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Abstract

Generalized Newtonian fluids are challenging to solve using the standard projection or fractional-step
methods which split the diffusion term from the incompressibility constraint during the time integration
process. Most of this class numerical methods already suffer from some inconsistencies, even in the Newto-
nian case, due to unphysical pressure boundary conditions which deteriorate the quality of approximations
especially when open boundary conditions are prescribed in the problem under study. The present study
proposes an improved viscosity-splitting approach for solving the generalized Newtonian fluids in which the
viscosity follows a nonlinear generic rheological law. This method consists of decoupling the convective ef-
fects from the incompressibility while keeping a diffusion term in the last step allowing to enforce consistent
boundary conditions. We provide a full algorithmic description of the method accounting for both Dirichlet
and Neumann boundary conditions. To evaluate the computational performance of the proposed viscosity-
splitting algorithm, we present numerical results for an example with manufactured exact solution and for the
benchmark problems of lid-driven cavity flow and flow past a circular cylinder. We also assess the accuracy
of the method for an unsteady flow around an arrangement of two cylinders in tandem and comparisons with
results obtained using a monolithic approach reveal good general agreement.

Keywords. Non-Newtonian fluids; Navier-Stokes equations; Viscosity-splitting algorithm; Finite element
method.

1 Introduction

The fluid behavior in a flow problem is closely linked to the viscous properties of the fluid itself which vary
from one fluid to another based on the relation between the shear stress and the shear rate. A fluid where
the shear stress depends linearly on the shear rate is considered as Newtonian while, non-Newtonian fluids
are characterized by a nonlinear dependency between the shear stress and the deformation rate. In addition,
generalized Newtonian fluids are a special subclass incubating the non-Newtonian fluids that preserves the
tensorial structure of the Newtonian model. In other words, the nonlinearity in the shear stress, as a function
of the shear rate, is contained in the viscosity which becomes in this case, an explicit nonlinear function of
the shear stress. Thus, the viscosity response towards the deformation rate felt by the fluid is the dividing
line between shear-thinning and shear-thickening fluids. Here, the shear-thinning (or pseudo-plastic) fluids
manifest a decreasing viscosity when subjected to an increasing shear rate, and are the vast majority of
real non-Newtonian fluids such as biological fluids, mayonnaise, ketchup, and most of polymer melts among
others. On the other hand, the shear-thickening fluids exhibit the opposite behavior and are less encountered
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in real-life applications. Several rheological models have been proposed in order to represent the generalized
Newtonian fluids features including the power-law, Carreau, Carreau-Yasuda, Cross, Casson and other models,
see for instance [37, 35]. There is an increasing focus among researchers on understanding the behavior of
non-Newtonian fluids in a wide range of flow configurations and domains due to the growing involvement of
these fluids in many biological and industrial processes in polymers, chemical engineering, slurry transport,
blood flow in arteries among others. However, due to the nonlinearity introduced by the shear stress-shear
rate law, the resulting equations governing the flow are even more challenging than the Newtonian case both
theoretically and numerically.

It is well known that the difficulty of approximating the incompressible Navier-Stokes equations arise from
the velocity-pressure coupling (in a saddle point structure) which yields poorly conditioned systems to solve.
To tackle this issue, a vast family of fractional-step methods (or splitting operators) have been proposed in
the literature. This category of methods, generally, tend to separate the velocity and the pressure solutions
by splitting the time-marching into several (mostly two or three) substeps. It was initiated by the works of
Chorin [11] and Temam [54] on the well-established projection methods. In the original version of projection
methods [54], the incompressibility is separated from the convection-diffusion terms by the introduction of an
intermediate velocity in the first step, that will be projected on a solenoidal space in the second step, to enforce
the incompressibility. However, the boundary conditions imposed in the projection step are incompatible with
the original problem, which creates an artificial (nonphysical) Neumann boundary condition on the pressure
solution leading to the creation of a numerical boundary layer and a degradation of convergence rate in the
H1-norm even with higher-order time-stepping schemes [55, 32]. Authors in [28] suggested a first-order pressure
extrapolation in the first step yielding the so-called incremental pressure correction method which although
has succeeded to somehow improve the H1-convergence of the velocity and the L2-convergence of the pressure,
it still suffers from an inconsistent Neumann boundary condition on the pressure. A rotational version of
the incremental projection method has also been proposed in [56] which offered a more consistent boundary
condition on the pressure and improved the convergence rate when using a second-order difference formula as
in [33]. However, this method is only available for Newtonian flows as it assumes a constant viscosity in its
implementation. Another way to overcome the drawback related to numerical boundary layers was introduced
in [5] and it consisted of including a viscous term in the projection step and imposing the original boundary
conditions on the end-of-step velocity, which ensures its convergence along with the intermediate velocity in
both L2 and H1 norms. This approach, consisting of not fully uncouple the diffusion from the incompressibility
allowing to preserve the true boundary conditions on the velocity, was also proposed in other methods in the
literature, see for example [27, 43, 45], but for Newtonian flows only.

As far as projection methods are concerned, despite being extensively studied and analyzed in the framework
of Newtonian flows, little advances can be found in the non-Newtonian case. In [23] a method has been proposed
to decouple the fully discrete pressure and velocity of a power-law viscoelastic fluid using the fractional-step
approach introduced in [16] which is a two-step projection based on a generalized block LU decomposition
of the original saddle-point matrix of the fully discretized problem. A hybrid FVM/FEM combined with an
incremental pressure correction scheme was proposed in [24] for power-law fluids. In [36] the performance of a
semi-implicit Chorin projection is compared with the LBM and Runge-Kutta schemes on both shear-thinning
and shear-thickening power-law fluids in the context of sudden expansion flows. A non-incremental pressure-
correction method was also employed in [38] to solve power-law fluid flows in a three-dimensional lid-driven
cavity for different Reynolds numbers. In [2], a non-incremental pressure correction scheme was applied but
combined with an explicit Adams-Bashforth method for the convective and diffusive terms solving a class of
Oldroyd-B viscoelastic fluids interacting with an elastic structure. Other approaches, not based on projection
methods, have also been studied in the literature including for example [22] where the three-field formulation
of an Oldroyd-B fluid is discretized in time with explicit treatment of the convective terms using a splitting
operator from [44], and the fully discrete system, reformulated into an Uzawa system form, is solved with
conjugate gradient method equipped with a robust preconditioner. Techniques based on least-square finite
elements for stationary viscoelastic flows can also be found for example in [40, 15, 41, 20, 9, 10, 30]. Recently,
authors in [17] developed, based on appropriate modifications in the incremental projection method, an efficient
method known as Shear Rate Projection (SRP) suitable for flows with heterogeneous viscosity. Compared to
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the conventional projection methods, the SRP method results in a more consistent pressure approximation
with an improved accuracy. In [18], authors further developed the SRP approach to suit the generalized
Newtonian fluids and take advantage of the dependency between the viscosity and the shear-rate stress. In
[50] the same approach previously proposed in [17] was modified by introducing new pressure corrections that
account for natural boundary conditions and the obtained method was shown to retrieve the advantages of the
rotational projection scheme even with heterogeneous viscosity. In addition, another efficient splitting method
was developed in [48] based on the technique studied in [42] that replaces the incompressibility constraint with
a Poisson equation for the pressure equipped with consistent boundary conditions and results in decoupling the
computation of the velocity and the pressure. Apparently, to our knowledge, the approximation of generalized
Newtonian flows with viscosity-splitting methods is still inexistent.

