. Then we use this activation map to
activate the original visual features, i.e.,

Zsp = Âsp ⊗ (Ẑp)⊤ ∈ RD, (2)

where ·̂ denotes flattened features, i.e., Âsp ∈ RHW , Ẑ ∈
RD×HW . ⊗ denotes the matrix multiplication and ⊤ denotes
transpose. Due to the deep entanglement of attributes with
objects, we like to perform a weighting of global visual fea-
tures over channels. Thus, we similarly generated channel-
based activation maps via class token:

Ach = Sigmoid(SE-Block(Zc)), (3)

where SE-Block is derived from [56], consisting of an FC-
layer for dimensionality reduction, a ReLU function, and
another FC-layer for dimensionality enhancement along the
channel axis. In the end, we combine the channel activation
maps obtained above with spatial activation features and
introduce a residual connection:

z = AGV(Zp,Zc) = Zsp ⊙Ach + Zsp ∈ RD, (4)
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where ⊙ denotes the element-wise product. z is the output
feature of this module. We use this module to decouple
object features, i.e., zo = AGVo(Z

p,Zc), where the AGVo
denotes the AGV model is for object. As for attributes, a
further process is required to achieve composition-aware
adaptation.

3.4 Object-Guided Attribute Extraction (OGA)
The embeddings po

j of objects in visual space are viewed
as object prototypes, representing the most fundamental
and essential concept of objects across the samples. Taking
inspiration from methods for extracting styles in domain
generalization [46], [57]. To represent the bias generated by
the combination of attribute and object, we compute the
standard deviation of the spatial feature Zp along with its
corresponding object prototype po

j , and it is this bias that is
the most significant visual variation of the attribute. In this
way, we aim to accomplish the extraction of attributes from
the visual bias that occurs in the object.

Since the object to which the samples correspond is
not known a priori, we assign weights to these standard
deviations based on the similarity of the features to all object
prototypes, which can be calculated as:

wj = Softmax(cos(zo,po
j)). (5)

The standard deviation between the visual feature Zp

and the object prototype po
j is utilized as the visual bias

introduced by the composition:

σ(Zp,po
j) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(Z̄p[h,w, :]− po
j)

2, (6)

where Z̄p ∈ RH×W×D is obtained by pass the Zp through
a conv1×1 in order to filter out background noise, [h,w, :]
denotes the index [h,w, :] in feature Z̄p. Next, we apply a
weight to all standard deviations using the weight wj :

B =
∑
oj∈O

wjσ(Z
p,po

j) ∈ RD. (7)

Additionally, we incorporate local attention information
as a complementary aspect, and subsequently combine it
with the weighted standard deviation to generate our ulti-
mate decoupled attribute features:

za = Ef ([AGVa(Z
p,Zc),B]) ∈ RD, (8)

where [AGVa(Z
p,Zc),B] denotes the concatenation of the

two vectors, Ef is a function consisting of two FC-layers for
fusing the vectors, and AGVa is an AGV model for attributes.

3.5 Training the Real Space Decoupling Modules
Based on the above modules, we complete the decomposing
of visual features in real space. As shown on the left of Fig.
3, we use a vanilla cross-entropy loss function to guide the
training process of these modules:

Latt = −log
exp{cos(za,pa

j )/τ}∑
yj′∈Ct

exp{cos(za,pa
j′))/τ}

, (9)

Lobj = −log
exp{cos(zo,po

j)/τ}∑
yj′∈Ct

exp{cos(zo,po
j′))/τ}

, (10)

where τ is temperature coefficient, yj = (aj , oj) is the label
of the input sample. And cos denotes cosine similarity.
Following previous work [15], we avoid loss of information
by reconstructing the composition in the process, which can
be formulated as:

zr = Ec
v([z

a, zo]), pr
j = Ec

s([p
a
j ,p

o
j ])), (11)

where Ec
v and Ec

s are functions that include two FC-layers
which are also trained using a vanilla cross-entropy loss:

Lcomp = −log
exp{cos(zr,pr

j)/τ}∑
yj′∈Ct

exp{cos(zr,pr
j′))/τ}

. (12)

The objective function for real space can be summarized
as follows:

Lreal = Latt + Lobj + Lcomp. (13)

3.6 Imaginary-Connected Embedding
As discussed in Sec. 1, it is plausible to directly utilize
the aforementioned modules for classifying the samples in
the real space. However, in the real-space approach, the
attributes and objects exist as completely isolated measures,
inability to dynamically combine dependencies between
primitives. Therefore, we propose employing imaginary-
connected compositional embeddings in the complex space
to represent the compositions. In complex spaces, attributes
are considered as imaginary conditions that are attached
to the objects, rather than having a direct connection with
them. This approach allows the unifying of several inde-
pendent measures in real space into a common measure
in complex space, which can capture the inherent interde-
pendencies of composition, while also preserving shared
information between both seen and unseen classes.

Specifically, we embed the za, zo into complex space, i.e.,

zc = Eo
v(z

o) + iEa
v (z

a), (14)

where Eo
v and Ea

v are FC-layers, and i denotes imaginary
unit. Specifically, we convert the za into imaginary numbers,
while maintaining the zo as real numbers. Subsequently,
these two features are amalgamated to form a complex
vector, i.e., imaginary-connected embeddings.

From this, we perform a similar operation for the seman-
tic branch:

pc
j = Eo

s (p
o
j) + iEa

s (p
a
j ), (15)

Eo
s and Eo

s are also embedding networks same to Eo
v and

Ea
v . The above two complex vectors compute the similarity

ρ(zc,pc
j) in complex space, i.e.,

ρ(zc,pc
j) =

⟨zc,pc
j⟩

⟨zc, zc⟩ ⟨pc
j ,p

c
j⟩
, (16)

where ⟨zc,pc⟩ denotes the Hermitian inner product be-
tween zc and pc. As a result, this calculation contains a real
number for the similarity score and an imaginary number
for the complex phase factor, i.e.,

ρ(zc,pc) = ρs(z
c,pc

j) + iρp(z
c,pc

j). (17)

For simplicity, we discuss below in the case of |zc| = 1
and |pc

j | = 1. As a similarity score,

ρs(z
c,pc

j) = Ev
o (z

o)⊤Es
o(p

o
j) + Ev

a(z
a)⊤Es

a(p
a
j ). (18)
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which is used to directly measure the visual-semantic match
for objects and attributes, plays a role similar to the cosine
similarity of the real space in the previous methods. As for
the complex phase factor, it is obtained by:

ρp(z
c,pc

j) = Ev
a(z

a)⊤Es
o(p

o
j)− Ev

o (z
o)⊤Es

a(p
a
j ), (19)

mathematically, it is used to provide the complex phase
factor necessary for achieving complete similarity in Eq.
18. Fundamentally, a smaller ρp(z

c,pc
j) indicates a smaller

complex angle between the two vectors, suggesting a
higher level of global coherence. In IMAX, we expect a
larger ρs(z

c,pc
j) between visual features and semantics,

and a smaller ρp(z
c,pc

j). In complex space, IMAX’s visual-
semantic alignment of seen classes is optimized using Eq.
20, after which we provide a detailed discussion and expla-
nation.

Ls = −log
exp{(ρs(zc,pc

j)− ρp(z
c,pc

j))/τ}∑
yj′∈Ct

exp{(ρs(zc,pc
j′)− ρp(zc,pc

j′)/τ}
.

(20)

3.7 Discussion on Complex Space Alignment
As discussed in Sec. 1, we group the attributes into two
types: consistent attributes and dynamic attributes. Con-
sistent attributes (e.g., color, textures) represent attributes
that maintain constant visual features regardless of com-
position, making them easier to disentangle directly from
visual features. In contrast, dynamic attributes (e.g., old,
ripe, huge) vary based on the object, which means za may
associated with the object. Although the OGA and AGV
modules effectively disentangle features, dynamic attributes
may exist directly with the object itself, and it’s hard to
distinguish using lightweight models.

