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Abstract—Massive multiple-input multiple-output (MIMO)
networks are highly vulnerable to an active eavesdropping attack
called pilot spoofing attack. The pilot spoofing attack causes
information leakage to the active eavesdropper (ED) and also
weakens the strength of the signal received by the attacked legit-
imate user equipment (UE) during the downlink transmission. In
this paper, a deep neural network, called identification network
(IDNet), is proposed to detect asynchronous pilot spoofing attacks
and identify the attacked UE. We show that an asynchronous
pilot spoofing attack leads to increasing the signal subspace
dimension by one unlike the synchronous one. This property
is then exploited to improve the attack detection/identification
accuracy. In the proposed IDNet, the input features are the
eigenvalues of the sample covariance matrix of the received signal
at the base station (BS) as well as the ratio between the power
of the received signal at the BS projected onto the pilot signals
and its expected value. Numerical results show the effectiveness
of IDNet in identifying the attacked UE and reveal that the
larger the timing and/or frequency mismatches of the ED, the
higher the identification accuracy confirming that asynchronous
pilot spoofing attacks can be identified more accurately than
synchronous pilot spoofing attacks.

Index Terms—Deep neural networks, massive multiple-input
multiple-output, physical layer security, asynchronous pilot
spoofing attack, attack detection and identification.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) techniques
have demonstrated their effective ability to help meet the
exponentially increasing demand in wireless networks [1]–
[3]. Indeed, massive MIMO is an important enabler of the
fifth generation (5G) of wireless networks and is expected to
play an important role in the upcoming sixth generation (6G)
of wireless networks [4], [5]. In particular, massive MIMO
systems can achieve unprecedented gains in terms of spectral
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and energy efficiency [1]. However, despite this promising
outlook of massive MIMO, wireless networks that exploit
this technology are highly vulnerable to active eavesdropping
attacks known as pilot spoofing attacks [6], [7]. In a massive
MIMO network, given the large number of antennas at the base
station (BS), it is more practical to adopt the time division
duplex (TDD) transmission mode while performing channel
estimation during uplink. In a pilot spoofing attack, during the
uplink channel estimation phase, an active eavesdropper (ED)
transmits the same pilot signal as that of the legitimate user
equipment (UE) under attack. As a result, the BS estimates the
uplink composite channel of the UE under attack and the ED.
Hence, in the downlink phase, a portion of the signal intended
for the UE under attack will be leaked towards the ED, without
the knowledge of the BS. Naturally, a larger ED pilot signal
power will lead to a larger leakage and a weaker received
signal at the UE under attack. Hence, there is a need to address
several challenges related to pilot spoofing attacks, that include
detection and design of efficient and robust countermeasures.

Several works in the literature investigated the above chal-
lenges by proposing detection schemes and countermeasures.
The authors in [8] presented a detection approach, called
the energy ratio approach, that exploited the asymmetry of
the received signal power at the BS and UE and derived a
detection threshold without knowledge of the UEs and ED
channel state information (CSI). However, as the detection
happens at the UE, the BS needs to send the calculated average
power received in the uplink to the UE so that the UE can
determine the presence or absence of attack. Additionally,
the UE needs to notify the BS of an attack, if any, so that
the BS can take appropriate countermeasures. This exchange
between the BS and UE will lead to a communication over-
head including frame format change, which is undesirable.
Similarly, the authors in [9] proposed three detection schemes
for massive MIMO systems leveraging the received signal
power at the UE and BS to derive an energy ratio that
only requires knowledge of the noise variance and large-
scale fading coefficients. Joint detection and localization of the
eavesdropper in MIMO systems using spatial spectrums was
proposed in [10]. The authors in [11] proposed a detection
method that is based on the likelihood ratio test principle and
uses the channel estimate. [12] proposed a detection method
that is also based on likelihood ratio test principle but employs
pilot manipulation in which UEs randomly partition their pilot
sequences into two parts and multiply the second part by a
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diagonal matrix. However, the works in [9] and [10] only
considered a single user system and [9]–[12] assumed that
the ED is perfectly synchronized with the UE.