In the present study we propose, based on the fractional-step procedure introduced in [5], a viscosity-
splitting method which is suitable for generalized Newtonian flows. The proposed method belongs to a class
of two-step splitting schemes for which the first step computes an intermediate velocity by solving a linear
problem without accounting for both the incompressibility constraint and the pressure variable. In this first
step, the convective term is linearized in a Newton-like fashion and the viscosity function that depends on the
shear-rate tensor is treated explicitly to make the nonlinearity disappear. In the second step, the pressure and
the incompressibility are fully recovered along with the presence of a viscous correction term which yields a
Stokes problem on one hand, and on the other hand, allows to prescribe the full original boundary conditions on
the end-of-step velocity. We also implement in this work an improved version of the proposed viscosity-splitting
scheme using a pressure correction procedure. To verify this approach, numerical results for a three-dimensional
example with known exact solution and for the two-dimensional benchmark problems of lid-driven cavity flow
and flow past a circular cylinder are presented. We also perform elaborated comparisons, in terms of accuracy
and efficiency, between the proposed method and the conventional viscosity-splitting method traditionally
used in the literature for incompressible Navier–Stokes equations. Our findings inform applied scientists to
consider the accelerated viscosity-splitting method as a practical alternative numerical algorithm for solving
flow problems of generalized Newtonian fluids.

The rest of this paper is structured as follows: the viscosity-splitting methods for unsteady generalized
Newtonian fluid flows is presented in Section 2. This section includes the governing mathematical equations,
notations along with the time integration procedures. The finite element method for spatial discretization
is formulated in Section 3. In this section we also present the algorithmic implementation of the improved
viscosity-splitting algorithm for the unsteady generalized Newtonian fluid flow problems. Numerical results
obtained for three test examples of non-Newtonian fluid flows are analyzed in Section 4. Conclusions are
summarized in Section 5.

2 Viscosity-splitting methods for generalized Newtonian fluid flows

Let Ω be a smooth domain in Rd (with d = 2 or 3) satisfying the well-established inf–sup conditions as those
discussed in [26] and let [0, T ] be the time interval with T > 0 is the final time. The boundary of Ω is
splitted in two parts as ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅ (possibly ΓN = ∅). We also introduce the notation
Ωt = [0, T ]×Ω for the space-time domain and n denotes the unit outward normal vector to the boundary ∂Ω.
In the present study, we consider unsteady flow problems of generalized Newtonian fluids i.e., fluids having a
non-homogeneous viscosity ν depending on time t, space x, velocity u(t,x) or shear rate of the fluid Du, the
pressure p(t,x) and/or other external quantities and following a constitutive relation as

σ(u, p) = −pI+ 2νDu,

where I is the unit matrix and the shear rate Du is defined by

Du =
1

2

(
∇u+∇u⊤

)
.
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Assuming incompressible flows, the governing equations for the velocity u and pressure p can be well described
by the Navier-Stokes equations as

∂u

∂t
+ (u · ∇)u−∇ · (2νDu) +∇p = f , in Ωt,

(1)
∇ · u = 0, in Ωt,

where f(t,x) represents an external volumic force such as gravity. For the viscosity ν, there exists various
rheological laws widely used in industrial applications to model a shear rate dependent viscosity. Here, all the
following generic laws are covered

ν(Du) =



C∥Du∥m−1, (power-law) (2)

ν∞ + (ν0 − ν∞)
(
C0 + λ2 ∥Du∥2

)m−1
2
, (Carreau) (3)

(
√
µ+

√
τ

∥Du∥

)2

, (Casson) (4)

ν∞ + (ν0 − ν∞) (1 + λa ∥Du∥a)
m−1
a , (Carreau-Yasuda) (5)

where C is a consistency parameter of the power-law relation (2) and it has the unit Pasm, m, C0, µ, λ, a,
ν∞ and ν0 are nonnegative constants to be selected for each type of fluid, τ is the shear stress assumed to
be less than the maximum shear stress τmax, see for example [37] for more details on these laws. In (2)-(5),
∥ · ∥ denotes the Euclidean norm in Rd×d. Note that the constitutive relations (2)-(5) covers a wide range
of rheological models used in various flow problems and by setting m = 1 in (2),(3) or (5), one recovers the
conventional Navier-Stokes equations for a Newtonian fluid with constant viscosity. The equations for shear-
thinning and shear-thickening are obtained when m < 1 and m > 1, respectively. It should be noted that the
above laws (2)-(5) suffer from a typical numerical challenge as the associated viscosity could reach nonphysical
values such as zero or infinite viscosity. This can be overcome following ideas reported in [51] among others,
by setting upper and lower thresholds beyond which the viscosity is frozen. Notice that for the flow problems
of generalized Newtonian fluids considered in this study, this cut-off has not been used in the simulations.

On the domain boundary ∂Ω, we consider non-homogeneous Dirichlet boundary conditions on ΓD as

u = gD, on [0, T ]× ΓD, (6)

and Neumann boundary condition on ΓN as

σ(u, p) · n = gN , on [0, T ]× ΓN , (7)

where gD(t,x) and gN (t,x, ) are given boundary functions. At time t = 0,

u(0,x) = u0(x), in Ω, (8)

where u0(x) is a given initial function. It should be stressed that the existence and regularity of the solution for
the case of Newtonian fluids (m = 1) has been studied in [4, 53, 21] among others. In the case of non-Newtonian
fluids (m ̸= 1), existence of a solution of the problem (1)-(8) has been proved under some assumptions on the
viscosity ν, see for example [21, 3, 19].

To solve the boundary-value problem defined by (1)-(8), we first divide the time interval [0, T ] into N
subintervals [tn, tn+1] with a time step ∆t = tn+1− tn for n = 0, 1, . . . , N . We use the notations fn = f(tn,x),
gn
D = gD(tn,x), g

n
N = gN (tn,x), and we denote by un and pn the approximations at time tn of the solution u

and p, respectively. Hence, Applied to equations (1)-(8), the conventional Viscosity-Splitting (VS) method is
carried out using the following two steps:
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Step 1: Given un at time tn, compute the intermediate velocity ũn+1 as

ũn+1 − un

∆t
+ ũ⋆,n+1 · ∇ũn+1 −∇ ·

(
2ν (Dun)Dũn+1

)
= fn+1, in Ω,

ũn+1 = gn+1
D , on ΓD, (9)

ν(Dun)Dũn+1 · n = pnn+ gn+1
N , on ΓN .

Step 2: Given ũn+1 from Step 1, compute the solution
(
un+1, pn+1

)
of the Stokes problem as

un+1 − ũn+1

∆t
−∇ ·

(
2ν (Dun)

(
Dun+1 −Dũn+1

))
+∇pn+1 = 0, in Ω,

∇ · un+1 = 0, in Ω,
(10)

un+1 = gn+1
D , on ΓD,(

−pn+1I + 2ν (Dun)Dun+1
)
· n = gn+1

N , on ΓN .

Note that the two sources of nonlinearities in the above VS method namely, the convective term and the viscous
term, are linearized as follow:

(i) The nonlinearity originated from the viscous term in (9)-(10) is treated explicitly by taking ν (Dun)
instead of ν(Dũn+1). However, this choice would need additional processing using a fixed-point like
solver.

