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Abstract—With renewable energy sources (RESs) integrated
into modern power systems, energy consumers participate in the
energy market making the entire network more complex and
uncertain. Therefore, adaptive strategies are needed to address
the various uncertainties associated with the energy network to
maintain reliability and achieve sustainability. In this research
paper, we propose an integrated two-fold approach that combines
competitive market mechanisms with cooperative strategies to
enhance reliability and resilience in distribution networks un-
der uncertainty. In the normal operational stage, we adopt a
competitive approach wherein an optimal price is determined to
meet the required consumer demand, facilitating energy sharing
among areas and minimising reliance on the grid, thereby reducing
carbon emissions associated with conventional energy generation.
To detect and identify an uncertain event within the network,
a heuristic algorithm is proposed, which determines the hidden
inter-dependencies among the different network input parameters.
Finally, to mitigate the impact of these identified uncertainties, we
introduce a cooperative approach wherein all areas leverage the
battery storage facilities to ensure continuity of energy supply and
minimise overall losses. During an uncertain event, a maximum
reduction of 97% is observed in the carbon footprints for the
proposed scheme while maintaining the overall profit.

Index Terms—Bayesian analysis, cooperative strategy, distribu-
tion networks, reliability, renewable energy, sustainability

I. INTRODUCTION

With the advent of digitisation and urbanisation, greenhouse
gas (GHG) emissions are increasing leading to climate change,
impacting the physical environment, and life on this planet.
Therefore, there is an urgent need to reduce GHG emissions,
control global warming, and alleviate climate change. The
energy sector contributes about 34% of the global emissions,
wherein the contribution of UK’s energy sector is approxi-
mately 1% of the global emissions [1]. To achieve the global
net-zero emission targets in the energy sector by 2050, there is
a need for a transition from fossil fuel to green technologies
such as offshore wind, rooftop solar panels, and nuclear power.
The global growth in renewable energy capacity has almost
doubled in 2023 as compared to 2022 reaching above 500
gigawatts with solar panels alone accounting for one-third of
the additions [2]. Distributed energy resources (DERs), such
as solar panels, wind turbines, and battery storage systems,
enable localised energy generation, reduce transmission losses,
and enhance energy security by mitigating dependence on

centralised power plants. With the increasing penetration of
DERs, the traditional uni-directional power system is becoming
bi-directional. The consumers are participating in the energy
market by selling and purchasing energy from the power
grid, allowing a two-way flow of power [3]. This integration
into distribution networks (DNs) offers numerous advantages,
including enhanced grid resilience, improved energy efficiency,
and increased use of renewable energy sources (RESs), which
collectively contribute to reducing carbon emissions and achiev-
ing sustainability goals. However, the integration of DERs
also presents several challenges and uncertainties. These in-
clude technical issues such as maintaining grid stability and
reliability amidst intermittent renewable energy outputs [4],
ensuring effective communication and control systems for real-
time coordination [5], [6], and addressing the complexities of
bidirectional power flows [7]. Researchers have employed ad-
vanced artificial intelligence methods to predict real-time power
generation in the energy networks [8]. However, sometimes
there are abnormal events or uncertainties in such networks
due to grid congestion, equipment failure, natural disasters,
overloading, or other environmental factors. If left unattended,
these could lead to cascading failures or outages resulting in
power system blackouts or interrupting the reliability of supply
[9]. One of the biggest blackouts occurred in Bangladesh in
Oct. 2022 due to the 3% rise in the peak energy demand from
the forecasted value, which resulted in the grid failure [10].

Motivation Scenario: To analyse the impact of uncertainties
associated with the integration of DERs in DNs, we simulated
a small residential area with around 100 households in London,
UK based on the smart meter energy consumption data1. Given
the area’s climatic conditions, wind turbines were considered
as the primary source of renewable energy generation. We
synthetically injected an uncertain event where wind generation
drops to zero from time t=80 hours to t=90 hours into the
system as shown in Fig. 1(a). It can be inferred from Fig.
1(b) that when wind power generation becomes zero,there is
an increased dependence on grid purchases to fulfill the load
demand (Fig. 1(d)). Since the majority of the power generation
from the grid comes from non-renewable sources of energy, the
increased grid dependence would increase the corresponding
carbon footprints. This case study analysed the impact of

1https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
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uncertainty on carbon emissions for a small residential scenario,
and scaling this to a regional or national level further stresses
the urgency of the issue [11]. This underscores the critical
need to address the challenges posed by such uncertainties to
reduce carbon emissions and maintain a reliable power supply.
Thus, there is a need to develop robust strategies for detecting
and mitigating uncertainties in DER-integrated DNs to ensure
the reliability of power supply and simultaneously reduce the
dependence on fossil-fuel-generated energy.

Fig. 1: Increase in grid purchase triggered due to uncertainty
in power generation

The traditional deterministic concepts used in power system
operation and planning do not consider the uncertainties in
DNs due to the inherent variability of RESs, unpredictable
consumer demands, and data quality issues [12]. These models
cannot handle the complexities of DER integration, regula-
tory changes, and cybersecurity risks [6], [13]. The existing
stochastic methods such as probabilistic approaches, possibilis-
tic approaches, hybrid approaches, information gap decision
theory, and robust optimisation, have been well explored in
the literature [14]–[16]. The main purpose of these methods
was to measure the impact of uncertain input parameters
on the system output parameters based on historical data.
However, prior knowledge of an uncertain input’s pre-defined
probability distribution function is required in these methods.
To overcome this limitation, a data-driven two-stage stochastic
optimisation algorithm was proposed in [17] to model the
uncertainty in DN output parameters. In this article, the authors
used the decomposition method for the parallel computation
of uncertain parameters to reduce the dependence on prior
knowledge for both stages. An optimisation algorithm based
on the concept of Conditional Value at Risk that models the
uncertainty in demand and energy prices was proposed in
[18] to enhance renewable energy generation while minimis-
ing operational costs. All these methods have considered no
correlation among the different uncertain parameters, which
is not feasible in a complex power system network, where
parameters are correlated to each other. Therefore, there is
a need to identify the hidden inter-dependencies among the
hidden uncertain parameters in the network, which can be done
using the Bayesian network approach. The authors in [19]
proposed a physics-informed probabilistic graph convolution

