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Summary 18 

● Long terminal repeat retroelements (LTR-REs) have profound effects on DNA methylation 19 

and gene regulation. Despite the vast abundance of LTR-REs in the genome of Moso bamboo 20 

(Phyllostachys edulis), an industrial crop in under-developed countries, their precise 21 

implication of the LTR-RE mobility in stress response and development remains relatively 22 

unknown.  23 

● We investigated the RNA and DNA products of LTR-REs in Moso bamboo at various 24 

developmental stages and stressful conditions. To our surprise, our analyses identified 25 

thousands of active LTR-REs, in particular from those that are proximal to genes involved in 26 

stress response and developmental regulation. These genes adjacent to active LTR-REs 27 

exhibited an increased expression under stress and are associated with reduced DNA 28 

methylation that is likely affected by the induced LTR-REs. 29 

● Moreover, the analyses of simultaneous mapping of insertions and DNA methylation showed 30 

that the LTR-REs effectively alter the epigenetic status of the genomic regions where they 31 

inserted, and concomitantly their transcriptional competence which might impact the stress 32 

resilience and growth of the host.  33 

● Our work unveils the unusually strong LTR-RE mobility in Moso bamboo and its close 34 

association with (epi)genetic changes, which supports the co-evolution of the parasitic DNAs 35 

and host genome in attaining stress tolerance and developmental robustness. 36 

 37 
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RNA-seq 39 

 40 

41 



                                                              Page 3 of 33 
 

Introduction 42 

Long terminal repeat retroelement (LTR-RE) is a kind of transposons ubiquitous in eukaryotic 43 

genomes and the most abundant genomic components particularly in flowering plants. LTR-REs 44 

can autonomously colonize the host genomes in a copy-paste manner via RNA intermediates 45 

forming new copies. A typical intact LTR-RE contains two identical LTRs at both ends, a primer 46 

binding site (PBS) following the 5' LTR, a polypurine tract (PPT) preceding the 3' LTR, and 47 

between the PBS and PPT, two internal coding regions for a nucleocapsid (gag) and a polyprotein 48 

(pol) (Kumar & Bennetzen, 1999). PBS and PPT are the sites that initiate reverse transcription of 49 

extrachromosomal linear DNA (eclDNA) of the minus and plus strand, respectively. The gag gene 50 

encodes a virus-like particle (VLP) protein that encapsulates the transposon RNA-nucleocapsid 51 

complex for reverse transcription. The pol gene products include protease (PR), reverse 52 

transcriptase (RT), RNase H (RH) and integrase (IN), all of which are essential for the synthesis of 53 

eclDNAs and their integration into the host genome. In short, an LTR-RE copies to a new genomic 54 

locus by inserting the eclDNA that is reverse transcribed from the cognate RNA transcript. 55 

Despite the mobile nature of transposons in the host genome, their essential role and 56 

significance pertain to the regulation of gene expression (Comfort, 1999). Specifically, the impact 57 

of LTR-REs varies from serving as promotors/cis-elements to inducing alternative splicing and 58 

providing premature termination sites through signals conveyed by insertions (Grandbastien, 2015). 59 

For example, an LTR-RE MT2B2 in mammals acts as an alternative promoter to drive the 60 

expression of a CDK2AP1 isoform, which controls the timing of pre-implantation development 61 

(Modzelewski et al., 2021; Canat & Torres-Padilla, 2021). In soybean, the insertion of a Ty1-Copia 62 

LTR-RE within the first exon of a phytochrome A paralog results in the creation of a stop codon, 63 

which in turn produces a truncated protein that causes insensitivity to long day flowering (Liu et 64 

al., 2008; Kanazawa et al., 2009). Apart from these, LTR-REs can influence the expression of the 65 

host genes by altering epigenetic regulation. In rice tissue culture, the demethylation of LTR-RE 66 

Tos17 was observed to extend into some flanking genomic regions (Liu et al., 2004). Particularly, 67 

the reduced methylation of LTR-REs is correlated with an increase of expression levels of their 68 

adjacent genes (Huettel et al., 2006).  69 

To maintain the stability and integrity of host genome, LTR-REs are usually silenced primarily 70 

by the host’s epigenetic mechanism (Huettel et al., 2006). Despite the innate and tight suppression, 71 

many studies have shown that transposons can be activated at both transcriptional and 72 

transpositional levels by environmental challenges and intrinsic factors such as heat and 73 

phytohormones. For examples, the transcription of OARE-1 (Oat retroelement-1) retrotransposon 74 

from Avena sativa is strongly induced by jasmonic acid and ultraviolet (UV) radiation (Kimura et 75 
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al., 2001) and Onsen from Arabidopsis thaliana produces a high level of RNA and eclDNA under 76 

heat shock (Matsunaga et al., 2011). In vitro tissue culture is deemed a stressful condition for plant 77 

cells due to its fluctuating micro-environment and is known to trigger vast genetic and epigenetic 78 

alterations (Ghosh et al., 2021). It is well documented that LTR-REs can be reactivated during 79 

callus culture; for instance, Tos17 of rice is eruptible in transcripts and DNA copies by callus culture 80 

(Hirochika et al., 1996; Lanciano et al., 2017). In addition to stress treatments, LTR-REs can be 81 

released from epigenetic silencing in specific developmental stages. For example, massive 82 

retrotransposons are de-repressed in the shoot apical meristem at the juvenile stage (Gutzat et al., 83 

2020) and vegetative cells of male gametophytes of A. thaliana (Martínez & Slotkin, 2012). 84 

However, our knowledge of the inherent significance of the temporal LTR-REs reactivated by stress 85 

and development is still incomplete, particularly in the non-model or orphan plant species. 86 

Studies utilizing the model plants have detected only a limited number, or even a lack, of 87 

transposition events under stress or tissue culture (Sabot et al., 2011; Jiang et al., 2011; Miyao et 88 

al., 2011; Galindo-González et al., 2017), which restricted the investigation of functional roles of 89 

LTR-REs in response to external or internal challenges. This might be attributed to their relatively 90 

lower content of transposons and tight control by the host’s epigenetic pathways. Conversely, the 91 

non-model plants with higher content of transposons and larger genomes may reserve a more 92 

frequent transposition events and thus provide us with the opportunities to study transposon-gene 93 

interaction (Grandbastien, 2015; Galindo-González et al., 2017). Detection of transposition events 94 

of LTR-REs has also been limited in classical methods such as transposon display, which can only 95 

reveal copy number variations of individual elements (Tsukahara et al., 2009; Ewing et al., 2015; 96 

Lanciano et al., 2017). Fortunately, several new methods have been developed recently, such as 97 

extrachromosomal circular DNA sequencing (Lanciano et al., 2017), sequence-independent 98 

retrotransposon trapping (SIRT) (Griffiths et al., 2018), and amplification of LTR of eclDNAs 99 

followed by sequencing (ALE-seq) (Cho et al., 2018). Among these methods, ALE-seq is a high-100 

throughput sequencing method that captures eclDNAs of activated LTR-REs, which is better suited 101 

for genomes with larger size and greater number of retrotransposons (Cho et al., 2018). 102 