The body of literature in [13]–[16] developed detection
methods using source enumeration approaches, which are used
in array signal processing to detect the number of incident
signals. In these approaches, UEs are treated as sources and if
the number of detected sources is equal to the number of UEs
in the system then there is no ED and if the number of sources
is greater than the number of UEs then an ED is present. The
works in [13] and [14] applied source enumeration to detect
the ED by superimposing a random signal onto the pilot signal
of the UE and estimating the signal subspace dimension using
the minimum description length (MDL) estimator. By doing
so, in the presence of the ED, the signal subspace dimension
increases by one and, hence, source enumeration can help
determine the presence or absence of the ED. However, this
comes at the expense of reducing the training power budget
of the pilot signal thereby decreasing CSI estimation accuracy
[13]. The authors in [15] also used an eigenvalue-based
estimator using Akaike’s information criterion (AIC), which
outperformed MDL for shorter pilot signals. The authors in
[16] presented a jamming attack detection scheme in a massive
MIMO network where random matrix theory was used to
analyze the largest eigenvalues of the covariance matrix and
outperformed MDL. Other source enumeration methods could
also be adapted for ED detection [17]–[19].

All of the prior art [8]–[16] and references therein, assumed
perfect timing and frequency synchronization between the
attacked UE and ED during the uplink pilot signal transmission
phase, which is difficult to achieve in practice. Also, the
existing works [8]–[10], [13]–[16] used conventional signal
processing techniques to detect whether an attack is present
but they are unable to identify the attacked UE. Being able
to identify the attacked UE is of paramount importance as in
this case only the service to the identified attacked UE could
be interrupted and not to all the UEs in the network.

In contrast to these prior works, the main contribution
of this paper is a novel framework that uses deep neural
networks (DNNs) to simultaneously detect asynchronous pilot
spoofing attacks and identify the attacked UE in massive
MIMO systems. Although DDNs were used in the detection of
the number of sources in array signal processing [20]–[22], to
our knowledge, they have not been exploited for the problem
of the detection and identification of pilot spoofing attacks
in massive MIMO systems. In contrast to prior works such
as [23] that used support vector machines (SVMs) to detect
detect active eavesdropping attacks in single antenna multiuser
communications, our approach has five distinguishing charac-
teristics: 1) We consider a massive MIMO setup while [23]
considered a single antenna multiuser setup, 2) unlike [23];
we consider the more practical case in which the ED is not in
perfect synchronization with the BS, 3) we use DNNs instead
of SVMs, 4) we use different features such as the eigenvalues
of the covariance matrix of the received signal as input to the
DNNs, 5) in addition to detection of attack, we propose to
identify the attacked UE. In summary, our key contributions
include:

• We consider a new practical scenario in which the ED,
unlike the legitimate UEs, is not in perfect synchroniza-
tion with the BS during the uplink pilot signal transmis-
sion.

• We show that if the ED is present and not in perfect
timing and/or frequency synchronization with the BS, the
dimension of the signal subspace increases by one, which
we exploit to detect the presence of the ED and identify
the attacked UE.

• We propose a DNN-based approach, called identification
network (IDNet), deployed at the BS to simultaneously
detect pilot spoofing attacks and identify the attacked UE.
This approach enables the BS to selectively terminate the
downlink transmission to the affected UE, minimizing
downtime for unaffected UEs. To our best knowledge, no
existing work has considered identifying attacked UEs in
massive MIMO networks suffering from pilot spoofing
attacks.

• We also propose to use multiple frames to improve the
identification accuracy.

• Comprehensive simulation results show that the proposed
IDNet is effective in identifying the attacked UE and
that asynchronous pilot spoofing attacks are easier to be
detected and identified compared to synchronous pilot
spoofing attacks.

The rest of the paper is organized as follows. In Section II,
we introduce the proposed model with the asynchronous pilot
spoofing attack. In Section III, the proposed DNN architecture
and feature vectors are presented. Section IV provides simu-
lation results and discusses the performance of the proposed
architecture. In Section V, we draw key conclusions.