network to predict the voltages within the DNs integrated
with solar panels and electric vehicles. The authors used the
Bayesian interface to quantify the uncertainty in the network
topology at the planning stage. Despite the accurate predictions,
real-time (or operational) uncertainties can impact the power
system operation. So, further research is required to uncover
the potential of addressing these uncertainties. The Bayesian
network’s ability to model complex inter-dependencies and
update beliefs based on new data makes it advantageous for
real-time uncertainty detection and management. In [20], an
optimal strategy for mitigating voltage imbalances in DERs
was proposed through the joint allocation of energy storage
systems. This approach aimed to stabilise voltage profiles by
strategically deploying storage devices. Similarly, [21] explored
a mitigation strategy designed to address congestion in multi-
operator flexible market systems for energy trading. However,
both studies did not address the impact of uncertainty on carbon
emissions associated with these systems. The potential for
reducing carbon footprints through these uncertainty mitigation
strategies remains unexplored.

Addressing the above mentioned issues, our research pro-
poses a two-fold strategy to mitigate the impact of uncertainties
in the DNs. This two-fold approach employs the concept of
competition and cooperation among the neighbouring areas
before, during, and after the uncertain event. The entire system
is segmented into distinct stages, as shown in Fig. 2: data col-
lection, energy modeling, uncertainty detection, and mitigation.

Fig. 2: Research overview

The DERs are integrated into the energy model to compute
the total power generation and load balance in the network
at time t. Upon realising an uncertain event, a heuristic al-
gorithm is employed to identify its type. (Our preliminary
work for uncertainty identification has been presented in [22].)
This information is then processed by a cooperative algorithm
designed to mitigate the impact of the identified uncertainty
on the system. A detailed description of the work carried out
in these stages is given in Section III. Considering the real-
time problem described above, the major contributions of this
research are as follows.
• We propose carbon-aware optimization strategy for the

energy network, utilising a competitive approach to de-
termine optimal pricing during normal operations to min-
imise carbon emissions across the distribution network.

• We propose an algorithm to detect and identify uncertain
events within the energy network by establishing hid-
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den dependencies among the uncertain parameters using
Bayesian networks which is further used to mitigate the
impact of uncertainty.

• We propose a novel cooperative strategy for the localised
areas mitigating the impacts of uncertainty by preventing
the escalation of local problems into entire network dis-
ruptions, ensuring stable and reliable energy distribution.

The rest of the paper is organised as follows. Section II
illustrates the considered system model for DN integrated with
DERs. Section III discusses the proposed methods in detail,
while the results are highlighted in Section IV. The paper is
finally concluded in Section V.

II. SYSTEM MODEL

Fig. 3 illustrates the structure of the power system enabling
a two-way flow of power, featuring a power generating sources
transmitting energy through the transmission network to the DN
as well as allowing consumers to both sell excess energy back
to the grid and purchase energy when needed. Within the DN,
DERs are integrated and connected to consumers, facilitating
decentralised energy generation and consumption (modeled as
per IEEE Std 1547-2018 [23]). Distribution system operators
(DSOs) are responsible for ensuring a reliable power system
from the transmission network to the consumers. In this study,
as illustrated in Fig. 3, we consider two types of DSOs: the
regional DSO (DSO-RC) and the global DSO (DSO-GC). The
DSO-RC is responsible for managing energy requests from
the local communities (LCs) and maintaining power reliability
within small regional areas (A). The DSO-GC, on the other
hand, oversees the overall management, operation, and control
of the entire DN, handling all incoming and outgoing requests
from the DSO-RC to ensure seamless network operations. The

Fig. 3: System model with DERs integrated DN

total renewable energy generation P iGR(t) at any time t in ith

area can be calculated as:

P iGR(t) = P ipv(t) + P iw(t) (1)

where P ipv(t) and P iw(t) are the solar and wind power genera-
tions of ith area at time t.

The solar power P ipv(t) generated by each solar panel within
an area at time t is calculated using Eq. (2) [24],

P ipv(t) = N i
pvPpeakDpv

[
GiT (t)

GSTC

]
[1− τp(T

i
C(t)− TC,STC)]

(2)
where Ppeak represents the peak output power of the PV
module, Dpv denotes the derating factor, τp is the power
temperature coefficient, GiT (t) and GSTC represent incident
solar radiance on the PV module at time t and under standard
testing conditions, respectively. Additionally, T iC(t) stands for
the PV panel temperature at time t, TC,STC represents PV
cell temperature under standard testing conditions, and N i

pv

represents the total number of panels connected in series and
parallel. The optimal location, capacity, and number of DERs in
a particular area have been calculated beforehand using multi-
integer linear programming [25].

Similarly, the real-time wind power, P iw, generated by each
wind turbine within ith area at time t is expressed by [26]:

P iw(t) =


0, vi(t) ≤ vci or v

i(t) ≥ vco

N i
wP

r
w(

vi(t)−vci
vr−vci ), vci ≤ vi(t) ≤ vr

N i
wP

r
w, vr ≤ vi(t) ≤ vco

(3)
where vi(t) denotes wind speed at time t, vci and vco represent
the cut-in and cut-off wind speeds, respectively, vr represents
rated wind speed, P rw is the rated wind turbine power, and N i

w

depicts the number of wind turbines installed in ith area.
The battery energy storage system (BESS) plays an important

role in managing the consumer energy demand when the power
generated from the DERs is not sufficient. The charging and
discharging of the battery power for ith area, P ib , can be
calculated as [27]:

P ib (t) = P ib (t−1)−

{
ηch(P

i
load(t)−

P i
GR(t)
ηc

) ; charging

ηdch(
P i

load(t)
ηc

− P iGR(t)) ; discharging
(4)

where P iload is the load demand of ith area, ηc is the converter
efficiency, ηch and ηdch are the battery charging and discharging
efficiencies, respectively.