Moso bamboo (Phyllostachys edulis; synonym: P. heterocycla), the most economically 103 

valuable bamboo in China and Southeast Asia (Ramakrishnan et al., 2020), has a large genome of 104 

around two gigabases, LTR-REs of which occupy approximately 43.89% (Zhou et al., 2017). 105 

Multiple active and full-length LTR-REs have been identified in Moso bamboo that was subjected 106 

to abiotic stresses. The LTR-RE Phyllostachys heterocycla retrotransponson 9 (PHRE9) can be 107 

reactivated under radiation, cold, heat, and DNA methylation inhibitor treatments (Zheng et al., 108 

2019). PHRE1 and PHRE2 are also activated by external environmental stimuli, such as high and 109 
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low temperatures and salt stress, and were able to transpose when transformed into Arabidopsis 110 

thaliana (Zhou et al., 2018). Moreover, our previous studies suggested that LTR-REs in Moso 111 

bamboo are abundantly present in the promoter regions of coding genes (Zhou et al., 2017) and 112 

have much stronger transpositional activity than those in the model plants like rice and Arabidopsis 113 

(Zhou et al., 2017a). Hence, the Moso bamboo genome might serve as a better model to explore the 114 

interplay between LTR-REs and the host genes, particularly in the context of external and internal 115 

challenges. 116 

The aim of this study is to identify the active LTR-REs and understand how they impact the 117 

host genome under stress and during development in Moso bamboo. Firstly, ALE-seq and RNA-118 

seq were coupled to uncover the LTR-REs with both transcriptional and transpositional potential. 119 

Secondly, whole-genome bisulfite sequencing (WGBS) was applied to profile the methylome of 120 

those potentially active LTR-REs under the same conditions. Thirdly, transposon display technique 121 

was used to detect the insertion sites of the selected LTR-REs. Finally, transgenic approaches of 122 

both in situ and ex situ were used to validate the transpositional ability of selected LTR-REs and 123 

parse their insertion preferences. This study provides valuable insights into the molecular 124 

mechanisms for transposon activation during development and stress response of Moso bamboo, 125 

and their biological impact relevant to the rewiring of gene regulatory network. 126 

 127 

Materials and Methods 128 

Plant materials and sample collection 129 

Seeds from a single inbred Moso bamboo plant were germinated and nurtured as described in 130 

Papolu et al. (Ramakrishnan et al., 2022). Five-week-old seedlings were treated with different 131 

stresses as following (Fig. 1a): (a) heat stress (Heat) at 42 ℃ for six hours (Han et al., 2018) (b) 132 

cold stress (Cold) at 4 ℃ for sixteen hours (Ying et al., 2011); (c) UV radiation (UV) under a 133 

ultraviolet lamp (100 μW/cm2) from 50 cm distance for two hours (Zhang & Chen, 2011); and (d) 134 

salt stress (Salt) by irrigating with 200 mM NaCl for three days (Xiao et al., 2013). The seedlings 135 

grown at 25 °C with water irrigation (Wa) were used as the control. The first three leaves from the 136 

top were collected for ALE-seq, RNA-seq, and qPCR analyses. Three independent seedlings were 137 

prepared for each treatment. Calli generated from immature embryos of Moso bamboo seeds were 138 

cultured in a medium containing 500 mg/L proline, 500 mg/L glutamine, 300 mg/L casein 139 

hydrolysate, 2 mg/L 2, 4-D, 0.1 mg/L zeatin, 30 g/L sucrose, and 8.0 g/L agar (Fig. 1c). Three 140 

independent calli were individually collected and used for RNA and DNA extraction. 141 
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 142 
Fig. 1. Materials of Moso bamboo for capturing active LTR-REs. (a) Five-week-old seedlings that were treated 143 

with 42℃ (Heat), 0℃ (Cold), UV radiation, salt irrigation (Salt, NaCl). Control checks (CKs) were set synchronously. 144 

(b) A fast grown shoot shown the sampling internodes in the phases of initial cell division (ICD; 41st internode), rapid 145 

cell division (RCD; 24th internode treated as CK) and rapid cell elongation (RCE; 15th internode). (c) Calli generated 146 

from immature embryos. The presented calli had been cultured two months after induction. (d) The wild type of Moso 147 

bamboo (green internode, GI; i), P. edulis f. viridisulcata (green slot in internodes, GSI; ii) and P. edulis f. luteosulcata 148 

(yellow slot in internodes, YSI; iii). Intercalary meristems in internode slots during early coloring stage (24 th internode) 149 

were sampled. (e) The wild type of Moso bamboo and P. edulis cv. heterocycla, a mutation type with tortoise-shell-150 

like internodes (i). The red frame highlights tortoise-shell-like internodes in a shoot (ii). A sampling strategy diagram 151 

show that intercalary meristems in shrunk (IMS15) and lengthen (IML15) parts of 15th twisted internodes were collected 152 

(iii). Intercalary meristems form normal bamboo internodes (IMN15) were collected as controls. Three biological 153 

replicates were conducted on the above samples.  154 
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Moso bamboo plants were grown in the Cuizhu Garden of Zhejiang A&F and University, 155 

Hangzhou, China. Shoots of rapid growth stages were sampled at the 15th, 24th and 41st internodes 156 

(Fig. 1b), which corresponds to the phases of initiation of cell division (ICD), rapid cell division 157 

(RCD), and rapid cell elongation (RCE), respectively, as referenced in Tao et al. (2020). 158 

The intercalary meristems in internode slots at the early coloring stages (24th internode) were 159 

sampled from two internode color variation types, P. edulis f. luteosulcata (yellow slot in internode, 160 

YSI) and P. edulis f. viridisulcata (green slot in internode, GSI), and the wild type of Moso bamboo 161 

(green internode, GI) (Fig. 1d). The intercalary meristems in shrunk (IMS15) and lengthen (IMS15) 162 

parts of the15th twisted internodes were sampled from an internode form mutation type (P. edulis 163 

cv. heterocycla) of Moso bamboo with tortoise-shell-like internodes (Fig. 1e). In the meantime, the 164 

corresponding tissues of the wild type Moso bamboo were collected as the control group. The 165 

internodes with color variation and form variation from three independent Moso bamboo shoots 166 

were sampled and subjected to ALE-seq and RNA-seq. 167 

 168 

Identification and classification of LTR-REs 169 

LTR-REs were identified with LTRpred (Drost, 2020) in the Moso bamboo genome published 170 

by Zhao et al. (Zhao et al., 2018). The parameters were set as “minlenltr=100, maxlenltr=5,000, 171 

mindistltr=4,000, maxdisltr=30,000, mintsd=3, maxtsd=20, vic=80, xdrop=7, motifmis=1, 172 

pbsradius=60, pbsalilen=c(8,40), pbsoffset=c(0,10), quality.filter=TRUE and n.orf=0”. LTR-RE 173 

domain annotation was performed using LTRdigest (Steinbiss et al., 2009) with default settings. 174 