Notation: E[·] and ∥ · ∥F denote the expectation and the
Frobenius norm of a matrix, respectively. The operators (·)T
and (·)H denote the transpose and complex conjugate (Her-
mitian) transpose, respectively. IM , Rm×n, Cm×n denote the
M × M identity matrix, the real and complex spaces of
dimension m × n, respectively. diag(x1, x2, . . . , xL) denotes
an L × L diagonal matrix with diagonal elements given by
x1, x2, . . . , xL. x ∼ CN (0,Σ) means that x is a circularly
symmetric complex Gaussian (CSCG) random vector with
zero mean and covariance matrix Σ.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a single-cell massive
MIMO network with a BS equipped with a large antenna
array comprising M antennas and serving a set K of K
single-antenna (legitimate) UEs in the presence of a single-
antenna active ED. The system employs a TDD transmission
mode and exploits the reciprocity of the uplink and downlink
channels. During the uplink channel estimation phase, all UEs
simultaneously transmit mutually orthogonal pilot signals to
the BS. Let ϕi ∈ CL×1 be the pilot signal of UE i ∈ K, where
L is the pilot signal length. Since the pilot signals are mutually
orthogonal, we have ϕH

i ϕj = L if i = j and ϕH
i ϕj = 0 if

i ̸= j. The ED is assumed to have full knowledge of the
pilot signal used by the UE under attack (targeted UE). Thus,
during the uplink channel estimation phase, the ED transmits
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Fig. 1. An illustration of the proposed multiuser single-cell massive MIMO
network with active eavesdroppers performing pilot spoofing attacks.

the same pilot signal as that of the attacked UE. As a result,
the BS estimates the uplink composite channel of the attacked
UE and the ED. Consequently, in the downlink transmission,
a portion of the signal intended for the attacked UE is leaked
to the ED, without the knowledge of the BS. We assume that
if there is a pilot spoofing attack, only one UE is attacked1.

We assume that the channels in the system exhibit block
fading, i.e., they remain constant over a time block and change
independently from one block to another. We define hi ∈
CM×1 as the channel between UE i and the BS and g ∈ CM×1

as the channel between the ED and the BS. We assume that
all the channels are Rayleigh flat-fading channels, i.e.,

hi =
√

βi h̃i, i ∈ K, and g =
√
βED g̃, (1)

where βi and βED represent, respectively, the large-scale fading
coefficients of the channels between UE i and the BS and
between the ED and the BS. These coefficients are assumed
to remain constant throughout the communication and only βi

is known at the BS. h̃i ∈ CM×1, i ∈ K, and g̃ ∈ CM×1 are
vectors with elements modeled as CN (0, 1) and are assumed
to be unknown at the BS.

Prior works [6]–[16], [24], [25] on pilot spoofing attacks
in massive MIMO networks assume the ED to always be
perfectly synchronized with the BS. However, it could be
difficult for the ED to achieve perfect timing and frequency
synchronization in practice. Particularly, unlike UEs that use
timing advance to achieve timing synchronization with the
BS, the ED is an illegitimate user that cannot participate in
this synchronization phase and must only rely on overhearing
the exchanges between the BS and targeted UE to estimate
when to start transmitting. For this reason, the ED timing
synchronization might not be perfect. Hence, hereinafter, we
consider that the ED will have a timing mismatch of τ = eTs,
e ∈ [0, 1), where Ts is the symbol period. Also, because
the ED is an illegitimate user, it is practical to assume that
there is a frequency mismatch between the ED and the BS

1The case of multiple EDs attacking a single or multiple UEs is beyond
the scope of this work and is left for future research.

local oscillators since it is difficult to synchronize them. To
accurately model the timing synchronization mismatch of the
ED, we adopt the discrete-time model of the imperfect timing
synchronization of pilot contamination that was developed
in [26]. In particular, for a timing mismatch of τ and a
normalized frequency offset of ∆f between the ED and BS
and assuming that the ED attacks the kth UE2, the received
signal at the BS during the uplink channel estimation phase,
Y ∈ CM×L, is given by

Y =

K∑
i=1

√
P hiϕ

T
i + α

√
PED gϕT

kF
TU +N , (2)

where P and PED are the transmit powers of the UEs and the
ED during the uplink channel estimation phase, respectively.
α = 1 indicates the presence of the ED and α = 0 its
absence. The imperfect timing synchronization of the ED
is represented by F ∈ CL×L, which is a circulant matrix
and its ith row is the cyclic shift of the row vector fτ =
[fτ,0, . . . , fτ,−L1