The operational strategy used to simulate each area’s energy
system dynamics is indicated in Algorithm 1. The expected
power generation, P expGR (t), for each area and at time interval
t is calculated using the Eq. (1) and is compared with its
real-time value, P rtGR(t). If these values match, then a carbon-
aware energy scheduling algorithm is run, that manages the
load demand of an area by using renewable energy generation
or charging/discharging the battery. The excess generation from
the neighboring area is sold to the deficient areas based on the
price calculated using the competitive game model described
in Section III-A. If the real-time and expected values do
not match, then an uncertainty detection and identification
algorithm (Algorithm 2) is triggered as described in Section
III-B. If there is an uncertainty present in the system, then it is
mitigated using the uncertainty mitigation algorithm (Algorithm
3) detailed in Section III-C.
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Algorithm 1: Distribution Network System Operation
Input: Area Request: i ∈ A, i = 1, 2, . . . , n
Output: Profit, π

1 while (i ̸= NULL) do
2 Compute: P exp

GR , P rt
GR;

3 if (P exp
GR ≃ P

rt
GR) then

4 Execute: Carbon-aware energy scheduling;
5 if (P i

GR(t) > P i
load(t)) then

6 if (SOCi(t) < SOCmax(t)) then
7 Alert: → CHARGE BATTERY;
8 end
9 else

10 Sell Energy → Competitive Theory Approach ▷
Section: III-A;

11 end
12 end
13 else
14 if (SOCi(t) > SOCi

min) then
15 Battery Status (D) → DISCHARGED;
16 end
17 else
18 Use Competitive Theory Approach ▷ Section: III-A
19 end
20 end
21 end
22 else
23 Call Function: → F = UDI(i) ▷ Algorithm: Alg. 2;
24 if (F == Aδ) then
25 Call Function: → P = UM(i) ▷ Algorithm: Alg. 3
26 end
27 Update: P exp

G = P & Go to Step 3 ▷ Check the condition
28 end
29 end

The DN system model described in this section highlights
the fundamental principles and equations governing energy
distribution and generation within the network. To enhance the
robustness and reliability of the DN, we propose a novel scheme
that incorporates state transitions to manage the network’s
response to different phases of operation: healthy, fractured,
and recovered. This proposed scheme is illustrated through a
state transition diagram and detailed in the following section.

III. PROPOSED SCHEME

The proposed scheme focuses on the DN’s operation into
three distinct phases as shown in Fig. 4. These are 1) Healthy
(or Normal) Phase, 2) Fractured (or Uncertain) Phase, and 3)
Recovered (or Mitigation) Phase. These phases are based on
the behaviour of the system before and after the occurrence
of uncertain events, providing a comprehensive framework for
understanding and addressing system disruptions. The control

Fig. 4: Phase transition diagram

actions for the three phases leverage three novel approaches

designed to ensure the reliability of the DN. These approaches
not only maintain the network’s reliability but also optimise
regional profitability and minimise carbon emissions. In the
healthy phase, the system operates under optimal conditions
with efficient energy management and minimal carbon foot-
print. During the uncertain phase, an advanced Bayesian al-
gorithm is employed to detect and mitigate the impacts of
uncertainties, such as fluctuating renewable energy output or
unexpected load variations. Finally, in the recovery phase, the
system employs robust strategies to restore normal operations
while continuing to optimise economic and environmental
outcomes. A detailed description of the proposed approaches
used in the three phases is as follows.

A. Healthy / Normal Phase

This phase signifies the desired and stable operational mode,
where the power system is capable of meeting the consumer
load demand. During normal operation of the DNs, a com-
petitive energy-based demand-supply model is employed to
determine the optimal energy price offered by each area and
their corresponding profits. By leveraging competitive dynam-
ics within the areas, this model seeks to minimise reliance
on the grid, thus reducing grid purchases and subsequently
decreasing the overall carbon footprints.

The market price of the energy depends on the demand for
the energy in the market, and to compute its optimal value, a
linear relationship is established between the demand (D) [28]
and supply of the energy available in the market as given below.

D = B − e · p (5)

where p is the optimal market price of the energy, D is the total
demand, e is the elasticity coefficient, and B is the intercept. To
maintain the balance between total energy and demand, all the
areas must fulfill the energy demand. Suppose there are n areas
supplying the energy, D must be fulfilled by the total quantity
Q of energy produced by the area as mentioned below:

D =

i=n∑
i=0

Qi (6)

During production of the energy by ith area (i = 1, 2, ...., n),
there is also a marginal cost, Ci, incurred to generate Qi
quantity of energy which is calculated by:

Ci = αi ·Q2
i + βi ·Qi + γi (7)

where αi and βi are marginal cost coefficients for ith area
corresponding to thermal power generation, γi represents fixed
costs or capital costs associated with renewable energy instal-
lations that are not directly proportional to the quantity of
energy generated Qi. We utilised the Cournot Game model to
simulate and analyse the energy transactions among suppliers.
This model effectively represents and understands the dynamics
of competing markets in this context [28].
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1) Cournout Game Model: The main aim of an area par-
ticipating in the energy ecosystem is to maximise its profit.
The profit of ith area (πi) is calculated by the price quoted by
an area in the market minus the marginal cost of the energy
production as mentioned below:

max(Qi,i=1,2,...,n)πi = p ·Qi − Ci ·Qi (8)

s.t.

i=n∑
i=0

Qi = B − e · p (9)

Qmini < Qi < Qmaxi (10)

where Qmini , Qmaxi are the minimum and maximum production
of energy by the ith area. The price p is calculated by using
Eq. (9) as mentioned below:

p =
B −

∑i=n
i=0 Qi
e

(11)

The profit of ith area is calculated by adding its revenue
from the game model to the income from any contracts and
then subtracting its generation costs. So, we redefine the
optimization problem for calculating the profit as follows:

max(Qi,i=1,2,...,n) π = p · (Qi − Ci)− Ci ·Qi (12)