PBS motifs were also identified from the results of LTRdigest analysis. According to gag and pol 175 

coding regions, LTR-REs belonging to the Gypsy and Copia superfamilies were further classified 176 

into tork, reftrofit, sire, oryco, del, reina, crm, tat, galadriel and athila lineages (Llorens et al., 177 

2007). The ratio of LTR-RE sequences in the genome was analyzed using RepeatMakser v4.1.1 178 

(http://www.repeatmasker.org). 179 

 180 

Library preparation of ALE-seq 181 

Total DNA was extracted from samples using an improved CTAB method optimized for Moso 182 

bamboo (Gao et al., 2006) DNA fragments ranging from 4k to 15k bp were recovered from agarose 183 

gel after electrophoresis. The recovered DNA fragments were used to construct ALE-seq libraries 184 

following the previously described methods (Cho et al., 2018). Two active Arabidopsis LTR-REs, 185 

Evade and Onsen, were added to the extracted Moso bamboo DNA as internal controls (Matsunaga 186 

et al., 2011; Cho et al., 2018). Subsequently, the libraries were sequenced on MiSeq v3 2×300 bp 187 
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platforms. Sequences of the primers used in the construction of ALE-seq library are provided in 188 

Table S1. 189 

 190 

Analysis of ALE-seq data 191 

Trimmomatic v0.39 (Bolger et al., 2014) was used to remove the adapters and low-quality 192 

reads from the ALE-seq raw data. Reads were then mapped to the Moso bamboo genome using 193 

Bowtie2 with default parameters (Langdon, 2015). The “MarkDuplicates” function of Picard 194 

package (http://broadinstitute.github.io/picard/) was used to remove duplicate reads generated by 195 

PCR amplification during the library preparation. 196 

MACS v2.2.7.1 (Feng et al., 2012) and Bedops v2.4.39 (Neph et al., 2012) were used to 197 

perform peak calling and merging the overlapping regions with default parameters, respectively. 198 

The eclDNA abundance of LTR-REs was assessed using Bedtools with sub-function “multicov” 199 

(Quinlan & Hall, 2010). Finally, the statistical significance test for eclDNA levels was carried out 200 

using DESeq2 (Love et al., 2014). The LTR-REs with Log2FoldChange (FC) ≥ 2 and adjusted P < 201 

0.05 were considered to be significantly up-regulated. 202 

 203 

RNA-seq library construction and RNA-seq analysis 204 

Total RNA was isolated from samples using the RNAprep Pure Plant Kit (product No. DP432, 205 

TIANGEN, China) following the manufacturer’s instructions. RNA-seq libraries were constructed 206 

using the TruSeq RNA Sample Prep Kit (Illumina, CA, USA). The libraries were then sequenced 207 

with the 150-nt paired-end mode on an Illumina HiSeq2500 platform at Biomarker Technologies 208 

in Beijing, China (http://www.biomarker.com.cn). 209 

After filtration of low-quality reads with Trimmomatic v0.39, clean reads were mapped to the 210 

Moso bamboo genome and the curated LTR-RE, and the abundance was quantified using STAR 211 

(https://github.com/alexdobin/STAR) (Varet et al., 2016). DESeq2 was used to assess the statistical 212 

significance of the expression levels of LTR-REs and genes..Log2FC| ≥ 1 and adjusted P value < 213 

0.05 were used to define differentially expressed LTR-REs and genes. 214 

 215 

Functional enrichment and Cis-element detection 216 

GO and KEGG enrichment analyses were performed using Gogsea and Pathwaygsea, 217 

respectively, on Omicshare v4.1.0 platform (https://www.omicshare. com/tools/). PlantCARE 218 

(Lescot et al., 2002) were using to identify cis-acting regulatory elements. 219 

 220 

WGBS of Moso bamboo seedlings under abiotic stresses 221 
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WGBS data for Moso bamboo seedlings under abiotic stresses, including salt (Salt) and UV 222 

treatments, as well as control samples, were obtained from our previous work (Ding et al., 2022). 223 

The control samples included two types: the seedlings subjected to no stress served as the control 224 

group (CK) and seedlings irrigated with water (Wa) without NaCl served as the control for Salt. 225 

The stress treatment procedures and stages of plants were identical to those other samples in this 226 

study. We followed the analysis pipeline described in (Ding et al., 2022) to perform data quality 227 

control and data analysis. 228 

 229 

Identification of insertion sites of LTR-REs 230 

The whole-genome bisulfite sequencing data were aligned to the Moso bamboo genome 231 

using Bismark v0.23 (Krueger & Andrews, 2011) and the unmapped reads were retrieved. These 232 

unmapped reads were used to identify insertion sites of LTR-REs with EpiTEome v1.0 (Daron & 233 

Slotkin, 2017) using the parameters set with “-l 150 -b 50000 -p 50”. 234 

 235 

Identification of new insertion sites of PHRE11 and PHRE12 236 

The insertion sites of PHRE11 and PHRE12 in Moso bamboo under stress conditions and 237 

during development were mapped by transposon display followed by Sanger sequencing. After 238 

RNA elimination, the genomic DNA was digested using the restriction endonuclease Sau3AI 239 

(Takara 1069A, Japan) and then ligated with a cassette adaptor using Hi-T4 DNA Ligase (Cat. 240 

M2622; New England Biolabs, USA). Subsequently, PCR amplifications were performed 241 

following the procedure of TaKaRa LA PCRTM in vitro Cloning Kit (TaKaRa RR015, Japan). The 242 

PCRs generated DNA fragments containing the LTR-RE end flanked with genomic DNA region. 243 

After polyacrylamide gel electrophoresis, polymorphic bands were isolated and DNA was 244 

recovered to analyzed by Sanger sequencing to confirm the new insertion sites of PHRE11 and 245 

PHRE12 in Moso bamboo. New insertion sites of PHRE12 in transgenic Moso bamboo and 246 

Arabidopsis thaliana were identified using the procedure described above. The sequences of the 247 

adapter and primers are presented in Table S2. 248 

 249 

Transgene validation of activated LTR-REs 250 

The primers for PHRE11 PCR amplification are listed in Table S3. PHRE11 was recombined 251 

into the binary vector pCAMBIA3301 using the ClonExpress II One Step Cloning Kit (Vazyme 252 

C112; China). To detect the transposition events of PHRE11 in the host genome, a HygR gene 253 

expression unit (CaMV 35S promoter::HygR gene::CaMV poly(A) signal) was inserted 254 

downstream of pol domain and upstream of 3’LTR. The construct was introduced into wild-type 255 
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Arabidopsis thaliana Col-0 with the floral dip method using Agrobacterium tumefaciens strain 256 

GV3101. The transgenic Arabidopsis thaliana plants from T1 to T3 generations were tested for 257 

hygromycin resistance and the presence of HygR by PCR amplification. The primers are presented 258 

in Table S4. The seedlings survived in the hygromycin-containing media were further tested for the 259 

copy number of PHRE11 using qPCR method as described in Zhou et al. (Zhou et al., 2018). The 260 

primer sequences are listed in Table S5. New insertions of PHRE11 were detected with a 261 

chromosome walking kit (Code No. 6108, TaKaRa Bio Inc., Japan). The specific primers from 262 