In CW-CZSL, an ideal consistent attribute pertaining to
completely orthogonal to the object, i.e., ρp(z

c,pc
j) → 0.

On the other hand, za from dynamic attributes exhibit
some degree of similarity to the po

j . We aim to utilize this
similarity to guide the learning of Ev

a(z
a) related to these

attributes, encouraging them to deviate from their primitive
semantics and emphasize the relationship with the object.
To achieve this, we expect to maintain close values between
the Ev

a(z
a)⊤Es

o(p
o
j) and Ev

o (z
o)⊤Es

a(p
a
j ). Both scenarios

indicate our expectation of a lower ρp(z
c,pc

j). Thus, in the
phase information, we accomplish the establishment of the
attribute-object dependency in this simple way.

During the inference stage of OW-CZSL, infeasible com-
positions often lack complete orthogonalization between at-
tributes and objects, as well as the corresponding attribute-
object dependency. Consequently, this leads to a larger value
for the phase factor. Therefore, we argue that phase informa-
tion can aid in assessing the feasibility of such compositions.

As a result, our optimal state for the training phase is for
the visual-semantic sample pairs to have the smaller com-
plex phase factor while achieving higher similarity. From
this, we can introduce the objective function at this stage of
the process:

3.8 Affinity-based Pseudo Distribution (APD)
While the above work explores composition further, another
key to the CZSL task lies in the generalization of unseen

classes, which is hard to achieve by relying on the extremely
small amount of data available. Many approaches have
been proposed in ZSL to guide the direction of training
for unseen classes, mainly by minimizing entropy [58], [59].
In CZSL, we begin by calibrating the distribution of word
embeddings for unseen classes using the semantic similar-
ity between the compositions of seen and unseen classes.
To constrain the pseudo-distribution of unseen classes, we
introduce inter-class affinity for re-weighting. We have con-
sidered inter-class affinity, which refers to the composition’s
overlapping semantic relations (same objects or attributes
between different compositions).

Following the previous process, word vectors for unseen
classes are also embedded in complex space, which is pa

l

and po
l , we denote the complex form of it by pc

l , l denotes
yl = (al, ol), assuming we have a total of ms seen classes
and mu unseen classes, we have l = ms+1,ms+2, ...,ms+
mu. For complex vectors pc

j of seen class yj , we employ
the similarity as the pseudo distribution on unseen classes,
ρs(p

c
j ,p

c
l ) denotes the similarity of the j-th seen class to the

l-th unseen class.
Thereafter, each sample is assigned an unseen class

pseudo-label based on affinity. First we need to define
ykj

= (akj
, okj

), where,

kj = argmaxms+1≤k′≤ms+mu
ρs(p

c
j ,p

c
k′), (21)

ykj
denotes the unseen word embedding that is most affinity

to yj = (sj , oj). Using ykj
as a label for unseen classes en-

ables the construction of a pseudo-distribution for correction
purposes. Nevertheless, in the CZSL scenario, we examine
the existence of overlapping semantics between classes and
wish to model the inter-class relationships of unseen classes
using this concept. Here, we propose a method named
Affinity-based Re-weighting, which is defined as follows:

µj,l =


1− ϵ yl = ykj

0 sl, ol /∈ ykj

π(ϵ) otherwise
, (22)

where ϵ ∈ (0, 1) is a hyper-parameter that is used to adjust
the weights, to avoid interference caused by infeasible com-
positions, we usually set a larger ϵ in OW-CZSL. π(ϵ) is to
adjust the weights of the remaining affinity compositions,

π(ϵ) =
ϵ

K − 1
, (23)

where K is the number of unseen compositions with affinity
to ykj , i.e., affinity here means between two compositions,
there exist the same primitive (attributes or objects).

In summary, we use this pseudo-label to warm up the
model’s ability to generalize to unseen classes, this is ac-
complished by a loss function similar to Eq. 20:

Lu = −
mu∑

l=ms+1

µj,llog
exp{(qs(zc,pc

l )− qp(z
c,pc

l ))/τ}∑
yl′∈U exp{(qs(zc,pc

l′)− qp(zc,pc
l′))/τ}

.

(24)
Ultimately, the modules in the complex space are trained

by the following functions:

Lcomplex = Ls + αLu, (25)

where α is a weighting coefficient that balances the two
losses.
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TABLE 1
Dataset statistics for CZSL, a: number of attributes, o: number of

objects, sp: seen compositions, up: unseen compositions, i : images.

Training Validation Test

Dataset a o sp i sp up i sp up i

MIT-States [51] 115 245 1262 30k 300 300 19k 400 400 13k
UT-Zappos [51] 16 12 83 23k 15 15 3k 18 18 3k
C-GQA [5] 413 674 5592 27k 1252 1040 7k 888 923 5k

3.9 Inference
At the inference phase, we feed the input into AGV and
OGA modules to get za, zo and zr , and the test labels
are also embedded in the corresponding space, for class
yj we have pa

j ,p
o
j and pr

j . We first compute its similarity
to the semantics in real space following [11]: sr(x, yj) =
cos(za,pa

j ) · cos(zo,po
j) + cos(zr,pr

j).
In complex space, we embed the above vectors to get zc

and pc
j . And we continue to introduce complex phase in-

formation into the classification phase, which is sc(x, yj) =
ρs(z

c,pc
j)− ρp(z

c,pc
j). We compute our prediction score by

synthesizing these scores in different spaces:

ŷ = argmaxyj∈Cn
βsr(x, yj) + sc(x, yj), (26)

where β is a hyper-parameter for synthesizing the scores.

4 EXPERIMENTS

This section describes the experimental data, evaluates the
criteria, and undertakes experiments to validate IMAX.

4.1 Datasets
In compliance with previous research on CZSL and the
interest of a fair comparison, our method is evaluated on
three main benchmark datasets, i.e., MIT-States [51], UT-
Zappos [60], and C-GQA [5], as shown in Tab. 1.

MIT-States [51]. Image labels in MIT-States are gen-
erated through automated labeling of image-text search,
and [37] found that leads to a high level of noise in both
training and test sets. Nonetheless, we contend that the
MIT-States dataset remains suitable for evaluating model
performance in extremely noisy environments and can be
compared fairly to previous studies. The dataset includes
around 53,000 images, comprising 245 object classes and 115
attribute classes. We employ the standard split of [62], in
the closed-world setting, the dataset consisted of 1262 seen
classes, and the validation and test set consisted of 300/400
unseen classes, respectively. For open-world scenarios, we
follow [10] who considers all possible 28175 pairs and about
26114 compositions of them are not present in any splits of
the dataset. However, the OW-CZSL needs to consider the
possibilities of these compositions.

UT-Zappos [60]. We evaluate our method on UT-Zappos,
comprising around 33,000 fine-grained footwear images
categorized into 16 attribute classes and 12 object classes.
For the CW-CZSL, the training set contains 83 seen com-
positions, and the validation and test sets consist of 15/18
unseen compositions, respectively, as described in [62]. For
open-world scenarios, the splits of UT-Zappos also follow
[10], which contains 192 possible compositions, and about
76 are not in any of the splits of the dataset.

C-GQA [5]. [5] proposes a new dataset C-GQA for CZSL,
which has less noise and more compositions than MIT-
States, and we use it in our experiments. Following [9], we
split the dataset into over 9,000 compositions, consisting of
5,592 seen and 1,938 unseen compositions in the CW-CZSL
setting. The vast search space of C-GQA makes it the most
challenging dataset among the three. In OW-CZSL, C-GQA
remains the most challenging dataset, containing a search
space of 280K possible compositions [9].