, fτ,L2
, . . . , fτ,1] to the right by i positions,

with L = L1+L2+1 [26]. fτ,i = F (iTs−τ), where F (iTs−τ)
is the baseband-equivalent impulse response of the convolution
of the transmit pulse shaping filter and the corresponding
matched receive filter with a timing mismatch of τ = eTs.
We note that in the case of perfect timing synchronization,
i.e., τ = 0, we have F (0) = 1 and F (iTs) = 0, ∀i ̸= 0.
Therefore, it is clear that for perfect timing synchronization,
i.e., τ = 0, F = IL which results in ϕT

kF
T
j = ϕT

k . The
imperfect frequency synchronization of the ED with the BS is
represented by U ∈ CL×L = diag(e−j2π∆f , . . . , e−j2πL∆f ).
N ∈ CM×L is the additive noise matrix with entries modeled
as circularly symmetric complex Gaussian random variables
with zero mean and variance σ2

n, i.e., CN (0, σ2
n). The follow-

ing proposition shows that the timing and/or frequency asyn-
chronicity of the ED with the system increases the subspace
dimension of the received signal at the BS by one.

Proposition 1. The subspace dimension of the received signal
at the BS is K and K +1 in the absence and presence of the
asynchronous pilot spoofing attack (i.e., the ED has a timing
and/or frequency mismatch with the BS), respectively. This
is unlike the synchronous attack where the signal subspace
dimension is always K regardless of the absence or presence
of the ED.

Proof. Let H = [
√
Ph1, . . . ,

√
PhK , α

√
PEDg] ∈

CM×(K+1), Φ = [ϕ1, . . . ,ϕK , ϕk]
T ∈ C(K+1)×L,

where ϕk = UFϕk. Therefore, the received signal at the BS
in (2) can be recast as

Y = HΦ+N . (3)

The covariance matrix of the received signal Y can then be
obtained as

R =
1

L
E[Y Y H ] =

1

L
HΦΦHHH + σ2

nIN = Rs + σ2
nIN ,

(4)

2This means that the ED uses the same pilot signal as that of the attacked
user, UE k, i.e., ϕED = ϕk .
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where Rs = 1
LHΦΦHHH . Since the pilot signals ϕi are

mutually orthogonal and for e ̸= 0 and/or ∆f ̸= 0, ϕk ̸= ϕk,
then rank(ΦΦH) = K+1 given that L ≥ K+1. Also, as all
the channels in the system are independent and N ≫ K + 1,
hence rank(H) = K + 1 with probability 1. Consequently,
it is clear that rank(Rs) = K + 1. So, clearly the imperfect
timing/frequency synchronization of the ED with the system
led to a subspace dimension of K+1 unlike the case where the
ED is perfectly synchronized where the subspace dimension
is K.

Proposition 1 means that the covariance matrix of the
received signal could be exploited to determine the presence or
absence of the ED when it is not perfectly synchronized with
the BS. In particular, the well known MDL method can be
used to estimate the dimension of the signal subspace d using
the eigenvalues of the sample covariance matrix. If d = K
then there is no ED and if d ≥ K + 1 then an ED is present.

In the next section, in contrast to prior works, we propose
a deep learning (DL) approach to detect and identify pilot
spoofing attacks in massive MIMO networks when the ED is
not perfectly synchronized with the system.

III. ATTACK DETECTION AND IDENTIFICATION

In this section, we propose a DNN, called IDNet, to detect
the presence of pilot spoofing attacks and identify the attacked
UEs. We then describe the key features included in the feature
vector.

We propose to formulate the detection of an attack and
identification of the attacked UE as a multi-class classification
problem, where the output of the DNN indicates which UE
are under attack (or if no attack is present). Identifying the
attacked UEs could be paramount as, for example, it enables
the BS to selectively terminate/pause transmission to the
attacked UEs, minimizing unnecessary network downtime and
disruption for the unaffected UEs. We adopt the multilayer
perceptron (MLP) neural network architecture as it can learn
complex non-linear relationships [27], [28] and can be gener-
ally applied to any classification problem if the feature is not
too complex.3.