(ii) The convective term in (9) can be linearized by taking ũ⋆,n+1 = un, but a better choice consists of
adopting a Newton-like approach which produces additional terms. In this case, the first equation in (9)
is replaced by

ũn+1 − un

∆t
+ un · ∇ũn+1 + ũn+1 · ∇un −∇ ·

(
2ν (Dun)Dũn+1

)
= fn+1 + un · ∇un. (11)

It should be stressed that in Step 2, viscous terms are still present alongside with the original boundary
conditions on the end-of-step velocity un+1. Those terms are the major differences between the viscosity-
splitting method and the standard projection methods, see for instance [34]. However, thanks to this feature
of the VS method, one does not have to bother about any inconsistent boundary conditions for the pressure
solution. Notice that, it is also possible to replace the viscous term ν (Dun) in (10) by ν(Dũn+1) or by
θν (Dun) + (1− θ)ν(Dũn+1) with θ ∈ [0, 1] without loosing the linear structure of the problem.

In the present work, we modify the conventional viscosity-splitting method by adopting a pressure-correction
procedure [28, 57]. Thus, instead of neglecting the pressure, we add an old pressure term ∇pn to the first step,
and then update the actual pressure in the second step. The resulting Improved Viscosity-Splitting (IVS)
method considered in this study to solve the equations (1)-(8) is carried out using the following two steps:

Step 1: Given un at time tn, compute the intermediate velocity ũn+1 as

ũn+1 − un

∆t
+ un · ∇ũn+1 + ũn+1 · ∇un −∇ ·

(
2ν (Dun)Dũn+1

)
+∇pn = fn+1 + un · ∇un, in Ω,

ũn+1 = gn+1
D , on ΓD, (12)

2ν(Dun)Dũn+1 · n = pnn+ gn+1
N , on ΓN .
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Step 2: Given ũn+1 from Step 1, compute the solution
(
un+1, pn+1

)
of the Stokes problem as

un+1 − ũn+1

∆t
−∇ ·

(
2ν (Dun)

(
Dun+1 −Dũn+1

))
+∇(pn+1 − pn) = 0, in Ω,

∇ · un+1 = 0, in Ω,
(13)

un+1 = gn+1
D , on ΓD,(

−pn+1I + 2ν (Dun)Dun+1
)
· n = gn+1

N , on ΓN .

It should be noted that the main difference between the VS method (9)-(10) and the IVS method (12)-(13)
lies in the addition of an extra explicit pressure term in each step, which is almost insignificant in terms of
memory and computational cost. However, as shown by numerical simulations in Section 4, this adjustment
has a significant improvement in the accuracy of the approximate solutions especially when tackling some
severe situations like flow problems at high Reynolds number. It should also be stressed that recently, a similar
approach but with different pressure correction strategy has been investigated in [58] for the Newtonian case.

3 Finite element method for spatial discretization

The starting point in the finite element method is the weak formulation of the equations (12)-(13). As in
most finite element methods, this weak form is obtained by multiplying the equations (12)-(13) by a set of test
functions and integrated over the domain Ω using the divergence theorem along with the boundary conditions.
This yields:

Step 1: Given (un, pn), find ũn+1 ∈ H1(Ω) such that ũn+1|ΓD
= gn+1

D , and for all v ∈ H1
0(ΓD)∫

Ω

ũn+1 − un

∆t
v dx+

∫
Ω
un · ∇ũn+1v dx+

∫
Ω
ũn+1 · ∇unv dx+

∫
Ω
2ν(Dun) Dũn+1Dv dx =∫

Ω
fn+1v dx+

∫
Ω
un · ∇unv dx+

∫
Ω
pn∇ · v dx+

∮
ΓN

gn+1
N v dx. (14)

Step 2: Given ũn+1, find (un+1, pn+1) ∈ H1(Ω)× L2(Ω), such that un+1|ΓD
= gn+1

D ,
and for (v, q) ∈H1

0(ΓD)× L2(Ω)∫
Ω

un+1 − ũn+1

∆t
v dx+

∫
Ω
2ν(Dun)

(
Dun+1 −Dũn+1

)
Dv dx−

∫
Ω

(
pn+1 − pn

)
∇ · v dx = 0,

(15)∫
Ω
∇ · un+1q dx = 0.

Here, H1(Ω) is the well-known Sobolev space equipped with its usual norm denoted by ∥ · ∥1, L2(Ω) is the
Lebesgue space of square-integrable functions supplied with its standard norm ∥ · ∥, and H1

0(ΓD) is a subspace
of H1(Ω) defined as

H1
0(ΓD) =

{
v ∈H1(Ω), v|ΓD

= 0
}
,

and equipped with the semi-norm |v|1 = ∥∇v∥. For the space discretization of Ω = Ω∪Γ, we generate a quasi-
uniform partition Ωh ⊂ Ω of elements Tk (triangles or quadrilaterals in two space dimensions, and tetrahedra
or hexahedra in three space dimensions) such that Ω = ∪Ne

k=1Tk, where Ne is the number of elements of Ωh, h
is a space discretization parameter and the finite elements Tj satisfy, in the case of two-dimensional problems,
the following conditions:

(i) Ω =
Ne⋃
j=1

Tj , where Ne is the number of elements of the partition Ωh.
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(ii) If Ti and Tj are two different elements of the partition Ωh, then

Ti ∩ Tj =


Pij , a mesh point, or

Γij , a common side, or

∅, empty set.

(iii) There exists a positive constant κ such that for all j ∈ {1, . . . , Ne}, dj
hj

> κ (hj ≤ h), where dj is the

diameter of the circle inscribed in Tj and hj is the largest side of Tj .

For the conforming finite element spaces for the velocity and pressure, we use the mixed Taylor-Hood P2-P1

finite elements i.e., polynomials of second degree for the velocity and polynomials of first degree for the pressure.
It is well known that for such elements the discrete velocity and pressure fields satisfy the inf-sup condition,
see for instance [6]. The associated finite element spaces are defined as

Vh =
{
uh ∈ C0(Ω) : uh

∣∣
Tj
∈ P2(Tj), ∀ Tj ∈ Ωh

}
,

Qh =
{
ph ∈ C0(Ω) : ph

∣∣
Tj
∈ P1(Tj), ∀ Tj ∈ Ωh

}
,

where P2(Tj) and P1(Tj) are polynomial spaces defined in the element Tj . Here, we define the finite element
space Vh for the velocity field as Vh = Vh×Vh. Hence, we formulate the finite element solutions to un(x) and
pn(x) as

un
h(x) =

Mu∑
j=1

Un
j ϕj(x), pnh(x) =

Mp∑
k=1

Pn
k ψk(x), (16)

where Mu and Mp are respectively, the number of velocity and pressure mesh points in Ωh. The functions Un
j

and Pn
k are the corresponding nodal values of un

h(x) and p
n
h(x), respectively. They are defined as Un

j = un
h(xj)

and Pn
k = pnh(yk) where {xj}Mu

j=1 and {yk}
Mp

k=1 are the set of velocity and pressure mesh points in Ωh, respectively,

so that Mp < Mu and {y1, . . . ,yMp
} ⊂ {x1, . . . ,xMu}. In (16), {ϕj}Mu

j=1 and {ψl}
Mp

k=1 are respectively, the set
of global nodal basis functions of the velocity and the pressure characterized by the property ϕi(xj) = δij and
ψi(yk) = δil with δ denoting the Kronecker symbol. Next, the discrete weak formulation of (14)-(15) reads:

Step 1: Solve for ũn+1
h ∈ V h, such that for all vh ∈ V h with vh|ΓD

= 0∫
Ωh

1

∆t
ũn+1
h · vhdx+

∫
Ωh

(un
h · ∇ũ

n+1
h ) · vhdx+

∫
Ωh

(ũn+1
h · ∇un

h) · vhdx+∫
Ωh

2ν(Dun
h)Dũn+1

h : Dvhdx =

∫
Ωh

pnh∇ · vhdx+

∫
Ωh

1

∆t
un
h · vhdx+

∫
Ωh

fn+1 · vhdx+∫
Ωh

(un
h · ∇un

h) · vhdx+

∫
ΓN

gn+1
N · vhdΓ. (17)

Step 2: Solve the Stokes problem for (un+1
h , pn+1

h ) ∈ V h×Qh, such that for all (vh, qh) ∈ V h×Qh with
vn+1
h |ΓD

= 0∫
Ωh

1

∆t
un+1
h · vhdx+

∫
Ωh

2ν(Dun
h)Dun+1

h : Dvhdx−
∫
Ωh

pn+1
h ∇ · vhdx =∫

Ωh

1

∆t
ũn+1
h · vhdx+

∫
Ωh

2ν(Dun
h)Dũn+1

h : Dvhdx+

∫
Ωh

pnh∇ · vhdx, (18)∫
Ωh

qh∇ · un+1
h dx = 0.
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Algorithm 1: Improved viscosity-splitting algorithm.

1 Initialization: set n = 0, u0 = u0, p
0 = p0 where p0 is an initial pressure, for example p0 = 0, a

tolerance ϵ and a maximum number of steps Nmax;
2 while n ≤ Nmax do

3 Compute ũn+1 through the equation (17);
4 Compute (un+1, pn+1) by solving (18);

5 Convergence test: compute, for example, the relative L2-error err =
∥un+1 − un∥
∥un+1∥

;

6 if err < ϵ then
7 Stop
8 else
9 pn ← pn+1;

10 un ← un+1;
11 Set n← n+ 1;
12 Go to 2

13 end

14 end

Using the finite element approximations in (16), the fully discrete formulation of (17) and (18) results in two
linear systems of the following form(

1

∆t
M+N(un) +K(un)

)
Ũ

n+1
= F̃(un), (19)

and 
1

∆t
M+K(un) BT

B 0


 Un+1

Pn+1

 =

 F(un)

0

 , (20)

respectively. Here, Un+1, Ũ
n+1

and Pn+1 are respectively, Mu-valued and Mp-valued vectors with unknowns

entries U j , Ũ j and Pk (j = 1, . . . ,Mu and k = 1, . . . ,Mp) as defined in (16), M, N, K are squared Mu ×Mu-
valued matrices and B is a squared Mp × Mp-valued matrix whose elements entries are respectively given
by

Mij =

∫
Ωh

ϕjϕidx, Nij =

∫
Ωh

(u · ∇ϕj) · ϕi +
∫
Ωh

(ϕj · ∇u) · ϕidx,

K(u)ij =

∫
Ωh

2ν(Du)Dϕj : Dϕidx, Bij = −
∫
Ωh

ψi∇ · ϕjdx.

In (19)-(20), F̃(un) and F(un) are Mu-valued vectors with entries

F̃ (u)j = (BPn)j +
1

∆t
(MUn)j +

∫
Ωh

fn+1ϕjdx+

∫
Ωh

(u · ∇u)ϕjdx+

∫
ΓN

gn+1
N ϕjdx,

and

F(u) =

(
1

∆t
M+K(u)

)
Ũ

n+1
+BPn.

Note that when ΓD = ∂Ω, (i.e. ΓN = ∅) and the Dirichlet boundary condition is imposed over all the domain
boundaries, the pressure solution becomes only unique up to an additional constant. To ensure the uniqueness of
this solution, we impose a zero-mean condition on the pressure i.e. p ∈ L2

0(Ω) which is numerically implemented
through the additional step as

pn+1
h ←− pn+1

h − 1

|Ωh|

∫
Ωh

pn+1
h dx. (21)
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For completeness, improved viscosity-splitting algorithm is detailed in Algorithm 1. Some remarks are in order:

i. The system matrix in (20) can be rewritten in a compact form as

A =

 A BT

B 0

 , (22)

with A =
1

∆t
M+K(un). Here, the A is symmetric but indefinite according to the Sylvester law of inertia

(see [29], p:403) whereas the matrix A is symmetric and positive definite. In this case, the well-established
Krylov subspace methods can be of good choice but preconditioning is essential since the saddle-point
systems arising from the finite element discretization are usually challenging to solve in practice.

ii. Although the system (20) is only symmetric and not positive definite, it is still possible, using a proper
block preconditioner and a non-standard inner product, to apply the efficient conjugate gradient method.
In fact, an interesting approach presented in [7] proposes a block triangular preconditioner of the form A−A0 0

B −I

 ,

whereA0 is a symmetric positive definite matrix such thatA−A0 is also symmetric positive definite. Note

that an obvious choice in our case would be A0 =
1

∆t
M . It was shown that the resulting preconditioned

matrix is also symmetric positive definite with respect to the inner product defined by

⟨x, y⟩H = xTHy, with H =

 A−A0 0

0 I

 .

In all our computations the resulting linear systems of algebraic equations (19) and (20) were solved using a
preconditioned conjugate gradient solver with incomplete Cholesky decomposition and a tolerance of 10−6 to
stop the iterations. For all considered flow regimes in the present work, the number of iterations to reach this
tolerance does not exceed 100 iterations.

4 Numerical results and examples

In this section, the accuracy of the improved viscosity-splitting method (IVS) introduced in the above sections
is assessed using test examples of unsteady generalized Newtonian fluid flow problems. In the first example,
quantitative results are examined for a three-dimensional problem with known analytical solutions. The second
and third examples examine the performance of the proposed method for solving the well-established benchmark
problems of lid-driven cavity flow and flow past a circular cylinder. Comparisons between results obtained using
both conventional and improved viscosity-splitting methods are presented for the considered problems.

4.1 Accuracy example

We first assess the numerical accuracy of the proposed improved viscosity-splitting method by solving the
equations (1)-(3) equipped with a manufactured exact solution. The equations are solved in a three-dimensional
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Figure 1: Convergence results obtained for the velocity solution in the accuracy example using the IVS method
with different fluid cases.
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Figure 2: Convergence results obtained for the pressure solution in the accuracy example using the IVS method
with different fluid cases.

domain Ω = [0, 1]× [0, 1]× [0, 1] subject to homogeneous Dirichlet-type boundary conditions and the function
f(t, x, y, z) is defined such that the analytical solution of (1)-(3) is defined as

u(t, x, y, z) =
(
x+ x2 + xy + xz, y + y2 − xy − 3yz,−2z + z2 − xz − 3yz

)⊤
sin(t),

(23)
p(t, x, y, z) = (x− y + z) sin(t).