4.2 Evaluation Metrics
We follow the evaluation metrics outlined in [62] for both
closed-world and open-world settings. The main metrics
evaluated are (1) Area Under the Curve (AUC); (2) Accuracy
of Seen and Unseen compositions (AS , AU ); (3) Harmonic
Mean (HM) (AH), where AH = (2×AS ×AU )/(AU +AS);
Metric (1) evaluate the areas between accuracy on seen and
unseen compositions with different bias terms [5], [8], [62].
Metrics (2) directly evaluate the accuracy when testing only
seen or unseen classes. Metric (3) is a common metric for
generalized ZSL following [50] and is used to comprehen-
sively evaluate the performance of the model on seen and
unseen classes.

4.3 Implementation Details
Models. IMAX is compatible with various image and text
encoders. We primarily utilize pre-trained ResNet-18 [52]
and ViT-B-16 [53] for image encoding, while GloVe [54] is
employed for text encoding to maintain consistency with
baseline methods [11], [15]. Additionally, IMAX can be
implemented using the pre-trained CLIP ViT-L-14 model for
both image and text encoding [23]. The pre-trained word
embeddings of CLIP for a photo of are used to initialize
three prefixes for input semantics. When implemented with
CLIP, the composition semantics, such as a photo of a
[mashed] [banana], are encoded as [pa

j ,p
o
j ] for Eq. 11,

rather than using a direct concatenation of the two encoded
vectors from attribute and object. In all implementations, the
embedding layers in IMAX are two-layer MLPs connected
by a ReLU activation function.

Training setup. IMAX is trained on two NVIDIA RTX
A6000 GPUs using the ADAM optimizer [64], with a learn-
ing rate of 5 × 10−5 and a batch size of 256 (64 when fine-
tuning the visual backbone and 16 for CLIP), employing an
early stopping strategy. For MIT-States, α and β are set to
1× 10−5 and 0.5, respectively; for UT-Zappos, these values
are 5 × 10−6 and 0.7. For C-GQA, α is set to 1 × 10−4, and
β is set to 100. In CW-CZSL, ϵ is consistently set to 0.25
across all three datasets, while in OW-CZSL, the values are
0.4, 0.65, and 0.45. Additionally, the temperature coefficient
τ is set to 0.1, 0.125, and 0.01 for the respective datasets.

4.4 Results
We evaluate IMAX in both CW-CZSL and OW-CZSL set-
tings. We report IMAX results using different implemen-
tations: R-18 [52], ViT-B [53], and CLIP ViT-L [23] models.
For experiments using R-18 as the backbone, we compare
outcomes with recent baselines such as OADis [8] and
CANet [12]. When using ViT-B as the backbone, we select
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TABLE 2
The results of IMAX and baselines on MIT-States, UT-Zappos, and C-GQA in CW-CZSL. We compare our method with others on AUC, best

harmonic mean, seen and unseen accuracy (AH ,AS , and AU ). The best AUC and AH are shown in bold.

Method Backbone MIT-States UT-Zappos C-GQA

AUC AH AS AU AUC AH AS AU AUC AH AS AU

With frozen R-18

LE+ [4] R-18 2.0 10.7 15.0 20.1 25.7 41.0 53.0 61.9 0.8 6.1 18.1 5.6
AttOp [44] R-18 1.6 9.9 14.3 17.4 25.9 40.8 59.8 54.2 0.7 5.9 17.0 5.6
TMN [61] R-18 2.9 13.0 20.2 20.1 29.3 45.0 58.7 60.0 1.1 7.5 23.1 6.5
SymNet [6] R-18 3.0 16.1 24.4 25.2 23.9 39.2 53.3 57.9 2.1 11.0 26.8 10.3
CompCos [10] R-18 4.5 16.4 25.3 24.6 28.7 43.1 59.8 62.5 2.6 12.4 28.1 11.2
CGE [5] R-18 5.1 17.2 28.7 25.3 26.4 41.2 56.8 63.6 2.3 11.4 28.1 10.1
SCEN [7] R-18 5.3 18.4 29.9 25.2 32.0 47.8 63.5 63.1 2.9 12.4 28.9 12.1
OADis [8] R-18 5.9 18.9 31.1 25.6 30.0 44.4 59.5 65.5 3.0 13.3 30.2 12.5
CANet [12] R-18 5.4 17.9 29.0 26.2 33.1 47.3 61.0 66.3 3.3 14.5 30.0 13.2
CoT [15] R-18 6.2 19.6 30.8 26.8 31.5 46.4 62.1 64.2 4.5 16.6 33.1 16.6
IMAX* R-18 6.2 19.7 31.0 26.5 33.9 49.5 64.3 64.8 4.5 16.4 32.7 16.9

With frozen ViT-B

CompCos [10] ViT-B 7.5 22.0 33.3 30.0 31.8 48.1 58.8 63.8 2.9 12.8 30.7 12.2
CGE [5] ViT-B 7.3 21.3 33.5 28.6 34.5 48.5 61.6 70.0 3.8 15.0 32.3 14.9
OADis [8] ViT-B 7.5 21.9 34.2 29.3 32.6 46.9 60.7 68.8 3.8 14.7 33.4 14.3
CANet [12] ViT-B 8.3 22.3 36.3 30.7 36.3 49.5 64.0 72.0 4.9 17.5 34.4 17.3
ADE [11] ViT-B 7.7 22.8 31.0 32.0 35.1 51.1 63.0 64.3 5.2 18.0 35.0 17.7
CoT [15] ViT-B 7.8 23.2 34.8 31.5 33.7 48.5 60.2 65.0 5.1 17.5 34.0 18.8
IMAX* ViT-B 8.0 23.6 35.2 30.1 41.4 55.3 68.0 72.3 5.4 18.9 35.4 18.6

With fine-tuning ViT-B

CompCos [10] ViT-B 7.8 22.4 36.3 30.4 39.0 53.3 65.6 67.8 4.8 16.7 38.4 16.6
CGE [5] ViT-B 9.7 24.8 39.7 31.6 39.2 53.8 66.8 67.9 5.4 18.5 38.0 17.1
OADis [8] ViT-B 10.1 25.2 39.2 32.1 33.0 48.7 62.4 68.7 7.0 20.1 38.3 19.8
CANet [12] ViT-B 8.8 23.1 37.5 31.1 38.7 52.2 67.2 69.5 5.6 18.9 38.0 17.1
ADE [11] ViT-B 6.7 20.1 33.5 28.1 38.1 53.6 65.0 66.7 5.2 18.7 34.2 17.9
CoT [15] ViT-B 10.5 25.8 39.5 33.0 34.2 49.8 63.5 63.4 7.4 22.1 39.2 22.7
IMAX* ViT-B 10.9 26.1 39.8 34.5 42.0 57.4 69.8 70.1 7.6 23.4 39.6 24.1

With frozen CLIP

CLIP [23] ViT-L 11.0 26.1 30.2 46.0 5.0 15.6 15.8 49.1 1.4 8.6 7.5 25.0
CoOp [41] ViT-L 13.5 29.8 34.4 47.6 18.8 34.6 52.1 49.3 4.4 17.1 20.5 26.8
CSP [40] ViT-L 19.4 36.3 46.6 49.9 33.0 46.6 64.2 66.2 6.2 20.5 28.8 26.8
DFSP (i2t) [42] ViT-L 20.7 37.2 47.4 52.4 32.1 45.1 64.2 66.4 8.7 24.3 35.6 29.3
DFSP (BiF) [42] ViT-L 20.8 37.7 47.1 52.8 33.5 47.1 63.3 69.2 9.0 26.2 36.5 32.0
DFSP (t2i) [42] ViT-L 20.6 37.3 46.9 52.0 36.0 47.2 66.7 71.7 10.5 27.1 38.2 32.0
PLID [43] ViT-L 22.1 39.0 49.7 52.4 38.7 52.4 67.3 68.8 11.0 27.9 38.8 33.0
IMAX* ViT-L 21.9 39.1 48.7 53.8 40.6 54.2 69.3 70.7 12.8 29.8 39.7 35.8

CANet, CoT [15], and ADE [11] as main baselines and we
conducted separate tests with both frozen and fine-tuned
visual backbones. In addition, we compare several CLIP-
based baselines [40], [42], [43] to demonstrate IMAX’s capa-
bility to integrate with large-scale vision-language models.