The proposed IDNet consists of three segments: an input
layer, a number of hidden layers, and an output layer. The input
layer simply has the same dimension as that of the feature
vector. The number of hidden layers and units per each hidden
layer are determined from preliminary testing to observe what
minimizes the training and validation losses to prevent over-
fitting. We use four hidden layers with NM units per layer,
where N is the number of frames. The rectified linear unit
(ReLU) is used as the activation function for each hidden
layer due to its versatility across many classification tasks
[29]. Each hidden layer is preceded by a dropout and batch
normalization (BatchNorm) layer to minimize over-fitting and

3Note that we also considered similar NN architectures to IDNet, such as
CNNs, and more complex NN architectures such as ResNet-50, AlexNet, and
VGG but they did not provide any significant improvement in identification
accuracy during preliminary testing. This shows that our problem does not
require complex NN architectures and a simpler architecture, such as the
proposed IDNet, is sufficient to achieve good performance.

Layer # Units Input Shape Activation
Dense NM NM +K ReLU
Dropout - NM -
BatchNorm - NM -
Dense NM NM ReLU
Dropout - NM -
BatchNorm - NM -
Dense NM NM ReLU
Dropout - NM -
BatchNorm - NM -
Dense NM NM ReLU
Dropout - NM -
BatchNorm - NM -
Dense K + 1 K + 1 Softmax

TABLE I
IDNET STRUCTURE.

provide stable optimization, respectively. An early-stopping
callback is used to cease training when there is no or little
improvement in the validation loss after a certain number of
training epochs. Finally, the output layer consists of K + 1
units, i.e., K +1 classes, with the first K elements indicating
the presence/absence of an attack for each UE and the final
unit indicating that no attack is present. A softmax activation
function is used to normalize the output from the weighted sum
values into a vector of probabilities that sum up to one [29],
with the element with the highest probability being chosen as
the predicted class. It must be noted that, intuitively, IDNet
can also be used for the detection of an attack as in the case
of an attack, if any of the first K classes are predicted it still
correctly identifies there is an ED present even if the predicted
attacked UE is incorrect. The architecture of the proposed
IDNet is given in Fig. 2 and Table I. The IDNet is created
using the sequential application programming interface (API)
to create a Keras model with TensorFlow 2.12.

The proposed IDNet is trained using datasets containing
the vectors of features and their associated labels. Feature
selection is a crucial step in designing any DL algorithm as
it significantly impacts its performance. For our detection and
identification problem, the features are derived from the uplink
channel estimation phase, namely, the received signal in (3).
To reduce the effect of fading, we propose to use N ≥ 1
frames for the calculation of the features. Let Y (j) be the
received pilot signal at the BS for the jth frame. Hereinafter,
we will describe the features that will be used to train and test
the IDNet.

1) Average Power: One of the main effects of the presence
of the ED is the increase in the power of the received signal.
Thus, it is natural to use the average power (AP) of the
received signal, i.e., p = 1

N

∑N
j=1 ∥Y (j)∥2F , as a feature.

2) Projected Average Power: Although the average power
feature, p, could be useful for the detection of the ED, it does
not help identify the attacked UE. For this reason, we propose
to isolate the power coming from each UE and cancel out the
contributions from the remaining UEs. To this end, we project
the received signal at the BS onto all the K pilot signals and
use the average power of the resulting signal, called projected
average power (PAP), as a feature. Let y(j)

i = Y (j)ϕ⋆
i , i ∈ K,

be the projection of the received pilot signal corresponding to



5

Fig. 2. Architecture of the proposed IDNet.

the jth frame onto the ith pilot signal. The average power of
the resulting signal over N frames is: pi = 1

N

∑N
j=1 ∥y

(j)
i ∥2,

i ∈ K.
3) Power Ratio: Inspired by the detection methods in [8]

and [9], we propose to use the ratio of the instantaneous
received power and the average power at the BS in the absence
of the ED as a feature as it has the potential to reveal the
presence of the ED. In particular, in the absence of the ED,
the power ratio is expected to be close to one, but in the case
of an attack, this ratio is expected to be larger than one due to
the added power from the ED. This defines a threshold above
which an attack is present for the DNN to learn. The average
power of the received pilot signal in the absence of an ED,
i.e., α = 0 in (3), can easily be obtained as

P ≜ E
[
∥Y∥2F

]
= PML

K∑
i=1

βi +MLσ2
n. (5)

The power ratio (PR) is then given by

γ =

∑N
j=1 ∥Y(j)∥2F

NP
. (6)

4) Projected Power Ratio: In order to be able to identify the
attacked UE, we propose to use the power ratio for each UE.
The ith power ratio, called the projected power ratio (PPR),
is defined as

γi =
1
N

∑N
j=1 ∥y

(j)
i ∥2

E
[
∥y(j)

i ∥2
] =

∑N
j=1 ∥y

(j)
i ∥2

N(PML2βi +MLσ2
n)

. (7)

From (6) and (7), the BS must have knowledge of the large-
scale fading coefficients for each UE prior to pilot training,
which is reasonable to assume in a massive MIMO system4.