HygR used in the chromosome walking procedure were listed in Table S6. 263 

The same construct was simultaneously introduced into Moso bamboo calli using carbon 264 

nanotube-mediated DNA delivery (Demirer et al., 2019). Calli were soaked in the DNA delivery 265 

buffer with both PEI-SWNTs and the recombinant vector for two days. After surface cleaning, the 266 

infected calli were sub-cultured on the MS medium containing hygromycin for selection. New 267 

tissues germinated from surviving calli were tested for the presence and expression of HygR gene 268 

by PCR amplification and reverse transcription (RT-) PCR, respectively. The primer sequences are 269 

listed in Table S5. New insertions of PHRE11 were also detected using the method described above. 270 

 271 

Quantitative PCR (qPCR) 272 

The levels of eclDNA of LTR-REs were measured by qPCR using the ALE-seq library DNA 273 

as templates. Onsen and Evade DNA were used as reference DNA in the qPCR analyses. RNA 274 

levels of LTR-REs were determined by qPCR amplifying the 5’LTR sequences. Actin8 was used 275 

for normalization. 276 

The copy number of PHRE11 in transgenic plants was calculated by absolute quantification of 277 

RNA-free genomic DNA. AtACTIN8 was used as a reference gene and to formulate the standard 278 

curve for quantification. The formula of the standard curve is y = -3.5245x + 37.744 (R² = 0.995). 279 

The exogenous HygR gene integrated into PHRE12 was used to quantify the copy number of 280 

PHRE11. 281 

These qPCR reactions were conducted with Hieff® qPCR SYBR Green Master Mix (No Rox; 282 

YESAN, Shanghai, China). The primer sequences used in the qPCR experiments are listed in 283 

Supplemental Table 5, 7 and 8. 284 

  285 



                                                              Page 11 of 33 
 

Results 286 

Identification of active Moso bamboo LTR-REs 287 

In order to profile the active LTR-REs, the Moso bamboo genome sequences (Zhao et al., 2018) 288 

was first re-investigated to curate a comprehensive set of transposons. Using the LTRpred and 289 

LTRdigest pipelines, we identified a total of 1,014,565 LTR-REs, including 7,731 full-length intact 290 

elements. The proportion of LTR-RE sequences was 54.97% of the genome by length (Table 1). 291 

Careful inspection of their sequences found that Ty1-Copia and Ty3-Gypsy superfamilies had 292 

diverse usage of PBS motifs (Table S9). MetCAT24 and LysTTT were the most common PBS 293 

motifs associated with 83.42% of LTR-REs in Moso bamboo, therefore, these sequences were 294 

chosen to enrich LTR-REs in the ALE-seq experiments that will be detailed below. 295 

 296 
Table 1. Classification of LTR-REs in Moso bamboo genome. 297 

Superfamily Lineage Familya Structure Numberb Ratio (%) Length (bp) Content (%) 

Ty1-Copia tork 236 GAG-PR-INT-RT-RH 145708 14.36 124219995 6.51 

 retrofit 342 GAG-PR-INT-RT-RH 41965 4.14 43615815 2.29 

 sire 136 
GAG-PR-INT-RT-RH-

ENV 
223386 22.02 210097734 11.01 

 oryco 105 GAG-PR-INT-RT-RH 22078 2.18 22854591 1.20 

 Total 819  433137 42.69 400788135 21.01 

Ty3-Gypsy del 207 
GAG-PR-RT-RH-INT-

CHR 
295222 29.10 334005916 17.51 

 reina 249 
GAG-PR-RT-RH-INT-

CHR 
27803 2.74 39235939 2.06 

 crm 47 GAG-PR-RT-RH-INT 40781 4.02 44298955 2.32 

 tat 238 GAG-PR-RT-RH-INT 217288 2.14 230055053 12.06 

 Total 743  581428 57.31 647905081 33.96 

Total  1562  1014565  1048693216 54.97 
a represents the family number in individual lineage. 298 
b represents the number of LTR-REs in Moso bamboo genome. 299 
c represents the proportion of each lineage in Moso bamboo genome. 300 

 301 

To identify active Moso bamboo LTR-REs that are potentially mobile, we collected samples 302 

from the stressed seedlings (Heat, Cold, UV, and Salt] and at various developmental states of shoot 303 

tissues (ICD, RCD, RCE, GSI, and YSI), meristematic tissue (Calli), and intercalary meristems in 304 

shrunk (IMS15) and lengthened (IML15) parts of 15th twisted internodes (Fig. 1). Using these 305 

samples, we carried out ALE-seq and RNA-seq experiments to measure the levels of DNA and 306 

RNA intermediates, which will collectively be used to identify active LTR-REs. After cleaning and 307 

mapping of sequenced reads, the reproducibility of the ALE-seq samples was examined by 308 
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clustering analysis based on Euclidean distance. Fig. S1 shows moderate to strong reproducibility 309 

among the samples in different stress treatments and developmental stages. DESeq2 analysis 310 

identified a varying number of significantly up-regulated eclDNAs, ranging from 0 to 3,676 in 11 311 

different comparisons (Table 2). A relatively higher number of up-regulated eclDNAs were 312 

observed in the samples treated with UV (n=3,676), Salt (n=3,166), ICD (n=2,669), and Calli 313 

(n=2,646), while other samples possessed far fewer up-regulated eclDNAs (Table 2). In addition, 314 

2,239 LTR-REs were commonly found to be up-regulated in eclDNA levels in the four types of 315 

samples (Fig. 2a). 316 

 317 

Table 2. Number of LTR-REs with significantly increased abundance of eclDNA and (or) 318 

RNA in each comparison. 319 

Sample 

Elongation 

internodes 

Color variation 

internodes 

Form variation 

internodes 
Seedlings under abiotic stress 

Union 

RCE ICD YSI GSI IMS15 IML15 Heat Cold UV Salt Calli 

eclDNA 21 2 669 15 101 0 25 25 31 3 676 3 166 2 646 4 201 

RNA 236 3 938 235 289 25 60 119 27 3 638 3 726 3 966 5 438 

 320 

RNA-seq was also carried out using the samples as above and were analyzed to quantify the 321 

RNA levels of LTR-REs. Consistent with the ALE-seq data, a greater number of significantly up-322 

regulated LTR-REs were found in Calli (n=3,966), ICD (n=3,938), Salt (n=3,726) and UV 323 

(n=3,638) samples, and much smaller number of up-regulated LTR-REs were found in other 324 

samples (Table 2). Amongst those with increased RNA levels, 3,607 of them were commonly 325 

appeared as up-regulated by the treatments (Fig. 2b). 326 

A total of 2,170 LTR-REs, accounting for 0.21% of all LTR-REs, were significantly and 327 

commonly up-regulated in both ALE-seq and RNA-seq (Fig. 2c; hereinafter defined as ‘active’ 328 

LTR-REs). Detailed information of these 2,170 is curated in Table S10. The proportions of the Ty1-329 