Formulating the Eq. (12) by substituting the value of p from
Eq. (11) gives:

max(Qi,i=1,2,...,n) π =
B −

∑i=n
i=0 Qi
e

·(Qi−Ci)−Ci·Qi (13)

The price equilibrium is obtained by using the Kuhn-Karesh-
Tucker (KKT) condition [29] highlighted below:

∂πi
∂Q1

=
B −

∑i=n
i=0 Qi
e

− Qi − Ci
e

− Ci + ϕmini − ϕmaxi = 0

(14)
where ϕi is the Lagrange multipliers associated with the
inequality constraints. Substituting B−

∑i=n
i=0 Qi

e by p using Eq.
(11), gives:

∂πi
∂Q1

= p− Qi − Ci
e

− Ci + ϕmini − ϕmaxi = 0 (15)

ϕmin ≥ 0, (Qi −Qmini ) ≥ 0, ϕmini (Qi −Qmini ) = 0 (16)

ϕmax ≥ 0, (Qmaxi −Qi) ≥ 0, ϕmaxi (Qmaxi −Qi) = 0 (17)

2) Nash Equilibrium Solution: In this model, the areas
(A1, A2, . . . ,An) submit their offers simultaneously to the RC
to participate in the competition model. In this model, there is
no cooperation among the participating areas. The utility/profit
function is calculated based on the defined inequality con-
straints. In the defined model, the inequality constraints are
defined to maximise the profit of the area and the energy
consumer. The defined model works statically due to the non-
cooperative behaviour of the participating areas. Due to the
static model, the game is defined to maximise the profits of the
areas, denoted as (A,π) and elaborated below:

• A = {A1, A2, . . . , An} are the areas participating in the
defined model.

• π = {π1, π2, . . . , πn} are the set of utility functions
calculated to maximise the profit of the participating areas.

In this game, the areas have to calculate the profits concerning
the value of Q. Considering the scenario of two areas, the utility
function is calculated as below:
• In the utility matrix, π1 and π2 represent the profit of the
A1 and A2 for a given combination of Q1 and Q2.

• The inequality constraints ϕmin and ϕmax are calculated
using Langrange multipliers as mentioned below:

ϕmin =
µ

C1
(18)

ϕmax =
µ

C2
(19)

where, µ is the complementary slackness condition, and
C1, C2 are the costs of the respective areas.

• The πAi/j represents the profit function for ith/jth area
corresponding to A ∈ {Ai, Aj} with respect to the Q.

To reach the Nash Equilibrium, the utility matrix to access the
possible behaviours of the areas is depicted in Table I.

TABLE I: The Utility Matrix of ith area considering jth area

Area Ai

Qj = min Qj = max

Qi = min π
(Ai,Aj)

i π
(Ai,Aj)

i

Qi = max π
(Ai,Aj)

i π
(Ai,Aj)

i

B. Fractured / Uncertain Phase

This phase occurs when there is an uncertainty or abnor-
mality observed within the system. In coordination with the
competitive energy sharing model described in Section III-A,
we employ a Bayesian network (BN) approach [22] to effec-
tively detect uncertain events within the distribution system.
The BN is utilised to find the conditional probabilities among
the uncertain variables computed using the complex Bayesian
algorithm. It is a form of semi-naive Bayesian Learning that
introduces a complex structure to capture inter-dependencies
among variables, thereby alleviating the assumption of attribute
independence made by the Bayes approach. Once an uncertain
event is detected, an heuristic algorithm (described in Algo-
rithm 2), as proposed in [22], is utilised for identifying the type
of uncertainty. By combining the power of Bayesian inference
with the heuristic algorithm, our approach ensures accurate
and timely identification of critical events, thereby enabling
proactive responses to mitigate their impact.

If the power generation values align with expectations, the
LC proceeds with normal operations. However, if inconsisten-
cies arise, the LC employs a Bayesian analysis to determine
the probability distribution of G or v, and find their respective
ranges (Gmin, Gmax) or (vmin, vmax). Based on these, using
the Eq. (2) and Eq. (3), the range of solar (PminPV , PmaxPV ) and
wind power (Pminw , PwPV ) generation can be calculated. If the
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Algorithm 2: Uncertainty Detection and Identification
Input: Gmin,max, Vmin,max; i: Area Request
Output: Aδ : State of uncertainty in area ▷ δ: Uncertainty

1 // Define the state of the request
2 Function UDI(i):
3 if (P exp

PV (i) ̸= P rt
PV (i) ;

4 & Prt
PV (i) ̸∈ (Pmin

PV (i), Pmax
PV (i))) then

5 Assign: Ai ← Aδ ;
6 ▷ Data Uncertainty
7 end
8 else if (P exp

w (i) ̸= P rt
w (i) ;

9 & Prt
w (i) ̸∈ (Pmin

w (i), Pmax
w (i))) then

10 Assign: Ai ← Aδ ;
11 ▷ Data Uncertainty
12 end
13 else if (P exp

load ̸= P rt
load) then

14 Assign: Ai ← Aδ ;
15 ▷ Behavioural Uncertainty
16 end
17 else
18 Assign: Ai ← Aδ ;
19 ▷ Weather Uncertainty

20 Send signal: Normal ack−−−→GC ▷ GC: Global Controller
21 end
22 return Aδ ;
23 end

real-time values fall outside this range, it indicates potential
weather uncertainty. Otherwise, the mismatch may be attributed
to faulty data, which could stem from various sources such as
faulty or dead sensors (erratic/uniform/zero readings from a
sensor) and data manipulation (intentional alteration of data).
If none of these, the uncertainty is attributed to the change
in consumer behavior by comparing the expected (P expload) and
real-time (P rtload) values of the consumer demand of an area.

C. Recovered / Mitigation Phase

Whenever an uncertain event is identified in an area a, we
propose a novel cooperative strategy, to mitigate its adverse
effects on the entire DN. This strategy is grounded in the
notion that rather than operating in isolation to maximise their
individual profit (as in the case of competitive strategy), all
areas collaborate to address the issue at hand by pooling
resources to support the affected area under uncertainty in
minimising overall grid dependency and carbon footprints as
described in Algorithm 3.