Closed-world setting. As shown in Tab. 2, we compare
IMAX with recently proposed baselines. On both visual
backbones, IMAX outperforms previous SoTA methods on
most datasets.

Although IMAX is constrained by the absence of class
tokens when using the frozen R-18 backbone, this limitation
does not significantly impact its performance. Compared
to existing methods, IMAX improves the AH by +0.1%
and +1.7% on MIT-States and UT-Zappos, respectively. Our
results on C-GQA closely align with the current SoTA,

with a minor difference of (−0.2% on AH ) and equality in
AUC compared to CoT. Considering CoT utilizing multiple
visual features at different scales, our method achieves close
performance without the need for additional visual features.
An intriguing observation arises from the comparison of
IMAX with CANet, particularly its attribute generation con-
ditioned on objects. We posit that this concept is inherently
embedded in IMAX, wherein attributes are treated as condi-
tions associated with objects. In comparison, we possess an
advantage wherein phase information exhibits stronger gen-
eralization capabilities than conditional generation, given
the absence of the introduction of additional parameters.

When employing ViT-B as the backbone, It can be
observed that fine-tuning the visual backbone generally
outperforms using frozen backbones. This suggests that,
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TABLE 3
The results of IMAX and other baselines on MIT-States, UT-Zappos, and C-GQA in OW-CZSL.

Method Backbone MIT-States UT-Zappos C-GQA

AUC AH AS AU AUC AH AS AU AUC AH AS AU

With frozen R-18

LE+ [4] R-18 0.3 2.7 14.2 2.5 16.3 30.5 60.4 36.5 0.08 1.0 19.2 0.7
AttOp [44] R-18 0.7 4.7 16.6 5.7 13.7 29.4 50.9 34.2 - - - -
TMN [61] R-18 0.1 1.2 12.6 0.9 8.4 21.7 55.9 18.1 - - - -
SymNet [6] R-18 0.8 5.8 21.4 7.0 18.5 34.5 53.3 44.6 0.43 3.3 26.7 2.2
CompCoscw [10] R-18 0.9 5.9 25.3 5.5 20.8 36.3 59.8 45.6 0.20 1.6 28.0 1.0
CompCos [10] R-18 1.6 8.9 25.4 10.0 21.3 36.9 59.3 46.8 0.39 2.8 28.4 1.8
CGE [5] R-18 0.7 4.9 29.6 4.0 21.5 38.0 58.8 46.5 0.30 2.2 28.3 1.3
Co-CGE [9] R-18 2.0 10.1 26.4 10.4 21.3 38.1 60.1 44.3 0.37 2.6 28.7 1.6
KG-SP [39] R-18 1.0 6.7 23.4 7.0 22.9 39.1 58.0 47.2 0.44 3.4 26.6 2.1
DRANet [63] R-18 1.1 6.9 27.1 6.6 23.5 39.7 60.7 46.1 0.71 5.0 28.2 3.1
CANet [12] R-18 1.5 8.1 32.0 7.3 22.2 37.7 58.8 50.3 0.47 3.2 30.0 2.0
IMAX* R-18 2.2 10.5 29.7 10.8 25.5 43.1 61.3 52.5 0.73 5.3 28.8 2.6

With frozen ViT-B

CompCos [10] ViT-B 2.8 11.6 32.7 12.7 20.7 36.0 58.1 46.0 0.72 4.3 32.8 2.8
CGE [5] ViT-B 1.0 6.0 28.0 5.9 23.5 40.0 60.6 47.0 0.81 4.8 32.7 3.2
OADis [8] ViT-B 2.9 12.0 33.0 12.5 25.3 41.6 58.7 53.9 0.71 4.2 33.0 2.6
CANet [12] ViT-B 2.6 10.7 38.2 9.7 27.5 43.2 63.1 54.7 0.91 5.0 34.2 3.1
ADE [11] ViT-B 2.6 11.7 31.3 12.2 27.1 44.8 62.4 50.7 1.42 7.6 35.1 4.8
CoT [15] ViT-B 3.1 12.4 36.7 11.8 27.9 44.0 63.3 53.3 1.22 6.5 35.0 4.3
IMAX* ViT-B 3.5 14.2 35.1 13.5 30.9 46.1 68.1 60.8 1.53 8.0 35.3 4.9

With fine-tuning ViT-B

CompCos [10] ViT-B 3.1 12.8 31.0 14.2 25.1 41.3 62.5 49.8 1.14 6.0 34.0 4.1
CGE [5] ViT-B 1.2 6.3 29.6 6.0 24.3 41.0 57.3 49.5 0.95 5.4 33.4 3.4
OADis [8] ViT-B 3.0 12.8 33.6 12.3 26.7 43.4 60.0 52.9 1.22 6.2 36.2 4.0
CANet [12] ViT-B 2.5 11.1 34.1 11.2 27.9 43.9 66.2 54.2 1.16 5.9 37.1 3.8
ADE [11] ViT-B 2.6 11.9 31.3 12.3 28.1 45.4 64.3 49.8 1.48 7.9 35.9 4.7
CoT [15] ViT-B 4.2 14.3 41.1 14.1 28.0 44.1 62.2 48.7 1.33 7.0 35.3 4.4
IMAX* ViT-B 4.2 14.4 39.2 15.1 32.4 47.3 68.8 59.3 1.59 8.3 35.9 5.1

With frozen CLIP

CLIP [23] ViT-L 3.0 12.8 30.1 14.3 2.2 11.2 15.7 20.6 0.27 4.0 7.5 4.6
CoOp [41] ViT-L 2.8 12.3 34.6 9.3 13.2 28.9 52.1 31.5 0.70 5.5 21.0 4.6
CSP [40] ViT-L 5.7 17.4 46.3 15.7 22.7 38.9 64.1 44.1 1.20 6.9 28.7 5.2
DFSP(i2t) [42] ViT-L 6.7 19.1 47.2 18.2 26.4 41.2 64.3 53.8 1.95 9.0 35.6 6.5
DFSP(BiF) [42] ViT-L 6.7 19.2 47.1 18.1 27.6 42.7 63.5 57.2 2.39 10.6 36.4 7.6
DFSP(t2i) [42] ViT-L 6.8 19.3 47.5 18.5 30.3 44.0 66.8 60.0 2.40 10.4 38.3 7.2
PLID [43] ViT-L 7.3 20.4 49.1 18.7 30.8 46.6 67.6 55.5 2.50 10.6 39.1 7.5
IMAX* ViT-L 7.6 21.4 50.2 18.6 32.3 47.5 68.4 57.3 2.58 11.2 38.7 7.9

TABLE 4
Comparison of the complexity between the IMAX method and baseline

methods on C-GQA, evaluated based on the number of model
parameters, FLOPS, and average runtime per sample. All methods

utilize ViT-B as the backbone, with results excluding ViT-B’s complexity
indicated in red. Experiments are conducted on an NVIDIA RTX A6000

GPU.