5) Eigenvalues: As stated in Proposition 1, the asyn-
chronous attack increases the rank of the covariance matrix
of the signal part of the received signal from K to K + 1.
Since the rank and the eigenvalues of a covariance matrix are
closely related, it is hence natural to use the eigenvalues of
the covariance matrix of the received signal as a feature. The
estimate of the covariance matrix of the received signal in the
jth frame, Y (j), is defined as

R̂(j) =
1

L
Y (j)Y (j)H = U (j)Λ(j)U (j)H , (8)

where Λ(j) is the diagonal matrix containing the eigenvalues
of R̂(j) and U (j) is the matrix containing the corresponding
eigenvectors. Let the real ordered eigenvalues of R̂(j) be
denoted as λ

(j)
1 ≥ λ

(j)
2 ≥ . . . ≥ λ

(j)
M . Hence, the eigenvalues

(EVs) λ
(j)
i , i = 1, . . . ,M , j = 1, . . . , N can be used as

features in IDNet.
The potentially attacked UE is assumed to be unknown;

therefore, the eigenvalues alone do not provide enough infor-
mation about the UE being attacked. However, when an ED
attacks the targeted UE, the PAPs and PPRs corresponding to
the attacked UE will be significantly higher compared to those
of the other non-attacked UEs, due to the added power from
the ED. This enables a clear identification of the UE being
attacked by the ED.

The complexity of IDNet in terms of the number of mul-
tiplications is L2(M + L) + LMK +A(M +K) +A2(B −
1)+A(K+1), where A is the number of neurons per hidden
layer and B is the number of hidden layers. Note that the
main complexity of IDNet is due to the calculation of the
eigenvalues of the received signal covariance matrix that are
used in the FV. Although IDNet has higher complexity com-
pared to conventional approaches, it provides much superior
performance than them, as shown in Fig. 7 in the next section.

The impact of each of the above features (or a combination
of them) on the detection and identification accuracy of IDNet
will be discussed in the next section.

4The large-scale fading coefficients are assumed to stay constant for long
coherence blocks, therefore the BS can accurately estimate them [1].



6

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we evaluate the performance of the proposed
IDNet. We will first describe how the dataset that is used to
train and test IDNet is generated. Then, we discuss how IDNet
is trained. Finally, we present comprehensive results about the
performance of IDNet for different system parameters.

A. Dataset Generation

In order for IDNet to detect deviations from expected
behavior, it must be trained on a sufficiently large dataset to
learn the expected received signal characteristics for when an
active ED is present or not. This enables the trained DNN to
classify new unseen data as either normal or abnormal. As
such, given the lack of datasets built using real measurements
at this stage, we generate a synthetic dataset for different
system parameters such as M,K,L,D,∆f , and N to observe
how they affect the detection/identification accuracies.

To build the dataset, we randomly generate the locations
of K UEs and the ED within a square cell area, with the
BS located at the center. The attacked UE is chosen as
the closest UE to the ED. Using the locations of the UEs
and ED, the large-scale fading coefficients, βi and βED, are
calculated according to the 3GPP channel model in [30] to
mimic a non-line-of-sight (NLoS) urban-micro street canyon
environment. For each randomly generated locations of the
UEs and ED, we generate a very large number (thousands) of
realisations of the UEs and ED channels to simulate the small-
scale fading characteristics of the channels, h̃i and g̃, where
each realisation follows a Rayleigh distribution to reflect the
Rayleigh fading channel model adopted in (1). This allows
us to capture a wide range of fading scenarios. This helps
in training the IDNet model to be robust against various
fading conditions and generalize to different fading scenarios
during deployment. This is then repeated for other randomly
generated UEs and ED locations, with the aim of averaging
the channel realizations over the entire coverage area. During
each training phase, a random timing mismatch of τ = eTs,
e ∈ [0, 1) is generated. The received samples used to build the
dataset are calculated based on (3).