The Carreau constitutive relation (3) is considered for this example with

ν∞ = 0.01, ν0 = 1, C0 = 1, λ = 1,

and different values of the power index m which has the key role in defining the rheology of fluids under study
(i.e. Newtonian, shear-thinning, shear-thickening). To quantify the convergence rates of the viscosity-splitting
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m = 0.75 m = 1 m = 1.25 m = 1.5

Figure 3: Streamlines and velocity magnitudes for the lid-driven cavity flow at Re = 100 (first row) and
Re = 5000 (second row) obtained using the IVS method with different values of the index m. Here, m = 0.75
(first column), m = 1 (second column), m = 1.25 (third column) and m = 1.5 (fourth column).

method, we compute the errors between the numerical and exact solutions using the following norm

∥e∥l2(X) =

(
∆t

N∑
n=0

∥en∥2X

)1/2

,

where X is taken as
(
L2(Ω)

)3
or
(
H1(Ω)

)3
for the velocity solution, and as L2(Ω) or H1(Ω) for the pressure

solution. Notice that, since the objective of this test example is to study the time convergence, it is desirable
to strongly reduce any spacial errors. Therefore, as P2-P1 finite elements are used for the spatial discretization,
the analytical solution (23) is selected to be quadratic polynomials for the velocity and a linear polynomial
for the pressure with respect to the space variable. In the framework of Newtonian fluid flows with constant
viscosity, this choice would completely remove the spatial component of the error even with a coarser mesh,
allowing a better evaluation of errors in the time integration procedure.

In all simulations presented for this example, a uniform structured finite element mesh with 10 × 10 × 10

elements is used, different time steps defined by ∆t =
0.1

2n
(with n = 1, . . . , 5) and the computed results are

presented at the final time t = 0.5. In Figure 1 we display the convergence plots obtained for the velocity
field using the considered norms and different values of the power index m in the constitutive law (3) namely
m = 0.25, 0.5, 0.75, 1, 1.25, 1.5 and 1.75 which correspond to different classes of the fluid under study. Those
convergence plots obtained for the pressure solution are illustrated in Figure 2. For the considered test cases, it
is clear that the method is first-order accurate for both the velocity and pressure approximations in the norms
L2(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)). In addition, this convergence order is also maintained regardless of the
fluid class i.e. Newtonian (m = 1), shear-thinning (m < 1) or shear-thickening (m > 1), but with a slight
change in the error magnitude depending on the value of the power index m. Here, the error decreases as the
fluid changes from the shear-thinning case (m < 1) to the shear-thickening case (m > 1). For these cases, we
obviously notice that the error plots keep the same trends and these results also demonstrate that the proposed
IVS method is suited for the numerical solution of unsteady generalized Newtonian fluid flow problems.
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Figure 4: Velocity profiles for u (left) and v (right) through the geometric center of the cavity for the lid-driven
cavity flow at Re = 100 obtained using the IVS method with different values of the index m.
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Figure 5: Velocity profiles for u (left) and v (right) through the geometric center of the cavity for the lid-driven
cavity flow at Re = 100 obtained using the VS and IVS methods with different values of the index m.

4.2 Lid-driven cavity flow

In this test example, we consider the canonical problem of a lid-driven cavity flow first studied in [1, 25, 8]
among others, and it is widely used in the literature to validate numerical methods for incompressible Navier-
Stokes equations mainly due to its simple setup and rich flow patterns. The problem consists of a squared
cavity of length L filled of a fluid satisfying the power law

µ(Du) = ν0 (|Du|)m−1 ,

where ν0 is the consistency parameter and m the dimensionless power index. Note that m > 1 corresponds to
a shear-thickening fluid and m < 1 represents a shear-thinning fluid, while m = 1 covers the Newtonian fluids.
The vertical and bottom walls of the cavity are fixed whereas the upper lid is driven at a constant velocity
u∞ in the horizontal direction. Hence, the Reynolds number which characterizes the overall flow behavior is

defined by Re = u2−m
∞ Lm

ν0
. In our simulations, we use L = 1, u∞ = 1, the Reynolds number is set to Re = 100
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Figure 6: Velocity profiles for u (left) and v (right) through the geometric center of the cavity for the lid-driven
cavity flow at Re = 5000 obtained using the VS and IVS methods with different values of the index m.

and Re = 5000 for which ν0 = u2−m
∞
Re is adjusted according to the selected power index m in order to reach

the Reynolds number of interest. The computational domain is discretized using an unstructured mesh of 904
elements with 549 pressure nodes and 2001 velocity nodes. The time step ∆t is fixed to 0.05 and steady-state
solutions are presented. In all results presented here, the time stepping was terminated when the relative
difference between two consecutive computed solutions in L2-norm is less than a tolerance of 10−6.

Table 1: Numbers of time steps in the VS and IVS methods for the lid-driven cavity flow at Re = 100 and
Re = 5000 with different values of the index m.

Re = 100 Re = 5000

m = 0.75 m = 1 m = 1.25 m = 1.5 m = 0.75 m = 1 m = 1.25 m = 1.5

VS 177 171 120 97 32754 23667 15428 14173

IVS 213 202 129 99 46122 43384 30390 24318

We first consider the case with Re = 100 and Re = 5000 using different values of the power index m, namely
m = 0.25, 0.75, 1, 1.25, 1.5 and 1.75. In Figure 3 we display the streamlines obtained using the proposed IVS
method for m = 0.75, 1, 1.25 and 1.5. Notice that the colors in these figures refer to the velocity magnitude for
each flow regime. The obtained results exhibit a clear view of the overall flow patterns and the effects of the
power index on the structures of steady recirculating eddies in the cavity. In addition to the primary center
vortex, a pair of counter-rotating eddies of a much smaller strength are developed in the lower corners of the
cavity. It is also noticeable that the size of these eddies increases as the power index m increases for a fixed
Reynolds number. Here, the streamlines in Figure 3 exhibit the typical behavior of the lid-driven cavity flow
influenced by the Reynolds number as we can clearly observe the formation of a series of secondary vortices
(see left and right bottom corners of the cavity) at Re = 100 in addition to the third secondary vortex (see left
top corner of the cavity) and the tertiary vortices (see left and right bottom corners of the cavity) emerging
as the Reynolds number increases to Re = 5000. Notice that, when it comes to the non-Newtonian case, the
usual behavior may be derailed under the effect of the power index m. For example at Re = 5000 and as m
increases, the vortex at the left top corner shrinks while the tertiary vortices at left and right bottom corners
become bigger and push inward the secondary vortices located at the bottom, the size of which gets enlarged
as well. The effect of the power index m is further illustrated locally by the velocity profiles along the vertical
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and horizontal centerlines in Figure 4. It is clear that, for the same fixed Reynolds number, the shear-thinning
fluids (with m < 1) are exhibiting a less larger and more sharper velocity profiles than the dilatant fluids (with
m > 1), demonstrating a greater reaction towards changes in the shear-rate stresses near the walls, which is
compatible with their physical features.