Methods Parameters (×106) FLOPS (×109) Run Time (ms)

CANet [12] 89.710 (4.063) 21.229 (4.366) 156.311 (152.196)
COT [15] 90.351 (4.704) 26.679 (9.816) 21.458 (17.221)
ADE [11] 109.840 (24.193) 22.454 (5.591) 114.684 (110.672)
IMAX* 97.469 (11.822) 29.638 (12.775) 25.960 (22.002)

despite the risk of overfitting within seen classes due to
limited data, the bias in the backbone’s pre-training data

relative to the test scenarios remains the more dominant
factor. As a result, IMAX improves the AH by +0.4%,
+4.2% and +0.9% on the three datasets with a frozen ViT-
B when compared with SoTA, respectively. When we fine-
tune the backbone, IMAX also improves the AH by +0.3%,
+3.6% and +1.3%. While replacing the R-18 backbone with
ViT-B improves most baselines’ results, IMAX shows clear
superiority across all three datasets. We attribute this to
the adaptability of AGV to the ViT-B architecture, enhanced
by available class tokens, which are crucial in fine-grained
scenarios where decoupling visual features is essential for
constructing complex visual-semantic relations.

CLIP-based experimental results demonstrate that IMAX
can effectively adapt to different image and text encoders.
IMAX represents a significant improvement on AH com-
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TABLE 5
Ablation study results of IMAX about the training and inference space. CW denotes the CW-CZSL setting, and OW denotes the OW-CZSL setting.

Training Inference MIT-States UT-Zappos C-GQA

AUC AH AS AU AUC AH AS AU AUC AH AS AU

CW

Real Real 6.2 19.6 32.1 27.5 33.8 48.2 64.8 64.5 4.7 16.4 33.4 17.9
Real Complex 6.6 20.5 33.9 27.6 37.1 52.8 64.6 69.7 4.7 17.5 35.5 16.3
Complex Real 7.0 21.1 34.6 29.6 35.3 50.8 62.8 67.5 4.3 16.2 33.2 16.5
Complex Complex 8.0 23.6 35.2 30.1 41.4 55.3 68.0 72.3 5.4 18.9 35.4 18.6

OW

Real Real 1.7 9.6 33.9 9.1 23.9 40.0 64.9 44.6 0.83 5.1 31.5 3.1
Real Complex 2.1 12.5 34.7 13.8 29.8 45.7 67.9 60.3 1.17 6.9 34.7 4.3
Complex Real 1.8 10.3 34.2 10.4 25.1 42.2 63.6 59.2 0.96 5.7 35.6 3.0
Complex Complex 3.5 14.2 35.1 13.5 30.9 46.1 68.1 60.8 1.53 8.0 35.3 4.9

pared to vanilla CLIP [23], achieving +13.0%, +38.6%, and
+21.2% higher performance across various benchmarks.
Although CLIP itself exhibits strong zero-shot inference
ability, its understanding of primitives in composition is still
limited. Compared to the rest of the baselines designed for
CZSL, IMAX outperforms the existing methods by +0.1%,
+1.8% and +1.9% in terms of AH . Compared to the
multiple cross-attention and self-attention mechanisms in
DFSP, IMAX achieves more prominent results with a more
lightweight model structure. We attribute this to IMAX’s
deeper dissection of primitive relationships within the com-
position.

Open-world setting. Results for the OW-CZSL setting
are presented in Tab. 3. IMAX continues to achieve leading
performance on this setup, we consider the phase infor-
mation in complex space to offer an enhanced measure
of the attribute-object dependence, which suppresses the
probability that unfeasible compositions be predicted in the
inference phase. This proves beneficial for distinguishing
between unfeasible compositions in this scenario.

In the context of utilizing R-18 as the backbone, we
observe the improvement of +0.4% in terms of AH metrics,
respectively, compared to Co-CGE [9] on MIT-States. For
UT-Zappos, our method aligns with the CW-CZSL setting,
achieving 25.5% and 43.1% on AUC and AH , a performance
nearly on par with SoTA ViT-Based methods and surpassing
earlier approaches (CompCos [10], CGE [5]) on CW-CZSL.
Notably, in the challenging C-GQA, rich in unfeasible com-
positions, our method leverages phase information in com-
plex space, achieving a new SoTA with +0.3% improvement
in AH and +0.02% on AUC compared to DRANet [63].
Given the dataset’s extensive compositions, this margin is
deemed highly significant.

When implemented with ViT-B, similar trends can be
observed as in CW-CZSL. IMAX improves AH by +1.8%,
+1.3%, and +0.4% on the three datasets with a frozen ViT-
B, respectively. When fine-tuning the backbone, IMAX also
improves AH by +0.1%, +1.9%, and +0.4%. It is notewor-
thy that ViT-B-based IMAX’s results on UT-Zappos are still
the most prominent; however, they are not as significant as
those on CW-CZSL. This difference is attributed to the fact
that the number of infeasible compositions in the OW-CZSL
setting of UT-Zappos is much smaller compared to other
datasets. As a result, inference on this content is less critical
in this context, allowing some CW-CZSL-based methods to

also achieve excellent performance on this dataset.

The results of implementing CLIP demonstrate that
IMAX effectively integrates with CLIP to enhance reasoning
in the OW-CZSL setting, addressing a limitation inherent to
the CLIP model. The suppression of infeasible compositions
through phase information allows IMAX to fully leverage
the strong visual-semantic connections inherent in CLIP.
Consequently, IMAX improves AH by +1.0%, +0.9%, and
+0.6%, and AUC by +0.3%, +1.5%, and +0.08%, respec-
tively.

Combining the above results, we contend that, in open-
world scenarios, complex space assumes a more crucial role
compared to alternative methods. Earlier methods typically
categorized compositions by solely decoupling visual fea-
tures, a process that frequently falls short in determining
the feasibility of a composition. Co-CGE assesses each com-
position by modeling a feasibility score and continually
updating it, but this process is computationally intensive.

Computational efficiency. We compare the complexity
of the models by analyzing the number of parameters and
the computational overhead of each model. Here we focus
on comparisons with the following baselines: COT [15],
ADE [11] and CANet [12]. As shown in Tab. 4, we report
the number of parameters and Floating Point Operations
Per Second (FLOPS) for IMAX with these baseline methods.
All compared methods use the same backbone architecture
(ViT-B) and perform inference on C-GQA. In addition to
reporting the parameter count, FLOPS, and runtime for the
full model, we also present these results excluding ViT-
B by replacing the feature extraction step with randomly
generated vectors of the same size.

We observe that the number of parameters introduced
by IMAX is the second lowest among the four methods,
but it has higher FLOPS due to the similarity calculation in
complex space during inference. However, IMAX does not
suffer from significant runtime drawbacks, as we enhance
time efficiency during the inference phase by utilizing ma-
trix multiplication instead of extensive index lookups. The
specific implementation details are available in our code.
Overall, we consider that IMAX improves performance
on the three benchmark datasets while maintaining model
complexity within a reasonable range.
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TABLE 6
Validation of AGV and OGA modules is performed on MIT-States, UT-Zappos, and C-GQA. ✓ indicates the module is included in IMAX, whereas

× indicates it is not included.