Copia, Ty3-Gypsy and other superfamilies in these active LTR-REs were 56%, 39% and 5%, 330 

respectively (Fig. 2D). The largest number of LTR-RE was detected in tat lineage (24%), followed 331 

by reina (21%) and tork (14%) successively (Fig. 2d), which differ from the genomic copies 332 

composition (Table 1), indicating a stress- and developmental stage-specific activation of LTR-333 

REs. 334 

The top twenty-two most significantly up-regulated elements in the ALE-seq data (Log2FC ≥ 335 

10 and FDR < 0.00001; Table S11) among the 2,170 LTR-REs were selected for further qPCR 336 

validation detecting eclDNA and RNA levels. The qPCR results showed that these LTR-REs 337 



                                                              Page 13 of 33 
 

exhibited significantly up-regulated levels of both eclDNA and RNA in the stressed samples 338 

compared to the control samples (Fig. S2 and S3). 339 

 340 

 341 

Fig. 2. Venn diagram of LTR-REs with significantly up-regulated abundance in treatments, different 342 

development stages and variation tissues. (a) LTR-REs with significantly up-regulated eclDNA abundance in ALE-343 

seq. (b) LTR-REs with significantly up-regulated expression in RNA-seq. (c) LTR-REs with up-regulated abundance 344 

in both ALE-seq and RNA-seq. (d) Classification of the 2,170 LTR-REs. 345 

 346 

Genomic and epigenomic features of active LTR-REs 347 

The active LTR-REs were unevenly distributed across the chromosomes, whilst the four 348 

samples (ICD, Calli, Salt, and UV) exhibited a largely similar pattern of their chromosomal 349 

locations (Fig. 3a). Of note, the active LTR-REs were strongly associated with the gene-rich 350 

regions, and in fact, 97.73% of these retroelements are located within 2,000 bp from the closest 351 

genes (Fig. 3b). In addtion, the LTR regions of these active LTR-REs contain cis-regulatory 352 

elements including those involved in the hormonal singalling (auxin and gibbereillin), stress 353 

response, cell cycle regulation, meristematic growth and core promoter elements (Fig. 3A and Table 354 
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S12). Hence, these collectively suggest that the active LTR-REs might be functionally associated 355 

with the neighbouring genes in the control of stress tolerance and development. 356 

To further investigate the functional relevance of active retroelements on the neighboring 357 

genes, we retrieved the sequences of 2,014 genes that are within 2,000 bp from the active LTR-REs 358 

and assessed their treanscript levels. Intriguingly, many of these genes were strongly up-regulated 359 

in the Salt and UV samples (Fig. 3c). Additionally, the gene ontology analyses identified the genes 360 

in the hyperosmotic salinity response, 6-phosphofructo-2-kinase activity, arginine catabolic process 361 

to proline, DNA metabolic process, DNA repair complex, cell cycle checkpoint and chromosome 362 

were enriched (Fig. S4). KEGG analysis showed that the pathways in the ubiquinone and other 363 

terpenoid-quinone biosynthesis, alpha-linolenic acid metabolism, glycan degradation, peroxisome, 364 

autophagy and oocyte meiosis were significantly enriched (Table S13). This is in line with the fact 365 

that DNA metabolic process and DNA repair complex are associated with UV stress; hyperosmotic 366 

salinity response, 6-phosphofructo-2-kinase activity, and arginine catabolic process to proline with 367 

NaCl stress; and cell cycle checkpoint and chromosome with cell growth factors act in the plant 368 

development and growth.  369 

We next wanted to understand how the active LTR-REs are induced in specific conditions. 370 

Since the DNA methylation can be drastically altered in response to stresses and critical 371 

developmental transition, we examined the epigenome changes induced by the treatments using the 372 

whole-genome bisulfite sequencing (WGBS) dataset generated in our previous study (Ding et al., 373 

2022). Although the plant samples [UV, CK (control to UV), Salt and Wa (irrigation with water; 374 

control to Salt)] were prepared independently, they were grown and treated with stresses in the 375 

same way as those plants used for RNA-seq and ALE-seq. Importantly, the DNA methylation 376 

profiling in the 2,170 ative LTR-REs showed that the UV and Salt samples exhibited reduced DNA 377 

methylation compared to the CK and Wa in all cytosine contexts (Fig. 3d). These results support 378 

the notion that the increased expression of the active retrotransposons might be attributed to the 379 

reduction of DNA methylation, and partly account for the induction of the neighbouring genes as 380 

well. These altogether might indicate that the active LTR-REs, together with the associated genes, 381 

constitute specific gene regulatory networks through both genetic and epigenetic signals, potentially 382 

benefiting the host plants with stress response and growth regulation. 383 
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 384 

Fig. 3. Distribution, expression and methylation of the 2,170 activated LTR-REs. (a) Circos plot shows the 385 

distribution of LTR-REs and protein-coding genes on genomic chromosomes. The average Log2Foldchages of the 386 

activated LTR-REs in ICD, Calli, Salt, and UV were also presented. (b) Histogram of the number of LTR-REs related 387 

to coding genes regions. (c) Expression profile of the genes adjacent to the 2,170 activated LTR-REs in Salt, UV and 388 

CK samples. (d) Methylation profile of the activated LTR-REs in CK, UV, Wa and Salt samples, which contain three 389 

biological repeats, have been statistically analyzed. Wa, water-irrigated treatment, is another control for the salt 390 

treatment. Data is exclusively presented for LTR-REs with methylation profiles in all samples.  391 
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LTR-RE integration and epigenomic changes 392 

To further investigate the functional impact of the activated LTR-REs under stresses, the 393 

WGBS data were used to synchronously detect new insertion sites and their DNA methylation 394 

levels in the Moso bamboo genome using the EpiTEome software (Daron & Slotkin, 2017). We 395 

identified 1,121 new insertions, 637 and 484 of which were detected in the UV and Salt samples, 396 

respectively, and were contributed by similar classes of transposons (Fig. 4a). Remarkably, 922 of 397 

these new insertions were generated by the active LTR-REs (Fig. 4b), which further supports the 398 

robustness of the combined analysis of ALE-seq and RNA-seq of this study. Our alluvial map 399 

analysis found that a significant proportion of the new insertions was observed in Chr13, Chr14 and 400 

Chr12, successively (Fig. 4b). Of the 1,121 new insertions, 231 and 549 were found to be inserted 401 

into or near (< 2,000 bp) protein-coding genes, respectively (Fig. 4c). These data indicate that the 402 

active LTR-REs of Moso bamboo preferably insert to proximal intergenic regions near protein-403 

coding genes. Furthermore, we found that the coding genes located within 5,000 bp of the new 404 

insertion sites of LTR-REs primarily act in the stress response, auxin transport, and high light 405 

intensity response (Fig. S5). 406 

It is well documented that transposon insertions trigger DNA methylation changes around the 407 

inserted sities. To see if this can happen in the Moso bamboo genome, we examined DNA 408 

methylation levels around the regions where the active LTR-REs inserted. The flank sequences (< 409 