In Algorithm 3, at each time instant, the total surplus energy
of all areas sold to the grid are checked. If this energy is
enough to meet the required load demand, then it is sold to the
affected area at the optimal price as described in the competitive
approach using Eq. (11). If the total energy sold to the grid
(Ps(t)) is not enough, then the battery of the affected area
(f ) will be discharged according to the power discharge rate
function depicted in Eq. (20) until its state of charge SOCf is
equal to a threshold value (ρ = 30%).

P fdis(t) =
dSOCf (t)

dt
= −k · SOCf (t) (20)

where k is the battery discharging coefficient.

Algorithm 3: Uncertainty Mitigation
Input: Area Request State: Ai ← Alg. 2 ,

Set SOC: Threshold1→ ρ, Threshold2→ σ, Threshold3→ ψ,
Instance of time: t.

Output: Power purchased from grid: Pgrid(t)
1 Function UM(i):
2 Compute: P f

req, P
f
GR;

3 if (P f
req ≥ P

f
GR ;

4 & SOCf (t) > ρ) then
5 Discharge Battery till−−→ ρ;
6 end
7 else
8 if (

∑
P i

sales(t) > 0 ) then
9 if (P i

sales(t) > P f
req(t)) then

10 Competitive theory approach
11 end
12 else
13 Calculate: P f

rem(t) = P f
req −

∑
P i

s(t);
14 end
15 end
16 else
17 Assign: P f

rem(t) = P f
req ;

18 if (SOCf (t) > σ then
19 Compute: Ei

dis; ▷ using Eq. (25)
20 end
21 else if (SOCf > ψ) then
22 Discharge Battery till−−→ ψ;
23 Compute: Ei

dis; ▷ using Eq. (25)
24 end
25 else
26 Assign: P f

rem(t) = P f
req(t);

27 end
28 end
29 end
30 Pgrid = P f

rem(t);
31 return Pgrid;
32 end

Integrating the power discharge rate function over time
determines the energy discharged using:

Efdis(t) =

∫ t

t1

P fdis(t) dt (21)

If the battery discharge is not sufficient to meet the load
demand of that area, then the neighbouring areas with SOCi

(i = 1, 2, . . . , n; i ̸= f ) greater than the threshold (σ = 60%)
will discharge their batteries to meet the load of the energy-
deficient area. The battery discharge of the neighbouring areas
can be carried out in three possible ways.
• Entire energy purchased from one area only: If the chosen

firm has sufficient battery storage, it can ensure uninter-
rupted energy supply to the affected area such that:

Eidis(t) ≥ Efreq(t) (22)

where Eidis(t) is the energy discharged by ith area at time t
and Efreq(t) is the energy required by faulty (or uncertain)
area at time t.

• Equal energy purchase: In this case, selected areas would
discharge an equal amount of their battery storage to meet
the required load demand represented below.

Eidis(t) =
Efreq(t)

n
(23)

where n is the total number of areas selected whose
SOCi > σ and i ̸= f .
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• Proportionate energy sharing: Proportionate energy shar-
ing ensures that each area contributes based on its available
capacity. Areas with greater battery storage contribute
more, while those with smaller battery storage contribute
proportionately less. The proportion of the required energy
demand allocated to area i is depicted by:

Propi(t) =
Eiavl(t)

Etotal sup(t)
(24)

where Etotal sup is the total energy supplied by all areas
and is calculated as

∑
iEi, such that i = 1, 2, . . . , n; i ̸=

f , and Ei be the energy supplied by the ith area. The
proportional energy allocated to ith area in this case is
given as:

Eidis(t) = Propi(t) · Efreq(t) (25)

This case ensures fairness in the system and therefore is
used as the default strategy in the proposed scheme for
battery discharge in neighbouring areas.

If there is no area with SOCi > σ, then check the areas with
SOCi > ψ, where ψ ≤ σ (and is set at 50%), and follow
the same procedure for battery discharging as mentioned in the
Eq. (24) and Eq. (25). The final step involves purchasing the
energy from the grid Egrid, in case none of the neighbouring
areas can meet the load demand of the affected area.

The cooperative strategy is designed such that even during
an uncertain event while supporting the affected area to meet
its load demand, the supplying areas do not incur any loss. The
optimal price at any time t during uncertainty is calculated as:

pr(t) =

 p(t), Esales(t) ≥ 0
pgridr (t), Esales(t) ≤ 0 or η = 0
pir(t), η ̸= 0

(26)

where p(t) is the price calculated using Eq. (11), pgridr (t) is
the market price offered by the grid at time instant t, Esales is
the total energy sold to the grid (Esales(t) =

∑
Eisales; E

i
sales)

is the energy sales of an individual area), η is the number of
selected areas to supply energy and pir(t) is the cooperative
price offered by the selected firm to the affected firm which is
formulated using:

pir(t) =

{
Eigrid(t+ 1) · p(t+ 1), Eigrid(t+ 1) ≥ 0

ξ · Eidis(t) · Ci(t), otherwise
(27)

where ξ is the profit margin of an area, Eigrid is the energy
purchased by an area from the grid. The associated carbon
footprints (CF) at any time instant can be calculated using:

CF (t) = CI ·
n∑
i=1

Eigrid(t) (28)

where CI is the carbon intensity and Eigrid is the energy
purchased by ith area from the grid.

IV. RESULTS AND DISCUSSION

The primary objective of this study is to analyse the behavior
of an energy system in response to uncertain events and develop
strategies to mitigate their impact, with a particular emphasis
on reducing overall carbon footprints. To achieve this, we have
considered nine regions (LCs) within England, each comprising
multiple areas (denoted by A) as depicted in Fig. 5. One such
LC (Newcastle) consisting of ten areas is highlighted in this
figure. These areas are further equipped with DERs to meet
their respective load demands.