Next, we compare the results obtained using the proposed IVS method and those obtained using the
conventional VS method. To this end, we illustrate in Figure 5 the velocity profiles along the vertical and
horizontal centerlines obtained using the IVS and VS methods at Re = 100 with m = 0.5, 1 and 1.5. Those
results obtained using the IVS and VS methods at Re = 5000 with m = 0.75, 1 and 1.25 are presented in Figure
6. For comparison reasons, we also include in these figures the well-established results from the literature [25]
for Re = 100 and Re = 5000 with m = 1, [8] for Re = 100 with m = 0.5 and m = 1.5, and [1] for Re = 5000
with m = 0.75 and m = 1.25. As expected, the velocity profiles change from curved at the low value of
Re = 100 to linear at the high value Re = 5000. Clearly, the velocity profiles obtained using the proposed
IVS method are more accurate than those obtained using the conventional VS method and agree well with the
results published in the literature for the considered Reynolds numbers and power indices. This confirms the
better performance achieved by the proposed IVS method compared to the standard VS method when solving
this class of lid-driven cavity flow. For the considered fluid regimes, it can be clearly seen that the complicated
flow structures are well captured by the proposed IVS method. In fact, the computed solutions reveal the
physics well in this test example for unsteady generalized Newtonian fluid flow problems.

As a final remark for this test example, we comment on the number of time steps required in the VS and
IVS methods to reach the steady-state solutions for the considered Reynolds numbers and power indices. In
Table 1 we summarize the number of time steps required for each method solving the lid-driven cavity flow
at Re = 100 and Re = 5000 using different values of the power index m, namely m = 0.75, 1, 1.25 and
1.5. It is clear that for a fixed Reynolds number, the number of time steps decreases as the power index m
increases in both methods but the proposed IVS method requires a larger number of steps than its conventional
counterpart for all selected Reynolds numbers. However, given the far better quality of the solution computed
using the IVS method as shown previously, this lower number of time steps required by the VS method is due
to its incapability to provide improved approximations throughout the time integration procedure. In fact,
given a severe flow situation (such as Re = 5000) where the steady-state solutions can not be reached easily,
the VS method just stagnates after a certain number of steps and its future approximations will be so close
to the actual ones announcing its convergence, even if the flow is still developing. On the contrary, the IVS
method keeps improving its approximations until the expected steady-state solutions are reached. This is also
supported by the fact that at Re = 100 which corresponds to a relatively smooth flow compared to the flow
at Re = 5000), the difference in the number of time steps is mediocre. It should also be pointed out that
most of the computational effort goes into solving the linear systems in the IVS method. Therefore, reducing
the computational cost in the viscosity-splitting method can be achieved by implementing a more efficient
preconditioned iterative solver for these linear systems. For instance, multigrid techniques are well known to
be among most efficient methods for solving linear systems and can therefore be the suitable tools to increase
the efficiency of the viscosity-splitting method.

4.3 Flow past a circular cylinder

In this example we consider a more complex problem which involves the flow of a viscous fluid past a circular
cylinder. This is a well established flow benchmark widely used in the literature to assess numerical methods in
computational fluid dynamics, see for instance [39, 12, 13, 14, 31]. In our computations for this example we used
the same flow configuration and the same boundary conditions as detailed in the previous references. Thus,
the computational domain consists of a squared geometry of length L = 100D containing a circular cylinder of
diameter D = 1 positioned at the point (19.5, 50)⊤ of the Cartesian coordinates as shown in Figure 7. Using
the boundary notation defined in Figure 7, Dirichlet-type boundary conditions are used for the velocity on ΓD,
a homogeneous Neumann condition is imposed at the outlet boundary ΓN , and a no-slip condition is enforced
at the cylinder boundary ΓC as

u = (u∞, 0)
⊤ , on ΓD, u = 0, on ΓC and σ(u)n = 0, on ΓN .
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Figure 7: Configuration of the domain for the flow problem past a circular cylinder.

In this example, the Carreau-Yoshida viscosity model (3) is used here with C0 = 1 as

ν(Du) = ν∞ + (ν0 − ν∞)
(
1 + λ2∥Du∥2

)m−1
2 ,

where ν0 = 0.1 and ν∞ = 0.001. Hence, the Reynolds number Re and the Carreau number CU characterizing
the flow are defined by

Re =
ρDu∞
ν0

, CU =
λu∞
D

,

where u∞ = 1 is the maximum inflow velocity, and ρ = 1kg/m3 is the fluid density. We perform numerical
simulations for the Reynolds number Re = 10 with the Carreau numbers CU = 10 and CU = 20 using a
power index m ranging from 0.1 to 1.9 which covers a wide spectrum of non-Newtonian fluid flows. Based
on a mesh convergence study not reported here for brevity, an unstructured triangular mesh of 14007 mixed
elements with 7105 pressure nodes and 28138 velocity nodes is used in our simulations as it offers a compromise
between accuracy and efficiency in the IVS method. Using the same procedure as in the previous test example,
the time step ∆t = 0.1 and steady-state solutions are presented. Note that thanks to the availability of well
documented results, this example enables us to precisely evaluate the proposed IVS method based on local
physical quantities of interest like the length of the recirculation region measured along the centerline axis
between the cylinder back base point and the stagnation point downstream.

Figure 8, Figure 9 and Figure 10 depict the streamlines and velocity magnitudes obtained using the selected
Reynolds number Re = 10 and the Carreau numbers CU = 10 with CU = 20 for the shear-thinning (m < 1),
Newtonian (m = 1) and shear-thickening (m > 1) fluids, respectively. For a better insight, only the focused area
[18, 28]× [47, 52] of the computational domain is displayed in these figures to clearly illustrate the flow features
around the cylinder and the region behind it. As it can be seen from these figures, the flow reaches a steady
state with a clear symmetry with respect to the horizontal centerline for all selected fluid regimes. From the
same figures we can also observe the variation in the size of wake zones under the influence of the power index
m and the Carreau number CU . For example, at the same Reynolds and Carreau numbers, the recirculation
region becomes longer as the power index m decreases, with a more important horizontal expansion in the case
of shear-thinning fluids. Indeed, for the Newtonian case (with m = 1) at the low Reynolds number, the fluid
near the forward half of the cylinder gets accelerated until it reaches the top and bottom of the cylinder, then
its velocity begins to drop and the pressure starts to increase. This rise in the pressure creates an adverse
pressure gradient acting on the fluid within the boundary layer where more viscous effects are experienced (due
to the no-slip boundary condition) and more energy dissipation occurs yielding the inability of the fluid near
the wall to resist this adverse pressure force. Consequently, the flow is completely reversed and confined in a

15



CU = 10 CU = 20

m
=

0.
2

m
=

0.
4

m
=

0.
6

m
=

0.
8

Figure 8: Streamlines and velocity magnitudes for the flow past a circular cylinder at Carreau numbers CU = 10
(first column) and CU = 20 (second column) obtained using the IVS method for shear-thinning fluids with
m = 0.2 (first row), m = 0.4 (second row), m = 0.6 (third row) and m = 0.8 (fourth row).

pair of axisymmetric eddies in which the fluid is separated from the main flow and it recirculates with a lower
velocity.

As the power index m decreases below 1, and due to the shear-thinning effects, the viscosity drops con-
siderably around the recirculation zone since the shear rates in this region are large (streamlines are closer to
each other in this region). Consequently, according to [39], a reduction in the shear stress occurs which in
turn decreases the entrainment of fluids from the main stream to the wake allowing the wake bubble to get
stretched and to become wider as observed in the streamlines shown in Figure 8. On the other hand, when
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Figure 9: Streamlines and velocity magnitudes for the flow past a circular cylinder at Carreau numbers CU = 10
(first column) and CU = 20 (second column) obtained using the IVS method for Newtonian fluids with m = 1.