1,000 bp) of new LTR-RE insertion sites (Neo-inserted) display lower DNA methylation levels 410 

than those of loci without new insertions (No-inserted) under the same treatment (Fig. 5). In 411 

particular, these hypomethylated regions of the adjacent coding genes may serve as transcriptional 412 

regulatory sequences, such as promoters and enhancers. Therefore, these results imply that the 413 

reduced DNA methylation levels might release transcriptional repression of the associated genes 414 

close to the active LTR-REs under stress, such as UV radiation and salt stress. 415 
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 416 

Fig. 4. New LTR-RE insertion characteristics based on WGBS data in UV and Salt treatments. (a) Proportion of 417 

lineage classification for the mobilized LTR-REs with insertions after Salt and UV treatment. (b) Alluvial plot shows 418 

classification features of LTR-REs with new insertion sites. (c) The positions of new insertion relative to neighbouring 419 

protein-coding genes. 420 

  421 
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 422 
Fig. 5. Methylation levels of the new LTR-RE insertions based on WGBS data in UV and Salt treatments. 423 

(a) Definition of both neo-insertion and no-insertion in the datasets generated from the same treatments. (b) Comparison 424 

of the methylation levels between the same sequence regions (1000 bp upstream and downstream) with new LTR-RE 425 

insertions and without new insertions during stress treatments. 426 

 427 

  428 
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Mobility of the active Moso bamboo LTR-REs 429 

We then wanted to assess the transpositional activity of the active LTR-REs identified in this 430 

study, and to do this, the top twenty-two most significantly up-regulated LTR-REs (summarized in 431 

Table S11) were carefully examined for their protein domains and LTR sequences. Two LTR-REs 432 

were found to be complete and intact, containing the conserved gag and pol domains and high 433 

similarity between 5’ and 3’ LTR sequences. These two full-length LTR-REs from Gypsy 434 

superfamily were named PHRE11 (Phyllostachys edulis retrotransposon 11) and PHRE12 (Gpysy ; 435 

Table S11 and Fig. S6), and were further investigated for their new insertions in Moso bamboo 436 

seedlings subjected to abiotic stress and in Moso bamboo internodes. 437 

To assess the transpositional activity of PHRE11 and PHRE12, the transposon display 438 

technique was employed. As shown in Fig. 6, the polymorphic bands were observed for PHRE11 439 

in all of the samples tested and those for PHRE12 in most of the samples except for GSI. The 440 

polymorphic bands were recovered from the gels for sequencing and determined for new insertion 441 

sites. Seven bands were identified as new insertions located within 1,500 bp upstream or 442 

downstream of protein-coding genes (Fig. 6). The analysis of sequence similarity has revealed the 443 

putative functions of these genes in response to stress or development. Specifically, the homologous 444 

genes of PH02Gene11330 (GT-1) and PH02Gene20741 (PGR3) from UV samples are associated 445 

with the light signaling (Ayadi et al., 2004) and photosynthesis (Yamazaki et al., 2004), 446 

respectively, while PH02Gene46833 (CIPK23) from Salt samples is involved in osmotic stress 447 

(GO:0006970). Additionally, PH02Gene28894 (CSLD3) from the ICD and PH02Gene36141 448 

(SAG12) from calli play roles in vascular development (GO:0009833) and cell apoptosis 449 

(GO:0010623), respectively. Our analysis confirms that the active LTR-REs PHRE11 and PHRE12 450 

are capable of inserting into new genomic positions under stress or during development. Moreover, 451 

our data indicates that the mobilization of transposons driven by stress may reconfigure the gene 452 

regulatory network by inserting close to key relevant genes.  453 
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 454 

Fig. 6. Detection of PHRE11's and PHRE12’s new insertions using transposon display technique. (A) 455 

Polyacrylamide gel electrophoresis of polymorphism bands for detecting new LTR-RE insertions. M, DNA marker. 456 

The red arrows emphasized new insertions adjacent to protein-coding genes. (B) Protein-coding genes adjacent to 457 

PHRE11’s and PHRE12’s new insertion sites. Positive distance values indicate that the new LTR-RE insertions were 458 

discovered upstream of coding genes, while negative values indicate that they were found downstream of coding genes. 459 

 460 

To further determine the mobilization characteristics of LTR-REs identified in this study, 461 

PHRE11 was selected and introduced into Arabidopsis thaliana. PHRE11, tagged with the HygR 462 

gene between the pol domain and 3’ LTR region, was cloned downstream of 35S promoter of 463 

pCAMBIA3301 vector (named pCAMBIA3301-PHRE11; Fig. 7a). The transgenic Arabidopsis 464 

plants were confirmed by the presence of the HygR gene (Fig. S7), and four independent transgenic 465 

lines were obtained (Table 3; T1-1 to T1-4). We used qPCR to measure the copy number of 466 

PHRE11 in the genomic DNA of the descendants of A. thaliana transgenic lines. A greater number 467 
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of PHRE11 copies were detected as generation progressed, indicating that PHRE11 transposed 468 

during inbreeding of the transgenic plants. This pattern was most prominently observed in the T2-469 

2-2 offsprings (T3 generation: T3-2-2-2 and T3-2-2-3; Table 3). In line with this observation, the 470 

T2-2-x lines (T2-2-1, T2-2-2, T2-2-3 and T2-2-4; Table 3) and T2-2-2's offsprings exhibited 471 

vegetative growth defects with distinct reduction in leaf area, number, and stature than the wild-472 

types (Fig. 7b, c). We further carried out chromosome walking experiments to identify the new 473 

insertions of PHRE11 in T3-2-2-2 and T3-2-2-3, and two insertions were identified in AT4G17140 474 

and AT2G19690 (Table S14). These data further provide ex situ evidence that PHRE11 is able to 475 

transpose and partly suggest its insertion perference towards protein-coding genes.  476 

 The vector pCAMBIA3301-PHRE11 was also introduced to moso bamboo by co-cultivating 477 

the plasmid with the calli in the PEI-SWNTs (Polyethylenimine Functionalized Single-Walled 478 

Carbon Nanotubes) DNA delivery buffer (Fig. 7a, d). After the sub-culture in the hygromycin 479 

media, the newly grown calli were tested for PHRE11 transposition. The HygR gene integrated into 480 

PHRE11 was successfully amplified from the fresh calli by PCR (Fig. 7e), and the RT-PCR 481 

experiments revealed that HygR is expressed in the newly proliferated calli (Fig. S8). Furthermore, 482 

chromosome walking was performed to map the new insertions in the transformed calli (Fig. 7f). 483 

These insertion sites were located in Chr3, Chr17 and Chr21, respectively (Table S15). These 484 

results together indicate that PHRE11 is mobile in the Moso bamboo.  485 
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 486 

Fig. 7. PHRE11 transgene into Arabidopsis thaliana and Moso bamboo calli. (a) pCAMBIA3301-PHRE11 vector 487 

construction. (b) wild-type and PHRE11-OE (T2-2-2) A. thaliana plants, showing the vegetative phenotypes. (c) 488 

Statistics of plant vegetative traits for wild-type and PHRE11-OE plants. **P < 0.01 and ***P < 0.001, by Tukey test. 489 