Fig. 5: Considered areas for simulation

In our model, we employ a Regional Controller (RC) at the
local level and a Global Controller (GC) at the central level. The
RC is responsible for managing incoming and outgoing energy
requests within its respective LC, while the GC checks energy
scheduling and coordination at the regional level. By focusing
on reducing carbon footprints, the study aims to enhance the
sustainability of the energy DN under uncertainty. For instance,
when an uncertainty such as a sudden drop in renewable
generation occurs, the AC would first seek to balance the energy
deficit using stored renewable energy within the respective LC
or by purchasing surplus renewable energy from neighboring
LCs. Only as a last resort would the AC draw energy from the
main grid, thereby minimising the carbon impact.

Assumptions: To effectively simulate the system’s behavior
in handling uncertainties, the proposed study has made the
following realistic assumptions.
• The types of uncertainties that can occur in the DN are:

– Weather Uncertainty: It relates to sudden weather
changes that deviate from predicted values.

– Data Uncertainty: It depicts faulty sensors or equip-
ment failures that can lead to malicious data being
received at the RC.

– Behavioral Uncertainty: It is associated with sudden
increases/decreases in load demand at the consumer
end.

• During normal operation, the excess generation areas must
sell energy to energy-deficient areas before selling it to the
grid to minimise the overall carbon footprints.
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• During an uncertain event, all the areas in an LC would
support the area under uncertainty by selling their excess
generation. If there is no excess renewable energy gener-
ation in any area, these areas will discharge their batteries
to support their neighbouring area under uncertainty.

A. Normal Phase

For normal operation, weather data was systematically col-
lected for one year, spanning from Jan 01, 2023, to Dec 31,
2023 [30], from 10 distinct locations of Newcastle in CSV
format. Each location’s data after pre-processing (as explained
in IV-B) is stored in a dedicated file and has 14 distinct
meteorological parameters. The energy price data for energy
sales and purchased is gathered from UK’s energy provider
website [31]. It is assumed that the sensors deployed at each
DER yield generation data estimated using Eq. (1) and Eq. (2)
for solar and wind resources, respectively. The energy profile of
one week for one area in Newcastle (i.e., Gateshead), is shown
in Fig. 6. Fig. 6(a) depicts the wind and solar generation in this
area as well as its overall load demand. Fig. 6(b) highlights the
power purchased from the grid during low renewable energy
generation and sold to the grid during high renewable energy
generation within the depicted time duration.

(a) (b)

Fig. 6: Energy profile of an area (a) Power generation and load
demand (b) Power sold and purchased from grid

Furthermore, in the normal operational phase, all areas will
be participating in the energy market based on their individual
renewable energy generation. To better understand the defined
competitive game model in Section III-A, we present a case
study to calculate the Utility Matrix using collected data
points from 10 different areas in the United Kingdom. The
utility matrix is calculated using two areas (the Gateshead and
Longbenton areas) and the notations for which are defined in
Table II.

TABLE II: Notation values in the Case Study

Notation Value Description
A1 Gateshead First area name
A2 Longbenton Second area name
Dyr 1 1st day of year data
C1 0.1595 Cost of A1

C2 0.2102 Cost of A2

Q1 [0:15819] Range of produced quantity by A1

Q2 [0:69115] Range of produced quantity by A2

ϕmin 0 Inequality constraint
ϕmax 0 Inequality constraint

Source: (C1, C2)← [31], (Q1, Q2, ϕmin, ϕmax)←Simulation results

• A1 initiates the game procedure along with the A2 and
quotes 0.1595 costs per required unit to the consumer.

• In a similar pattern, A2 quotes 0.2102 cost for the same
requirement.

• The ϕmin and ϕmax is calculated as 0 using best response
optimisation approach [32]. This could occur if the market
price p is always greater than or equal to the total costs
C1Q1 + C2Q2, leading to an inactive complementary
slackness situation.

• The minimum and maximum range of the A1 is high-
lighted as [0:15819] and A2 as [0:69115] from the col-
lected data points corresponding to Gateshead and Long-
benton areas.

• The price p corresponding to both areas is calculated using
Eq. (11), and the Utility Function (π) is calculated using
Eq. (8).

The Utility Matrix corresponding to both areas is mentioned in
the Tables III and IV.

TABLE III: The Utility Matrix of A1 area

Area A1

Q2 = 0 Q2 = 69115
Q1 = 0 0 0

Q1 = 15819 3.9911*e07 3.9911*e07

TABLE IV: The Utility Matrix of A2 area

Area A2

Q2 = 0 Q2 = 69115
Q1 = 0 0 -0.0001*e08

Q1 = 15819 0 1.7437*e08

This intense competition ultimately leads to a market equilib-
rium, a delicate balance where each area’s profit is optimised,
and more importantly, the collective energy needs of the seekers
(consumers) are effectively fulfilled under normal conditions.

Fig. 7 shows the results based on the competitive approach
for the entire region as described in Section III-A and the
following inferences can be drawn.

The market price offered by the areas with excess renewable
energy generation is shown in Fig. 7(a). The zero price indicates
that at that time instant there is no energy demand from the
neighbouring areas and hence, no energy would be sold to
any area. Fig. 7(b) shows the amount of energy met by the
surplus renewable energy in the neighbouring areas using the
competitive approach. When there is no surplus energy, the
remaining energy demand is met by purchasing from the grid.
The comparison of carbon footprints with and without using the
competitive approach is highlighted in Fig. 7(c). As the excess
generation of neighbouring areas meets the major amount of
energy demand, therefore, the proportion of energy purchased
from the grid is reduced, resulting in a reduction in carbon
emissions by approximately 80%.

B. Uncertainty Detection and Identification
To detect and identify the occurrence of uncertain events,

the BN approach as described in Section III-B is utilised.
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(a) (b) (c)

Fig. 7: Healthy phase results (a) price offered by neighbouring area (b) energy demand met by areas (c) carbon emissions

A structured data discretisation process is implemented by
employing a hierarchical method to convert the extensive
dataset into finite states, thereby enhancing its tractability. The
discretisation procedure serves to simplify the interpretation
of real-world instances, obviating the necessity for specialised
expertise. For instance, wind speed is discretised into three
distinct states namely low, medium, and high (as shown in
Fig. 8), providing a lucid framework to interpret the findings.
The correlation between various parameter states along with
their conditional probability is computed using a complex BN
algorithm as discussed in algorithm 2. The correlation output
of wind speed with other weather parameters is shown in Fig. 8
and the corresponding conditional probability table is illustrated
in Table V. This relationship, modeled using a BN approach,
is further utilised to find the range of uncertain parameters
affected by the variations in other considered parameters.