Table 2: Wake lengths for the flow past a circular cylinder at Carreau numbers CU = 10 and CU = 20 obtained
for shear-thickening fluids with different values of the power index m.

m = 1.8 m = 1.6 m = 1.4 m = 1.2 m = 1 m = 0.8 m = 0.6 m = 0.4 m = 0.2

CU = 10 0 0 0.07309 0.135 0.2433 0.4387 0.8047 1.5566 3.1753

CU = 20 0 0 0 0.08 0.2433 0.5768 1.2684 2.8044 6.066

the shear-thickening effects take place as m increases above 1, an adverse behavior occurs since larger shear
rates outside the recirculation zone are expected to increase the viscosity and it causes more energy dissipation
and shear stresses. Therefore, more fluid is entrained into the wake and the bubble length shrinks. These
observations are in good agreement with the results presented in [39, 49] among others.

It is also clear from the obtained results that, for the same power index m, the shear-thinning fluids create
a wider recirculation zone when the Carreau number increases from CU = 10 to CU = 20, while the shear-
thickening flows have comparable wake bubble length for both selected Carreau numbers as it is confirmed by
the precise bubble lengths reported in Table 2. Note that the expected zero recirculation lengths in Table 2
are explained by the fact that the apparition of a wake region for each Carreau number CU and power index
m depends on a critical value of the Reynolds number below of which there is no wake, see [49] for more
detailed discussions. These observations are also in good agreement with the literature, see for example [52]
for Newtonian fluids, [39, 49] for non-Newtonian fluids confirming that the proposed IVS method accurately
captures the overall behavior of this class of generalized Newtonian fluid flows. To further demonstrate these
effects we report in Table 3 the wake lengths obtained for shear-thinning fluids with different values of the
power index m. For comparison, we also include results reported in [18] along with the relative difference
between the two calculated wake lengths. It is clear that for all considered Carreau numbers and power indices,
this difference does not exceed 2.75% which is good knowing that results reported in [18] used a very large
domain to keep the boundary effects far away from the cylinder which is not the case in the proposed IVS
method. The presented results, for this flow example, clearly demonstrate the performance of the IVS method
and its ability to capture flow structures independently of the Carreau numbers and power indices which cover
shear-thinning and shear thickening fluids. This also confirms that the proposed IVS method is very attractive
since the computed flow solutions remain stable and accurate for generalized Newtonian fluid flow problems
with natural boundary conditions.

4.4 Unsteady flow past two cylinders in tandem

Our final test example consists of an unsteady flow problem for a non-Newtonian fluid around an arrangement
of two circular cylinders of diameter D one behind the other (in tandem). This class of flow problems past
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Figure 10: Streamlines and velocity magnitudes for the flow past a circular cylinder at Carreau numbers
CU = 10 (first column) and CU = 20 (second column) obtained using the IVS method for shear-thickening
fluids with m = 1.2 (first row), m = 1.4 (second row), m = 1.6 (third row) and m = 1.8 (fourth row).

arrangements of more than one cylinder covers many engineering applications such as wing trusts in aeronautics,
radar masts, vibrations in hydranautics, vibrations of twin bundle conductor transmission lines in electrical
engineering, vibrations in heat-exchangers in mechanical engineering among others. This flow configuration is
also well studied and documented in the Newtonian case (see for example [60, 59]) however, it is less explored
in the non-Newtonian case and only few published works can be found in the literature (see for example
[51, 47, 46]). Here, we use the same computational domain as in the previous example, and a second cylinder
of same diameter D = 1 is placed at a distance of 3D behind the first cylinder as shown in Figure 11. The flow
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Table 3: Comparison of wake lengths for the flow past a circular cylinder at Carreau numbers CU = 10 and
CU = 20 obtained for shear-thinning fluids with different values of the power index m.

CU = 10 CU = 20

m Reference [18] IVS Error (in %) Reference [18] IVS Error (in %)

1 0.2376 0.2433 2.40 0.2376 0.2433 2.40

0.9 0.3205 0.3293 2.75 0.3710 0.3804 2.53

0.8 0.4298 0.4387 2.07 0.5639 0.5768 2.29

0.7 0.5816 0.5942 2.17 0.8447 0.8576 1.53

0.6 0.7946 0.8047 1.27 1.2662 1.2684 0.17

0.5 1.1031 1.1118 0.79 1.9077 1.8872 1.07

0.4 1.5642 1.5566 0.49 2.8709 2.8044 2.32

L = 100D

L

(0, 0)

D
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ΓD ΓN

50D

19.5D

Figure 11: Configuration of the domain for the flow problem past two circular cylinders in tandem.

enters from the left with a velocity u∞ = 1 and passes around the two cylinders on which the no-slip boundary
conditions are imposed while outflow conditions are maintained on the domain outlet. On the top and bottom
walls of the domain we use homogeneous Dirichlet boundary conditions. Note that the flow behavior in this
configuration is affected by several parameters such as the Reynolds number Re, the gap between the two
cylinders, the blockage ratio (D/L) and the non-Newtonian nature of the fluid which is assumed to follow the
power-law (2) in our simulations. For this flow problem, the Reynolds number is defined by

Re =
ρu2−m

∞ Dm

C
.

In this unsteady flow problem, we are interested to study effects of the non-Newtonian nature of the fluid
(shear-thinning or shear-thickening) represented by its power-index m on the flow patterns obtained using the
proposed IVS method. Therefore, we fix the distance between the two cylinders to 3D, the blockage ratio to
0.01 so the wall effects are negligible, and set Re = 200 which is high enough to enter the unsteady regime for
the power-indexes m ∈ {0.4, 0.6, 1, 1.2, 1.4, 1.6, 1.8} considered in our computations. Notice that for a detailed
study on critical Reynolds numbers for this class of flow problems we refer to [51] and further references are
therein.

In our simulations, the computational domain is discretized using an unstructured mesh consisting of 9204
mixed elements with 4695 pressure nodes and 18595 velocity nodes. The time step ∆t is fixed to 0.1 and
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Figure 12: Streamlines and velocity magnitudes for the unsteady flow past two circular cylinders at t = 10
(first row), t = 40 (second row) and t = 200 (third row) obtained using the IVS method with m = 0.4 (first
column), m = 0.6 (second column), m = 0.8 (third column), m = 1 (fourth column), m = 1.4 (fifth column)
and m = 1.6 (sixth column).
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Figure 13: Viscosity distribution over the mainstream region for the unsteady flow past two circular cylinders
at t = 200 using m = 0.4 (first row) and m = 1.6 (second row).
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Figure 14: Velocity profiles along the vertical line located at 5D from the upstream cylinder center for the
unsteady flow past two circular cylinders at t = 10 (first row) and t = 200 (second row).

numerical solutions obtained for velocity fields and streamlines are displayed at three different instants. Figure
12 depicts the streamlines and velocity magnitudes for Re = 200 and different values of the power-index m
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Table 4: Maximum and minimum of the drag coefficients CD1 and CD2 on both cylinders for the unsteady flow
past two circular cylinders obtained over the last 500 timesteps using the IVS and monolithic methods with
different values of the power-index m.