Attribute (za) Object (zo) MIT-States UT-Zappos C-GQA

AGV OGA AGV AUC AH AS AU AUC AH AS AU AUC AH AS AU

CW

× × × 6.2 20.1 31.2 28.7 34.1 50.2 61.7 66.3 4.9 17.8 34.0 16.8
× × ✓ 6.3 20.5 31.4 29.1 35.2 51.3 63.7 68.3 4.9 18.0 35.1 16.5
× ✓ × 7.4 22.0 33.6 29.7 37.1 52.9 65.3 68.5 5.1 18.4 35.3 18.0
× ✓ ✓ 7.5 22.3 35.9 30.2 38.9 53.9 66.9 69.3 5.2 18.7 36.0 18.1
✓ × × 7.0 20.2 36.2 28.1 37.2 52.4 66.3 70.9 5.4 18.3 35.3 18.6
✓ × ✓ 7.2 20.9 37.2 28.9 38.6 53.4 67.5 71.5 5.3 18.4 35.6 19.1
✓ ✓ × 7.5 23.0 35.8 31.5 39.5 54.6 67.0 71.3 5.4 18.7 35.0 19.4
✓ ✓ ✓ 8.0 23.6 35.2 30.1 41.4 55.3 68.0 72.3 5.4 18.9 35.4 18.6

OW

× × × 2.6 13.0 32.4 12.9 24.7 42.8 62.6 54.5 1.28 6.9 33.4 4.1
× × ✓ 2.9 13.2 33.7 13.3 25.7 43.3 63.4 56.8 1.32 7.0 33.9 4.0
× ✓ × 3.1 13.7 34.3 13.6 27.3 44.2 65.7 58.6 1.40 7.4 34.6 4.5
× ✓ ✓ 3.3 14.0 35.1 13.3 28.3 45.2 68.2 60.2 1.49 7.8 34.8 5.1
✓ × × 3.0 13.4 34.9 13.1 27.0 43.7 67.2 59.1 1.30 7.1 34.2 4.5
✓ × ✓ 3.1 13.5 35.4 12.9 27.6 44.5 67.5 59.9 1.36 7.3 34.7 4.3
✓ ✓ × 3.3 13.9 34.6 13.7 29.3 45.3 67.9 60.3 1.47 7.9 35.1 5.0
✓ ✓ ✓ 3.5 14.2 35.1 13.5 30.9 46.1 68.1 60.8 1.53 8.0 35.3 4.9

4.5 Ablation Study

This section presents an analysis of the validity of each
module in the methodology. All experiments use frozen ViT-
B as the backbone and are conducted on MIT-States, UT-
Zappos, and C-GQA. We present experimental results for
both CW-CZSL and OW-CZSL to assess the impact of each
module in these distinct settings.

Complex space vs real space. As the most significant
contribution of our work, we first verify the difference
between visual-semantic alignment in complex space and
real space. Specifically, we eliminate the imaginary terms
derived from similarity computation during both training
and inference, in this way we transform the entire method
of inference and training into real space.

As shown in Tab. 5, we report results for removing
complex spaces in the training phase as well as in the
inference phase, respectively. The results demonstrate that
visual-semantic alignment in complex space yields positive
gains during both the inference and training phases. It is
noteworthy that introducing complex phase information
only in the inference phase can also result in a significant im-
provement in the OW-CZSL setting, about +0.4%,+5.7%,
and +0.34% improvement on AUC across the three datasets,
respectively. We speculate that this improvement stems from
its capability to reduce the likelihood of retrieving less
feasible compositions by discerning the interdependence of
attributes and objects through the inherent generalization
capability of the model. Overall, a more straightforward
observation is that introducing complex spaces during both
the training and testing phases yields better results, as it
helps maintain consistency between these phases.

Effective of AGV and OGA. We also validate the roles
of the AGV and OGA modules. To obtain the decomposed
representations za and zo, an AGV module is employed for
each branch, while the OGA module is additionally utilized
for the attributes. We achieve the ablation of these two
modules by replacing them with a simple linear structure,

i.e., Avgpool and a two-layer MLP, the results are shown in
Tab. 6.

In both datasets, we observe a decrease in results when
both modules are removed simultaneously. This suggests
that having well-decomposed visual features remains a
necessary condition for IMAX. Although the AGV module
itself has positive effects, we find that OGA plays a more
significant role. In CW-CZSL, the use of OGA alone yields
results higher than using AGV alone. This confirms our
hypothesis that relying solely on fixed parameters hinders
the adaptation of biased visual representations of the same
primitives from various compositions. On the other hand,
OGA can use the object as a conditional prior, dynami-
cally separating its attributes. Furthermore, we observe a
significant improvement when both modules are introduced
simultaneously for decoupling attributes. This suggests that
the fusion output of AGV and OGA has a positive effect
on attribute extraction. Overall, both AGV and OGA mod-
ules provide significant benefits across all three datasets,
particularly on fine-grained datasets like UT-Zappos. These
parameters facilitate a clearer delineation of categorization
boundaries between primitives in the compositions.

Different components of AGV. We validate the per-
formance of the AGV by disassembling each component
(Asp,Ach) in the AGV module. These two components
realize the decomposing of visual features in terms of spatial
location as well as channel location, respectively. We report
the experimental results for the CW-CZSL as well as OW-
CZSL settings in Tab. 7.

The introduction of Ach demonstrates noticeable im-
provements in both tasks. In CW-CZSL and OW-CZSL,
compressing the channels on all three datasets gives a
minor but consistent boost, e.g., +0.4% and +1.6% on AUC
for MIT-States and UT-Zappos in CW-CZSL. This supports
our assertion that there is a substantial overlap between
attributes and objects in terms of spatial location. Regarding
Asp, although the enhancement from this module in OW-
CZSL is not as pronounced as in CW-CZSL, it still acts as



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XX 202X 13

TABLE 7
Ablation study results for the components in AGV. ✓ indicates that AGV includes this component, while × indicates the absence of this component

in AGV.

Spatial (Asp) Channel (Ach) MIT-States UT-Zappos C-GQA

AUC AH AS AU AUC AH AS AU AUC AH AS AU

CW

× × 7.4 22.0 33.6 29.7 37.1 52.9 65.3 68.5 5.3 18.4 35.3 18.0
✓ × 7.6 22.2 34.8 30.1 39.2 54.8 68.2 71.2 5.6 18.7 35.9 19.4
× ✓ 7.8 22.5 33.8 29.0 38.7 53.9 67.5 71.5 5.4 18.4 35.9 18.8
✓ ✓ 8.0 23.6 35.2 30.1 41.4 55.3 68.0 72.3 5.4 18.9 35.4 18.6

OW

× × 3.1 13.7 34.3 13.6 27.3 44.2 65.7 58.6 1.40 7.4 34.6 4.5
✓ × 3.3 13.9 35.3 13.0 27.7 45.0 63.4 59.8 1.48 7.8 35.1 4.6
× ✓ 3.4 14.0 34.9 13.1 28.3 45.7 67.7 59.8 1.45 7.5 35.4 4.5
✓ ✓ 3.5 14.2 35.1 13.5 30.9 46.1 68.1 60.8 1.53 8.0 35.3 4.9

TABLE 8
Effectiveness analysis of each component in APD, the experiment is conducted on MIT-States, UT-Zappos, and C-GQA.

Baselines MIT-States UT-Zappos C-GQA

AUC AH AS AU AUC AH AS AU AUC AH AS AU

CW
α → 0 7.4 21.8 36.7 27.5 37.1 53.0 68.6 67.5 5.0 17.3 34.1 17.1
ϵ → 1 7.6 22.0 35.1 28.4 38.7 53.9 68.9 71.3 5.1 17.1 34.9 17.6
ϵ → 0 7.7 22.6 35.3 29.3 41.2 54.8 67.0 72.0 5.2 18.3 35.0 18.5

OW
α → 0 3.1 13.8 35.9 11.4 27.9 44.2 68.3 57.3 1.36 7.4 36.4 2.5
ϵ → 1 3.4 14.0 35.4 13.3 28.5 45.5 68.2 59.2 1.45 7.8 35.1 5.1
ϵ → 0 3.3 14.1 35.6 13.0 28.1 44.8 66.5 60.5 1.42 7.6 35.4 4.7

TABLE 9
Influence of different inference formulations on MIT-States, UT-Zappos, and C-GQA. ✓ indicates that the model making inferences with these

scores.