(d) Transgene scene of pCAMBIA3301-PHRE11 into Moso bamboo calli. (e) HygR were onlyamplified from the 490 

transgenic calli by PCR. (f) Chromsome walking experiment for detecting the transposition of the modified PHRE11 491 

in subcultured calluses. Primary PCR: lanes a1, b1, c1, d1, e1, and f1; Secondry PCR: lanes a2, b2, c2, d2, e2, and f2; 492 

Tertiary PCR: lanes a3, b3, c3, d3, e3, and f3. Only those plain products from tertiary PCR were used to detecte 493 

transpositions of the modified PHRE11. The PCR products of PHRE11, surrounded by the red box in the 494 

electrophoretogram, were found to be inserted near coding genes. M, DL 5000 bp DNA Marker; WT, wild-type.  495 
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Table 3. HygR copy number in transgenic A. thaliana. 496 

T1 copy number T2 copy number T3 copy number 
T1-1 2.63 T2-1-1 2.90 T3-1-1-1 3.02 
    T3-1-1-2 5.61 
    T3-1-1-3 1.51 
  T2-1-2 5.35 T3-1-2-1 4.84 
    T3-1-2-2 9.75 
    T3-1-2-3 4.98 
  T2-1-3 9.16 T3-1-3-1 5.75 
    T3-1-3-2 2.20 
    T3-1-3-3 2.93 
T1-2 13.14 T2-2-1 19.69 T3-2-1-1 10.47 
    T3-2-1-2 20.44 
    T3-2-1-3 31.93 
  T2-2-2* 7.08* T3-2-2-1* 7.80* 
    T3-2-2-2* 10.62* 
    T3-2-2-3* 11.48* 
  T2-2-3 12.30 T3-2-3-1 21.80 
    T3-2-3-2 17.25 
    T3-2-3-3 3.67 
  T2-2-4 20.61 T3-2-4-1 20.24 
    T3-2-4-2 18.66 
    T3-2-4-3 22.87 
T1-3 3.41 T2-3-1 2.17 T3-3-1-1 2.07 
    T3-3-1-2 2.36 
    T3-3-1-3 2.40 
  T2-3-2 6.14 T3-3-2-1 2.63 
    T3-3-2-2 4.47 
    T3-3-2-3 4.77 
  T2-3-3 2.29 T3-3-3-1 2.20 
    T3-3-3-2 1.70 
    T3-3-3-3 1.95 
T1-4 3.90 T2-4-1 1.43 T3-4-1-1 4.76 
    T3-4-1-2 1.12 
    T3-4-1-3 4.17 
  T2-4-2 2.53 T3-4-2-1 2.24 
    T3-4-2-2 1.23 
    T3-4-2-3 3.51 
  T2-4-3 3.33 T3-4-3-1 2.27 
    T3-4-3-2 2.38 
    T3-4-3-3 5.35 

* highlights T2-2-2 and its descendants 497 
  498 
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Discussion 499 

LTR-REs have successfully proliferated in the genomes of higher plants, resulting in a 500 

significant increase in genome size and creating genetic variability (Lisch, 2012). Historical 501 

transposition events caused diverse changes in the structure and expression of genes (Hirsch & 502 

Springer, 2017). Although LTR-REs are abundant in plant genomes, majority of them are normally 503 

quiescent in transposition (Schorn et al., 2017). Nonetheless, many studies demonstrated that 504 

retrotransposons can be activated by stress and developmental signals of the host genome. 505 

Mobilization of retrotransposons plays important roles in the stress resistance (Waititu et al., 2020), 506 

metabolic process (Butelli et al., 2012), and development, through either cis or trans regulation 507 

and/or spreading of DNA methylation (Gutzat et al., 2020; Canat & Torres-Padilla, 2021). 508 

Unfortunately, studies so far only inspected single or a few LTR-REs for their roles in plant gene 509 

regulation. The comprehensive examination of large-scale transposons involved in the regulation 510 

of gene transcription in response to abiotic stress and development remains deficient, greatly 511 

limiting our ability to grasp the inherent significance of the temporally activated LTR-REs. 512 

Therefore, we utilized various techniques to investigate transpositionally and transcriptionally 513 

competent LTR-REs and their impacts on the gene control in Moso bamboo. 514 

LTR-REs can be activated by environmental stimuli or the developmental state of their host 515 

cells, but their responses to various stresses and developmental phases are markedly heterogeneous. 516 

We tested multiple stresses and developmental stages of Moso bamboo and identified thousands of 517 

active LTR-REs in this study (Fig. 2 and Table 2). The active LTR-REs exhibited some degree of 518 

variability across different stresses and developmental tissues, but a substantial number of them 519 

were found active commonly in Calli, ICD, Salt, and UV samples, and it was marginal in other 520 

samples under specific conditions. Fan et al. (2013) found that Pinus massoniana needles showed 521 

few activation of LTR-REs in response to extreme temperatures like heat and cold. However, they 522 

observed a genome-wide transcriptional activation of LTR-REs when the needles were exposed to 523 

UV light and various phytohormone treatments. The LTR-REs in pitaya (Hylocereus undatus) are 524 

strongly activated under cold and salt stress, with a relatively weaker response to heat stress and 525 

UV exposure (Nie et al., 2019). In Arabidopsis, the shoot apical meristem cells in the early stages 526 

of vegetative growth demonstrate elevated transposon activity (Gutzat et al., 2020). Collectively, 527 

these suggest that the extent of transposon activation is subject to fluctuations based on the 528 

prevailing stress and developmental circumstances, as well as the particular species under 529 

consideration. 530 

In general, DNA methylation levels remain relatively constant across plant tissues, except for 531 

the juvenile and fast-growing stages (Bartels et al., 2018). This is consistent with the previous 532 
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studies suggesting that global methylome changes were only marginal (Korotko et al., 2021; Ding 533 

et al., 2022). Given these observations, the reduced activation of LTR-REs detected in the samples 534 

(GSI, IML15, IMS15, RCE, YSI, and heat/cold stress leaves; Table 2) might be due to the limited 535 

DNA methylation changes or the inhibition from hypermethylation. Ding et al. (2022) observed 536 

that both cold and heat stress induce the excessive elevation of hyper CHG methylation in Moso 537 

bamboo genome, which in turn restrains transposon activity (Wang et al., 2018). Conversely, the 538 

samples that underwent UV radiation and salt stress were found hypomethylated in CHG (Ding et 539 

al., 2022). Then, they manifested an exceedingly high copy number of active retrotransposons (Fig. 540 

2 and Table 2). It was known that UV radiation and salt stress can potentiate global DNA 541 

demethylation in plant genomes (Jiang et al., 2021; Skorupa et al., 2021). In our methylome data, 542 

most of LTR regions of the active LTR-REs in the UV and Salt samples showed reduced DNA 543 

methylation levels (Fig. 3D), which can account for the high number of reactivated retrotransposons 544 

by the two stress treatments. More recently, Ding et al. (2024) also found that hypomethylation of 545 