CD1 CD2

min max min max

m = 0.4
IVS 0.7841 0.7996 -0.2039 -0.1921

Monolithic 0.7769 0.7957 -0.2140 -0.2047

m = 0.6
IVS 0.8460 0.8582 -0.2043 -0.1904

Monolithic 0.8255 0.8495 -0.2103 -0.1838

m = 0.8
IVS 0.9067 0.9227 -0.1935 -0.1662

Monolithic 0.9065 0.9183 -0.1944 -0.1794

m = 1
IVS 0.9707 1.0048 -0.1729 -0.1523

Monolithic 0.9830 0.9997 -0.1861 -0.1645

m = 1.2
IVS 1.0391 1.0582 -0.1646 -0.1431

Monolithic 1.0310 1.0476 -0.1706 -0.1507

m = 1.4
IVS 1.0951 1.1103 -0.1643 -0.1371

Monolithic 1.0895 1.1053 -0.1620 -0.1350

m = 1.6
IVS 1.1476 1.1545 -0.1541 -0.1176

Monolithic 1.1515 1.1600 -0.1604 -0.1316

m = 1.8
IVS 1.2003 1.2209 -0.1605 -0.1168

Monolithic 1.2070 1.2192 -0.1561 -0.1317

at t = 10, 40 and 200. It is clear that for all considered values of m, the flow develops an unsteady behavior
as instabilities represented by trail oscillations and even vortex shedding for m ≥ 1 take place behind the
downstream cylinder in addition to a pair of non-symmetric rotating eddies behind the upstream cylinder.
Note that in the Newtonian case, it is already known (see for instance [59]) that with a gape of 3D at low
Reynolds numbers, no vortex shedding arises between the two cylinders, and the downstream cylinder is
completely influenced by the wake of the first cylinder. This seems to be also valid for shear-thinning and shear
thickening fluids as clearly shown in Figure 12. In fact, for all the flow regimes studied here, the detached
free-shear layers from the upstream cylinder do not have enough space to converge behind it, so they reattach
on the downstream cylinder whose wake exhibits a more complex behavior at Re = 200. Furthermore, effects of
the power-index on the flow development especially behind the second cylinder can clearly be observed in this
figure. For low values of the power-index m < 1, the trail oscillations are moderate with no vortex shedding
yet. These oscillations become intensified as the power-index m goes further towards the Newtonian and shear-
thickening cases where the beginning of vortex shedding becomes recognizable. This can be explained by the
viscosity distribution for both shear-thinning and shear-thickening cases as displayed in Figure 13 for m = 0.4
and m = 1.6. In absence of wall effects (since these walls are positioned far away from the cylinders) it can
be seen that for shear-thinning fluids, the mainstream is surrounded by wide areas of greater viscosity which
enhances the viscous effects that in turn, tends to stabilize the flow due to the energy dissipation. On the other
hand, the shear-thickening case shows only a concentrated region of important viscosity near the cylinders,
while low viscosity is detected in most of the domain letting inertial forces to dominate and tend to push the
flow towards instabilities.

Next, we turn our attention to the results obtained using the IVS method more closely by looking at the
local physical quantities such as the drag coefficient and profiles of the vertical velocity which are of great
interest in this class of flow simulations. For comparison, the same computations have been conducted by
a monolithic method based on the mixed formulation of the original problem using the P2-P1 finite element
approximation, see for example [26]. Note that the purpose here is not to evaluate the computational costs
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of the two approaches as it is already known that a splitting method scores much better in CPU times when
the problem under study is reasonably large. The purpose here is rather to assess the accuracy of the IVS
method and its ability to overcome the associated splitting errors when applied to severe physical situations.
For this reason, the monolithic approach being free from any splitting errors would be a significant reference
for the evaluation. Table 4 summarizes the maximum and minimum values of the drag coefficients CD1 and
CD2 on the two cylinders over the last 500 timesteps for both the IVS and monolithic methods, whereas Figure
14 presents the velocity profiles along the vertical line located at 5D from the upstream cylinder center at
different instants. From Table 4 we can notice that the extremal values of the drag coefficients computed
by both methods are close especially on the first cylinder with less than 3% of relative error, and around
11% error on the second cylinder when m = 1.8, bearing in mind that at Re = 200 and m = 1.8 the flow
downstream the second cylinder undergoes more severe perturbations than the other cases, due to enhanced
shear-thickening and vortex shedding as shown in Figure 12. Moreover, we notice from the same table that the
drag is significantly more important on the upstream cylinder since it is facing the free stream. On the other
hand, the second cylinder is submerged in a low pressure area behind the first cylinder while the pressure is
greater on the back side. This difference in the adverse pressure results in a negative drag coefficient on the
downstream cylinder in such a way that it feels being pushed against the flow direction which also explain the
negative values appearing in Table 4 for CD2. This qualitative behavior of the dag coefficient is in agreement
with similar results published in the literature for the Newtonian case and it seems to be also valid for both
shear-thinning and shear-thickening cases considered in this study. Under the selected flow conditions, the
influence of the power-index is noticeable as the drag felt by both cylinders increases when m decreases for
both shear-thinning and shear-thickening cases, with the increase being greater on the first cylinder. In addition,
profiles of the vertical velocity in Figure 14 exhibit that the results obtained using the IVS method are in good
agreement with those results obtained using the monolithic method and the both profiles, in all considered
cases, are almost superposed except a small difference after the flow development near the middle axis that
needed to be zoomed in to be visible. It should be noted that this small discrepancy is also observed in the
Newtonian case, mainly due to the unsteady characteristics of the flow at Re = 200, and it is more intense as
one goes towards shear-thickening cases for which the flow is more agitated as explained above. It is believed
that this negligible discrepancy in the computed results can be considerably reduced using a finer mesh in the
simulations. In conclusion, the comparison demonstrates overall that the IVS method is able to resolve, with
satisfactory accuracy, the unsteady flow development even in agitated zones such as the downstream wake at
a considerable Reynolds number.

5 Conclusions

In the present work we have presented an improved viscosity-splitting method for solving the generalized New-
tonian fluids governed by generic models, which have sufficient flexibility to cover a wide variety of experimental
viscosity versus shear-rate curves. The method consists of decoupling convective effects from the incompress-
ibility constraint while keeping a diffusion term in the last step allowing to enforce consistent boundary con-
ditions. The proposed method has the advantage of providing consistent pressure approximations without
any boundary-layer drawbacks as those appeared in the standard projection or fractional-step methods. A
pressure-correction strategy has also been introduced in this method to enhance its accuracy and a full algo-
rithmic implementation of the method accounting for both Dirichlet and Neumann boundary conditions has
been investigated. To assess the numerical performance of the proposed viscosity-splitting algorithm, we have
presented computational results for an example with manufactured analytical solution and for the benchmark
problems of lid-driven cavity flow and flow past a circular cylinder. Comparisons to the conventional viscosity-
splitting algorithm have also been carried out in this study for the considered flow problems. The numerical
results for the benchmark problems of lid-driven cavity flow and flow past a circular cylinder agree very well
with other results from the literature. We have also examined the performance of the method for an unsteady
flow around an arrangement of two cylinders in tandem and the comparisons with results obtained using the
standard monolithic method reveal good general agreement. Future work will focus on the implementation
of these techniques for thermal generalized Newtonian fluids. Furthermore, developing highly efficient solvers
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for the associated linear systems in order to resolve issues related to the conditioning can further enhance the
improved viscosity-splitting method. Extension of this method to the second-order accuracy using for example
the second-order implicit backward differentiation formula is also part of our future work.
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