Att/Obj Comp Complex MIT-States UT-Zappos C-GQA

AUC AH AS AU AUC AH AS AU AUC AH AS AU

CW
✓ 4.8 17.0 26.4 26.5 31.3 49.0 61.8 55.9 3.7 14.9 31.4 15.0
✓ ✓ 5.3 18.1 31.3 25.9 36.9 52.6 67.7 70.2 4.6 17.3 34.0 17.0
✓ ✓ ✓ 8.0 23.6 35.2 30.1 41.4 55.3 68.0 72.3 5.4 18.9 35.4 18.6

OW
✓ 2.4 10.4 32.5 13.0 27.6 42.4 67.0 55.2 0.70 4.5 31.1 3.1
✓ ✓ 2.7 12.1 34.1 12.8 28.2 43.1 67.8 56.8 0.83 4.9 33.2 3.1
✓ ✓ ✓ 3.5 14.2 35.1 13.5 30.9 46.1 68.1 60.8 1.53 8.0 35.3 4.9

a positive incentive (37.1% vs 39.2% AUC for UT-Zappos).
In summary, the enhancements from these two components
in AGV are notably less pronounced when contrasted with
the direct impacts of either complex space or OGA. Never-
theless, it is crucial to note that the feature decoupling facil-
itated by this foundational module is essential for training
and inference in the complex space.

Impact of Affinity-based Pseudo Distribution. The
APD module incorporates two primary types of pseudo-
labels to construct distributions for unseen classes: 1) ykj ,
which represents the unseen composition most similar to
the sample label yj , and 2) compositions that share affinities
with ykj . In this section, we evaluate the specific impacts
of these two pseudo-labels and examine how the results
vary when Lu is entirely removed. We manipulate these
components by adjusting the values of ϵ and α. The results
are presented in Tab. 8.

Lu establishes a pseudo-distribution for unseen classes
through the generation of pseudo-labels, thereby mitigating

bias between seen and unseen classes. When removing the
Lu (α → 0), the results demonstrate an overall decrease
in precision for unseen classes (e.g., 27.5% vs 30.1% AUC
on MIT-States). Compared to the results in Tab. 2 and Tab.
3, it decreases the overall performance across the seen and
unseen classes, as evident in the decrease of AUC (7.4% vs
8.0%) and AH (21.8% vs 23.6%). However, the enhance-
ment of this loss function is not as significant in the OW-
CZSL. We argue that this is due to the interference of the
unseen class of infeasible compositions. Even though we
can reduce these effects through hyper-parameter settings
ϵ, they are still somewhat misleading to the model. This
can also be reflected for the ϵ setting, where higher results
are taken at ϵ → 0 in CW-CZSL. Whereas in OW-CZSL,
higher results are taken from ϵ → 1. This suggests that the
most similar unseen composition may not be feasible, which
misrepresents the model alignment process.

Impact of Inference formulation. Our approach in Sec.
3.9 employs inference methods that incorporate multiple
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Fig. 4. Qualitative results of image retrieval on MIT-States for OW-CZSL. The prediction results for positive (left) and negative (right) cases are
presented. The first row displays the results when phase information is not introduced, while the second row shows the results with phase
information. Feasible compositions are marked with a black border, while infeasible ones are marked in red. The adjusted value of the phase
information is indicated in the yellow box. The ground truth labels of the samples are provided above the respective images.
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Fig. 5. Qualitative results of image retrieval on CW-CZSL, we show the results of top-3 predictions for images on MIT-States as well as on C-GQA,
with correct ones marked in blue and incorrect ones in red. The ground truth labels of the samples are shown above the images.

scores. Here we validate the effectiveness of this approach.
Specifically, we test the performance difference between
the following similarity scores on the three benchmark
datasets: (1) cos(za,pa

j ) · cos(zo,po
j), denoted by Att/Obj,

(2) cos(zr,pr
j), denoted by Comp, (3) ρs(zc,pc

j)−ρp(z
c,pc

j),
denoted by Complex. The results are shown in Tab. 9.

In the context of Att/Obj, numerous prior studies have
affirmed the positive impact of combining this component
with Comp on enhancing CZSL task results [8], [11]. De-
parting from these approaches, we present complex-space
inference outcomes in conjunction with this amalgamation,
yielding the most significant enhancement among the three
baselines (e.g., achieving 3.5% AUC for MIT-States in OW-
CZSL). Both Att/Obj and Comp represent inferences in real
space, while Complex denotes the outcome of an inference
in complex space. This suggests that inference in complex
space are potential for synergistic combination with results
in real space to augment information. Additionally, the

results obtained using only Att/Obj also outperform certain
recent methods, such as OADis [8], we attribute this mainly
to the introduction of the AGV and OGA modules.

4.6 Cross-Dataset Results

In accordance with [9], we conduct an experiment involving
cross-data analysis. In the aforementioned experiments (Sec.
4.4 and Sec. 4.5), our training and test data are sourced
consistently, characterized by the same style and a similar
range of categories. However, achieving such consistency in
a real-world scenario is challenging, and it is desirable for
the model to possess the ability to categorize even when
confronted with entirely inconsistent input samples post-
training. Specifically, we evaluate the model’s performance
in scenarios where the distributions of training and test data
do not align. To implement this, we utilize two datasets,
MIT-States [51] and C-GQA [5], and subject the model to
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TABLE 10
Cross-dataset results on MIT-States and C-GQA in OW-CZSL. We

evaluate the seen accuracy (AS ), unseen accuracy (AU ), and
harmonic mean (AH ) for comparison purposes.

Training MIT-States C-GQA
Test C-GQA MIT-States

AS AU AH AS AU AH

SymNet [6] 6.5 0.93 0.83 0.44 0.21 0.10
CGE [5] 6.3 1.1 1.0 0.38 0.21 0.13
CompCos [10] 6.3 2.5 1.5 0.59 0.49 0.17
Co-CGECW [9] 6.2 1.1 1.0 0.91 0.33 0.15
Co-CGE [9] 5.5 3.2 1.6 0.80 0.31 0.19
IMAX* 6.4 3.5 1.8 0.95 0.44 0.23

testing on a different dataset after it has been fully trained
on either one of them.

Since it is ineffective to partition the validation set in this
setting, we directly use the weights of the trained model in
Sec. 4.4 for testing here, the results are shown in Tab. 10.
For a fair comparison with these methods, IMAX uses R-
18 as the backbone, the same as the compared methods.
The results are shown for the OW-CZSL. As a result of the
change in the data distribution, we can observe a substantial
dip in results for all methods. For example, the AH for CGE
drops from 29.6% to 6.3%. This is since there are also a large
number of compositions in the seen compositions that have
not been seen by the model in this scenario.

In our experimental analysis, when training our ap-
proach on the MIT-States dataset and evaluating it on C-
GQA, we observe that our method demonstrates robust
generalization to unseen classes, surpassing Co-CGE by
+0.3%. However, our model’s discriminative capability for
seen classes falls slightly short by −0.1% compared to
SymNet. Nonetheless, when considering the harmonic ac-
curacy, which provides a comprehensive measure of overall
performance, our approach took a complete lead, which
outperforms Co-CGE by 0.2%. When training on the C-
GQA and evaluating IMAX on MIT-States, we can observe
similar trends. IMAX outperforms all the methods in AS

(+0.04% compared to Co-CGECW) but is slightly lower than
CompCos in AU (−0.05%), while it continues to lead in the
most important metric AH (+0.04%). The aforementioned
results demonstrate that our method exhibits versatility
across multiple datasets, rather than being limited to the
OW-CZSL task with a single data distribution, which is
important for applications in real-world scenarios.