LTR regions accounts for LTR-RE activation during abiotic stress. Additionally, previous studies 546 

demonstrated that DNA methylation is drastically lost during callus culture (Gao et al., 2014), 547 

which then results in transpositional burst of transposable elements (Hu et al., 2019). Consistently, 548 

we found 3,966 reactivated LTR-REs in the tissue cultured samples (Table 2). Moreover, it is well 549 

documented that transposable elements are globally methylated in plant meristems to maintain 550 

genome stability (Baubec et al., 2014). However, a more recent study demonstrated that 551 

transposable elements become activated in the shoot apical meristems at an early vegetative phase 552 

(Gutzat et al., 2020). In agreement with this notion, we identified high number of reactivated LTR-553 

REs in Moso bamboo at ICD but low number at RCE (Table 2). 554 

LTR-REs are more frequently found in the pericentromeric regions of plant genomes (Paterson 555 

et al., 2009; Wei et al., 2013). Some LTR-REs prefer to insert into gene coding regions, however, 556 

they can be subjected to purifying selection to avoid adverse effects of gene disruption (Wright et 557 

al., 2003; Paterson et al., 2009). Although the overall distribution of LTR-REs is inversely 558 

correlated with that of coding genes in Moso bamboo (Zhou et al., 2017b), the reactivated LTR-559 

REs in the current study show distinctive distribution bias on chromosomes (Fig. 3a). Notably, 560 

these elements were frequently observed in the vicinity of protein-coding genes, within a range of 561 

2,000 bp, and a small proportion of them were located within gene bodies (Fig. 3b). Intriguingly, 562 

the new insertions derived from LTR-REs reactivated by UV and Salt also exhibit a propensity to 563 

integrate into the vicinity of the coding genes (Fig. 4c). The insertional preference to genes has been 564 

well documented for heat-stressed activated Onsen, which approximately 81% of its insertion 565 

events occurred inside gene bodies (Gaubert et al., 2017). 566 
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Since eclDNA is the final intermediate of the retrotransposition process (Griffiths et al., 2018; 567 

Cho et al., 2018), we performed further experiments to verify the integrational activity of these 568 

reactivated LTR-REs, such as PHRE11 and PHRE12 (Fig. 6a). All the new insertion sites were 569 

located near the protein-coding genes with distances less than 1,500 bp (Fig. 6b), which is similar 570 

to what was observed for the genomic distributions of the active retrotransposons and their new 571 

insertions induced by stress conditions (Fig. 3b and Fig. 4c). Interestingly, all the genes associated 572 

with the new insertions of both PHRE11 and PHRE12 share common functional linkages to the 573 

given treatments and development (Fig. 6). For example, PHRE11 in ICD inserted close to 574 

PH02Gene28894 (CSLD3), which is involved in the synthesis of polymers for the fast-growing 575 

primary cell wall (Wang et al., 2001). Considering that the transposition event is highly dynamic 576 

and shows heterogeneity in different tissues and even at single cell levels, we demonstrate that 577 

LTR-REs might have inserted close to the relevant genes under specific conditions to meet 578 

developmental demand or adapt to changing environment. It is possible that the tendency of these 579 

LTR-RE insertions near (or in) stress- and development-related genes might be due to the increased 580 

expression of the genes, which may create opportunities for chromatin opening, or be caused by 581 

other unknown molecular mechanisms. However, these questions still require further investigation 582 

of transpositional dynamics in different cells upon various environmental factors. 583 

In our study simultaneously detecting the new insertions of LTR-REs and the DNA methylation 584 

of the flanking regions of these insertion sites, the insertion of LTR-REs at new sites will generally 585 

result in a significant decrease in the methylation level of adjacent sequences (< 1,000 bp) when 586 

compared to the absence of LTR-REs insertion under the same stress conditions (Fig. 5b). More 587 

recently, Noshay et al. (2019) suggested that transponson insertions can induce higher DNA 588 

methylation around the insertion regions in maize. In fact, opposing observations were previously 589 

made in different studies that transposon insertions can either increase or decrease the DNA 590 

methylation levels in the flanking DNA (Drongitis et al., 2016; Choi & Purugganan, 2017), such 591 

divergence of which might be determined by certain genetic context (Noshay et al., 2019). In short, 592 

our results suggest that LTR-REs insertions can change the methylation pattern in the regions 593 

around new insertions under specific conditions. 594 

The transposon's LTR regions have the capacity to function as promoters and/or enhancers, 595 

thereby governing the expression of neighboring genes (Grandbastien, 2015; Canat & Torres-596 

Padilla, 2021). The LTR sequences of the active LTR-REs in this study are enriched with cis-597 

elements associated with stress responsiveness, auxin and gibberellin response, and cell growth 598 

(Fig. 2a and Table S12). Therefore, we reasoned that the active LTR-REs might involed in the 599 

expression of the nearby genes, which are enriched in some relevant functions or pathways involved 600 
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in stress responses and cell growth (Fig. S4; Table S13), through cis-acting. This hypothesis was 601 

supported by the synchronously increased expression of genes near the activated LTR-REs under 602 

the same conditions (Fig. 3c). Similar results were found in the work of Makarevitch et al. (2015) 603 

which revealed that many transposons can serve as promoters or enhancers to stimulate the 604 

expression of nearby stress-responsive gene under abiotic stress in maize. In addition, our 605 

transgenic approaches of Arabidopsis thaliana ex situ and Moso bamboo in situ experiments have 606 

demonstrated that the insertion of active PHRE11 is feasible either within or in close proximity to 607 

genes (Fig. 7, Tables S14 and S15). Interestingly, the offsprings of transgenic line T2-2-2 with a 608 

high copy number of PHRE11 exhibited vegetative growth defects showing reduced plants size 609 

compared to the wild type (Table 3; Fig. 7b, c). We identified two insertion sites of PHRE11 in 610 

these dwarfish plants and one of the insertion sites was inside AT2G19690, a gene involved in 611 

growth and development (Lee et al., 2003), and the other insertion in the upstream of AT4G17140, 612 

a pleckstrin homology gene. Thus, the dwarfism of the transgenic lines might be resulted from the 613 

malfunction of the two genes. Altogether, these data provide appropriate examples that mobilization 614 

of LTR-REs reshapes the gene regulatory network in stress response and development in Moso 615 

bamboo. 616 

In this study, we systematically captured a large mount of active LTR-REs induced by mutiple 617 

stress conditions and specific developmental stages using an integrated approach coupling ALE-618 

seq and RNA-seq. We found that most of the reactivated retroelements are strongly correlated 619 

geographically and transcriptionally with protein-coding genes involved in stress resistance and 620 

development. The regions flanking the new inserted active LTR retrotransposons show reduced 621 

methylation levels under stress conditions, suggesting their role in regulating the expression of 622 

neighboring genes. The genic perference of transposition for LTR-REs and their impact on the 623 

expression of stress-responsive and development-related genes were validated with representative 624 

transposons. Our results address the potential adaptive role of LTR-RE-mediated remodulation of 625 

gene expression involved in stress response and development. These efforts lay the foundation for 626 

further research on the mechanism of LTR-REs in regulating plant growth and development. 627 

  628 
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