Fig. 8: Dependence of wind speed on weather parameters

After computing the range of values for solar radiation and
wind speed, their respective power generation in each area with

the help of Eq. (2) and (3) are then computed and are compared
with their real time values. We have chosen one specific area
A5 (i.e., Southshields) from Fig. 5 to show the detailed impact
of uncertainty. On detection of an uncertain event in A5, the
type of uncertainty is identified using Algorithm 2. Based on
the algorithm, the area A5 suffers from data uncertainty at
time t1, due to which its measured wind generation becomes
zero, which was resolved by time t4 as shown in Fig. 9(a).
Consequently, the local energy supply is disrupted, prompting
the utilisation of battery storage to meet the load demand
that can be seen from decreasing the SOC of the battery in
Fig. 9(b). After t2, the battery is discharged to its maximum
capacity, the area becomes dependent either on the grid or other
neighbouring areas to buy energy to meet the load demand.
There is an increase in grid purchase from t2 to t3 to meet the
load demand of A5 (Fig. 9(c)), which corresponds to no excess
renewable generation available from neighboring areas. From
t3 to t4, the grid purchases became zero, showing that there is
excess renewable energy generation in the neighbouring areas
which is purchased by A5 to meet its load demand and charge
the battery until the uncertainty is resolved at t4.

C. Uncertainty Mitigation

Upon uncertain event detection in phase B, our research
employs a cooperative strategy to address the uncertainty in
affected areas and minimise its impact on the overall operation
of the DN. The battery storage of area A5 with uncertain event
along with the battery storage of all neighbouring areas is lever-
aged in the cooperative strategy as detailed in Section III-C. In
Fig. 10, SOC profiles of batteries from different areas selected
using the algorithm 3 during uncertain situations are depicted.
We compare two distinct scenarios where energy discharge
from battery storage is managed equally and proportionately

TABLE V: Conditional Probability Table (CPT) for Windspeed and other weather parameters

windgust (%) windgust (<27) windgust (>27) windgust (>27)
winddir (%) winddir (<131) winddir (<131) winddir (>325)

sealevelpressure (%) sealevelpressure (<990) sealevelpressure (<990) sealevelpressure (<990)
cloudcover (%) cloudcover (<16) cloudcover (<16) cloudcover (<16)
windspeed (<11) 25% 2% 18%

windspeed (>11 & <21) 74% 75% 30%
windspeed (>21) 1% 23% 52%
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(a) (b) (c)

Fig. 9: Impact of uncertainty on (a) wind generation (b) SOC of the battery (c) power purchase from grid

among selected areas to meet the load demand of the affected
area. Fig. 10(a) shows the outcome when an equal amount of
energy is drawn from the battery storage across all selected
areas. When energy discharge is uniform across all areas,
the SOC trajectory shows fluctuations and fails to reach its
maximum capacity, indicative of sub-optimal battery utilisation
and potentially accelerated degradation. Fig. 10(b) showcases a
strategic approach, distributing energy discharge in proportion
to each area’s capacity using the cooperative algorithm.

(a) (b)

Fig. 10: SOC of different areas using cooperative approach
when energy is shared (a) equally (b) proportionally

Under the proportionate energy discharge strategy, there is a
smooth trend in the battery’s discharge and recharge cycles.
This smoother operational pattern hints at reduced battery
degradation, attributed to the balanced and optimised utilisation
of energy resources across the network.

We further extend our analysis to compare the overall
profit and carbon emissions during uncertainty using three
different strategies: competitive, cooperative-equal sharing, and
cooperative-proportionate sharing as shown in Fig. 11.

Fig. 11(a) illustrates the overall profit during the uncertain
period. The results indicate that the competitive algorithm
achieves 16.4% higher profit as compared to the cooperative-
proportionate sharing method. This is because the competitive
strategy prioritises maximising an individual area’s profit. How-
ever, the higher profit comes at a significant environmental cost.
Fig. 11(b) presents a comparison of carbon emissions among
the three strategies. Fig. 11 demonstrates that the reduction in
carbon emissions between the two methods ranges from 0%
to 97% throughout the uncertain scenario considered, with an
average reduction of 48.2% with the cooperative proportionate

Fig. 11: Comparison of different approaches under uncertainty
for (a) overall profit (b) carbon footprints

sharing method as compared to the competitive approach.
Overall, the competitive algorithm is used under normal condi-
tions to maximise immediate profits without overburdening the
batteries. In contrast, the cooperative-proportionate strategy is
employed during uncertainties, leveraging the battery storage
capacities of neighboring areas to support the affected area.
This two-fold approach ensures both the economic benefits and
environmental sustainability of the energy system, optimising
resource utilisation during normal operations, and enhancing
reliability during uncertain conditions.

V. CONCLUSION

The integration of DERs into DNs introduces various un-
certainties, such as unpredictable renewable energy outputs,
fluctuating consumer energy demands, and data or equipment
faults. In this study, we implemented a two-fold strategy to
manage the system under normal and uncertain conditions.
During normal operations, a competitive algorithm maximises
profit and ensures efficient market functioning, along with
cutting down carbon footprints to one-fifth. In contrast, during
uncertain conditions, a cooperative strategy with proportionate
sharing stabilises the system by utilising the battery storage
capacities of neighboring areas. Our results show that the
cooperative-proportionate sharing method significantly reduces
carbon emissions by a maximum of 97% compared to the com-
petitive algorithm during uncertainty with an average reduction
of 48.2%, while also ensuring a smoother SOC trend and
reducing battery degradation. This approach balances economic
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and environmental outcomes, enhancing the reliability and
sustainability of renewable-integrated DNs.