4.7 Qualitative Results
How complex phase information is involved in classifica-
tion. Empirical evidence presented in Sec. 4.5 demonstrates
the efficacy of phase information in CW-CZSL and OW-
CZSL by facilitating an improved understanding of intra-
constituent contextual relationships through dependency
construction. In this section, we present the composition of
predicted scores generated by IMAX for different samples.
Fig. 4 illustrates both the predictions without phase infor-
mation and those with phase information when using ViT-B
as the backbone. Furthermore, we report the values of phase
information, thus illustrating how the model leverages com-
plex phase information to discern infeasible compositions
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Fig. 6. Qualitative results of text retrieval. We use feasible and infeasible
composition semantics for image retrieval, with feasible ones labeled
with a blue border and infeasible ones in red. Images are top-1 retrieval
results for each text.

and comprehend the relationship between attributes and
objects.

Fig. 4 summarizes several significant trends. First, direct
prediction of compositions in real space is prone to infeasi-
bility. For instance, consider the first sample in the top row
where the dog is exposed to light sources. In this case, the
real-space approach directly predicts sunny, disregarding
its association with the dog. In contrast, incorporating com-
plex phase information reduces the likelihood of predicting
such compositions, leading to accurate inferences. Numer-
ous instances of the same nature can be observed, particu-
larly concerning attributes, whereby real-space predictions
yield outcomes such as bright, worn, dark, wide,
brown, and so on. While there may be some plausibility
regarding attributes, real-space predictions disregard the
contextual relationship they share with associated objects
(dog, key, boat, door, bread).

On the right side of Fig. 4, the samples are displayed
where errors persist despite the incorporation of phase
information. These errors primarily arise in the following
situations: 1) Inability to accurately classify objects. For in-
stance, when presented with a sample of unripe coffee,
our model struggles to properly categorize it due to the
significant bias introduced by the concept of being unripe.
This limitation arises from data constraints, impeding our
model’s ability to generalize effectively in this context. 2)
Incorrect attributes and object localization. Take the sample
of old fan, for instance. The inclusion of phase informa-
tion may lead to an even less infeasible outcome. Despite
the presence of an approximate rusty component in the
figure, it does not manifest in the fan itself, and as a result,
our model fails to establish the connection between this
component and the object accurately.

Image and text retrieval. CZSL has a prospective multi-
label property. Each object may exist in multiple attributes;
for instance, a tree may be both tall and green. Therefore, we
perform an image-to-text retrieval in CW-CZSL when using
ViT-B as the backbone, and present the top three predictions
for various samples from various datasets in Fig. 5.

Fig. 5 demonstrates that the accurate samples on the left
side indicate that our model possesses the capability to go
beyond matching correct labels and instead generalize the
visual-semantic relationship. For instance, in the case of the
cracked glass sample, our model provides three predic-
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Burnt Sliced Engraved Peeled Crumpled Folded Crushed

OGA

AGV

Images

Fig. 7. Visualization of AGV and OGA on MIT-States about attribute extraction. The top row displays the original image, with its associated attributes
labeled above. The second row depicts the region of interest for the attributes within the OGA module, whereas the third row showcases the region
of interest for the attributes within the AGV module.

Fig. 8. Hyper-parameter analysis in CW-CZSL. We report the AUC under different hyper-parameter settings for UT-Zappos (left Y-axis, red) and for
both C-GQA and MIT-States (right Y-axis, blue).

tions: cracked glass, broken glass, and crushed
glass. Considering the semantic similarity among these
attributes, we deem all these outcomes as plausible. Con-
sidering the subjective nature of dataset labeling, we find it
justifiable to provide prediction results for either cracked
or broken, as this sample essentially exhibits a multi-
labeled nature. Furthermore, we eagerly anticipate future
proposals for a multi-labeled CZSL dataset.

The inaccurate prediction results on the right-hand side
reveal certain limitations of our model. For instance, in
the scenario involving weathered oil, our model erro-
neously emphasizes the ocean-related features like coast
and beach, disregarding the primary object, oil, thereby
leading to a complete misjudgment of the attribute. This in-
dicates that object localization in AGV remains inadequate,
particularly in handling objects like oil that lack a clearly
defined external structure.

Moreover, we conduct experiments on text-to-image re-
trieval. We employ IMAX to compute the images most
similar to those provided with a semantic description. We
present the retrieval results for ten different texts in MIT-
States and C-GQA, including the results for both feasible
(blue box) and infeasible (red box) compositions. Fig. 6
displays the results, with our specific focus being on the
observation of retrieving infeasible compositions, such as
torn fan and mashed pants, among others. The model
is capable of retrieving sensible images, which demonstrates
its ability to attain a comprehensive comprehension of com-
parable semantics. In cases of ambiguous semantics, the
model considers the object as the primary entity and seeks

a comparable attribute as a replacement.
Visual analysis for attribute extraction. Our attribute

extraction primarily involves fusing the outputs of the AGV
and OGA modules. The AGV module is employed to local-
ize items to be classified. Meanwhile, the OGA module mod-
els the visual bias imposed by the attributes by capturing
variations from the object prototype. As a comparison, we
show the CAM [65] heat map for the AGV module as well
as the OGA module when extracting attributes, respectively,
shown in Fig. 7.

In the figure, we can observe two clear trends: 1) OGA
tends to acquire the localized region with the largest visual
bias, whereas AGV contains object regions that are indepen-
dent of the attribute, due to the depth entanglement within
the composition. 2) OGA modules are prone to cover their
background noise due to the backbone is not fine-tuned,
whereas AGV modules usually only cover their target body.
These two phenomena can explain our fusion of these two
modules as attribute extraction, i.e., OGA provides the most
significant attribute regions, while AGV is responsible for
the approximate location of the attributes.

4.8 Hyper-Parameter Analysis
In this section, our focus lies in evaluating the impact of four
hyper-parameters on CW-CZSL, namely: 1) the temperature
coefficient τ , 2) the weighting adjustment factor ϵ, 3) the loss
weighting coefficient α, and 4) the scores fusion weights.
The results, presented in Fig. 8, reveal that on MIT-States,
UT-Zappos, and C-GQA, the reciprocal of 1

τ attains its peak
value at 90, 80 and 70, respectively. Conversely, ϵ reaches
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its maximum value of 0.2, 0.3 and 0.3, surpassing the result
we reported in Tab. 2. These differences primarily arise from
the disparity between the validation set and the test set.
Concerning α, it reaches its peak at 10−5, 10−5 and 10−7.
Due to the absence of data for unseen classes, excessively
large values of α may introduce bias in the predictions for
seen classes. The peak value of β occurs at 0.7, 0.6, and 0.3,
indicating that a moderate fusion of prediction results from
multiple modules yields benefits for the overall inference.
On the whole, the fluctuations resulting from these hyper-
parameters fall within an acceptable range, and even if the
optimal values are not chosen, our method still outperforms
the results presented in Tab. 2.

5 CONCLUSION

In this paper, we address the CZSL problem, aiming to
recognize unseen compositions from seen attribute-object
pairs. Our approach tackles both CW-CZSL and OW-CZSL
by introducing an imaginary-connected embedding struc-
ture that integrates semantic dependencies and primitives.
Specifically, we decompose visual features into the complex
space using AGV and OGA, with attributes as an additional
imaginary unit. We also introduce a pseudo-distribution
of unseen classes to enhance the model’s generalization to
unseen classes. These improvements enable our model to
leverage phase information for higher-dimensional similar-
ity calculations, incorporating intra-compositional depen-
dencies in CW-CZSL and modeling compositional feasibility
in OW-CZSL. Extensive experiments demonstrate that our
method outperforms state-of-the-art approaches, though it
also reveals limitations, particularly in misidentifying at-
tributes and objects in samples with multiple entities. This
suggests that IMAX requires a deeper semantic understand-
ing of the samples.
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