In the future, the work will focus on modeling the uncertainty
arising due to unpredictable consumer behavior at the planning
stage and further reducing its impact on the DN operations.
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trends in uncertainty modelling and probabilistic stability analysis of
power systems with renewable generation,” Renewable and Sustainable
Energy Reviews, vol. 101, pp. 168–180, 2019.

[13] K. H. M. Azmi, N. A. M. Radzi, N. A. Azhar, F. S. Samidi, I. T. Zulkifli,
and A. M. Zainal, “Active electric distribution network: applications,
challenges, and opportunities,” IEEE Access, vol. 10, pp. 134 655–
134 689, 2022.

[14] X. Cao, J. Wang, and B. Zeng, “A chance constrained information-gap
decision model for multi-period microgrid planning,” IEEE Transactions
on Power Systems, vol. 33, no. 3, pp. 2684–2695, 2017.

[15] Y. Jiang, C. Wan, C. Chen, M. Shahidehpour, and Y. Song, “A hybrid
stochastic-interval operation strategy for multi-energy microgrids,” IEEE
Transactions on Smart Grid, vol. 11, no. 1, pp. 440–456, 2019.

[16] U. Oh, Y. Lee, J. Choi, and R. Karki, “Reliability evaluation of power sys-
tem considering wind generators coordinated with multi-energy storage
systems,” IET Generation, Transmission & Distribution, vol. 14, no. 5,
pp. 786–796, 2020.

[17] T. Ding, Q. Yang, Y. Yang, C. Li, Z. Bie, and F. Blaabjerg, “A data-driven
stochastic reactive power optimization considering uncertainties in active
distribution networks and decomposition method,” IEEE Transactions on
Smart Grid, vol. 9, no. 5, pp. 4994–5004, 2017.

[18] R. Khodabakhsh and S. Sirouspour, “Optimal control of energy storage in
a microgrid by minimizing conditional value-at-risk,” IEEE Transactions
on Sustainable Energy, vol. 7, no. 3, pp. 1264–1273, 2016.

[19] T. Su, J. Zhao, Y. Pei, and F. Ding, “Probabilistic physics-informed graph
convolutional network for active distribution system voltage prediction,”
IEEE Transactions on Power Systems, 2023.

[20] H. Wang, Z. Yan, M. Shahidehpour, Q. Zhou, and X. Xu, “Optimal energy
storage allocation for mitigating the unbalance in active distribution net-
work via uncertainty quantification,” IEEE Transactions on Sustainable
Energy, vol. 12, no. 1, pp. 303–313, 2021.

[21] Paredes, J. A. Aguado, and P. Rodrı́guez, “Uncertainty-aware trading
of congestion and imbalance mitigation services for multi-dso local
flexibility markets,” IEEE Transactions on Sustainable Energy, vol. 14,
no. 4, pp. 2133–2146, 2023.

[22] A. Garg, G. S. Aujla, and H. Sun, “Analyzing impact of data uncertainty
in distributed energy resources using bayesian networks,” in 2023 IEEE
International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm). IEEE, 2023, pp. 1–6.

[23] “IEEE standard for interconnection and interoperability of distributed
energy resources with associated electric power systems interfaces,” IEEE
Std 1547-2018 (Revision of IEEE Std 1547-2003), pp. 1–138, 2018.

[24] N. M. Kumar, S. S. Chopra, A. A. Chand, R. M. Elavarasan, and
G. Shafiullah, “Hybrid renewable energy microgrid for a residential
community: A techno-economic and environmental perspective in the
context of the SDG7,” Sustainability, vol. 12, no. 10, p. 3944, 2020.

[25] A. Garg, G. S. Aujla, and H. Sun, “Techno-economic-environmental
analysis for net-zero sustainable residential buildings,” in 2023 IEEE PES
Innovative Smart Grid Technologies Europe (ISGT EUROPE). IEEE,
2023, pp. 1–5.

[26] T. Ma and M. S. Javed, “Integrated sizing of hybrid pv-wind-battery
system for remote island considering the saturation of each renewable
energy resource,” Energy conversion and management, vol. 182, pp. 178–
190, 2019.

[27] R. J. J. Molu, S. R. D. Naoussi, P. Wira, W. F. Mbasso, S. T. Kenfack,
B. K. Das, E. Ali, M. J. Alshareef, and S. S. Ghoneim, “Optimizing
technical and economic aspects of off-grid hybrid renewable systems:
A case study of manoka island, cameroon,” IEEE Access, vol. 11, pp.
130 909–130 930, 2023.

[28] R. Deng, Z. Yang, F. Hou, M.-Y. Chow, and J. Chen, “Distributed real-
time demand response in multiseller–multibuyer smart distribution grid,”
IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2364–2374,
2015.

[29] J. Contreras, M. Klusch, and J. B. Krawczyk, “Numerical solutions to
nash-cournot equilibria in coupled constraint electricity markets,” IEEE
Transactions on Power Systems, vol. 19, no. 1, pp. 195–206, 2004.

[30] “Weather data,” https://www.visualcrossing.com/weather/
weather-data-services, accessed: 2023-05-03.

[31] “Energy prices,” https://octopus.energy/octopus-smart-tariffs/, accessed:
2024-04-17.

[32] D. Dragone, L. Lambertini, and A. Palestini, “Static and dynamic best-
response potential functions for the non-linear cournot game,” Optimiza-
tion, vol. 61, no. 11, pp. 1283–1293, 2012.



Citation on deposit: Garg, A., Singh, A., Singh 

Aujla, G., & Sun, H. (in press). Two-fold Strategy 

towards Sustainable Renewable Energy Networks 

when Uncertainty is Certain. IEEE Transactions on 

Consumer Electronics 

For final citation and metadata, visit Durham Research Online URL: 

https://durham-repository.worktribe.com/output/2943054   

Copyright statement: This accepted manuscript is licensed under the Creative 

Commons Attribution 4.0 licence. 

https://creativecommons.org/licenses/by/4.0/ 

https://durham-repository.worktribe.com/output/2943054