Channel realizations are also generated without an ED
present, with a 50:50 split to ensure no class imbalance in the
dataset would cause poor performance in the minority class
and over-fitting during training. Each channel realization for
each location is associated with a one-hot encoded vector to
indicate the unique UE label (ID) being attacked or no attack
at all. Finally, the generated samples are randomly shuffled
within the dataset to obtain a uniform spread of data for model
training, validation, and testing.

B. Model Training

Prior to model training, the input features are scaled to have
zero mean and unit variance. Preliminary testing is conducted
to determine suitable hyperparameters using grid search for
model training and are shown in Table II. The train-test-
validation partitions of the datasets are split into a 75:15:10 ra-
tio. We use the adaptive moment estimation (Adam) optimizer,

Hyperparameter IDNet
Loss Function Categorical CE
Optimiser Adam
epochs 30
Batch Size 200
minimum delta 0.001
Patience 5

TABLE II
TRAINING HYPERPARAMETERS FOR IDNET

which is a popular stochastic gradient descent-based optimizer
that has an adaptive learning rate. The loss function used
is the categorical cross-entropy (CE) function. The number
of training epochs is determined using an early-stopping
callback to detect when there is no appreciable improvement
in identification accuracy.

C. Results

Unless otherwise stated, the considered system parameters
are set as follows: M = 100, L = 16, K = 4, N = 1, and P =
20 dBm. The communication bandwidth is W = 20 MHz and
the noise power is σ2

n = WκbT0NF . NF = 5 dB is the noise
figure, T0 = 290 Kelvin is the thermal noise temperature, and
κb = 1.381× 10−23 Joules/Kelvin is the Boltzmann constant.
Different ED powers are investigated to see the impact on the
detection/identification accuracy, as the ED can smartly adapt
its transmission power to remain undetected [16]. The ED’s
transmit power, PED, was swept between a range of −10 dBm
and 30 dBm, and eight possible timing mismatch values are
used, i.e., τ = eTs ∈ {0, Ts

8 , Ts

4 , 3Ts

8 ..., 7Ts

8 }. For notational
convenience, the timing mismatch can also be written as a
factor of the symbol delay called the delay factor, D = 8τ

Ts

i.e., D ∈ {0, 1, ..., 7}. Finally, the UEs and ED are uniformly
randomly distributed within a square area of 200×200 m2. We
adopt the detection/identification accuracy metric to evaluate
the performance of IDNet5.

We first investigate the impact of the size of the dataset on
the identification accuracy to identify where the performance
saturates while also having a practical dataset size. Note
that collecting real data to build a dataset consumes a lot
of resources (time, financial and human) and determining
a suitable dataset size will help optimize this paramount
task. The size of the dataset is influenced by the number of
random locations, nloc, and the number of channel realizations,
ns, generated per ED power. In Fig. 3, we examine the
synchronous case and show the identification accuracy versus
the ED power for IDNet. Different combinations of nloc and
ns are used to observe how many locations and samples
are sufficient to average over the 200 × 200 m2 square cell.
For ns = 1000, when increasing nloc from 50 to 100, we
observe a maximum increase in identification accuracy of 9%
at PED = 20 dBm. For nloc = 50, when increasing ns from

5Note that other performance metrics could be used such as the detec-
tion/identification probability. However, detection/identification accuracy is
preferred as, unlike detection/identification probability which only captures
true positives (TPs), it encapsulates both the TPs and true negatives (TNs).
This is essential since incorrectly classifying cases with no attack present
as attack present would increase unnecessary downtime/disruption in the
network.
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Fig. 3. IDNet identification accuracy versus ED transmit power for different
dataset sizes, for synchronous ED pilot transmission (i.e., D = 0 and ∆f =
0). M = 100, L = 16, K = 4, and N = 1.
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Fig. 4. IDNet detection accuracy versus ED transmit power for different
feature vectors. M = 100, L = 16,K = 4, N = 1.

1000 and 5000 a maximum increase in identification accuracy
of 15% is observed at PED = 15 dBm. As noted by [31], DL
algorithms can exhibit improved performance as the size of
the dataset increases, as this enables better generalization of
the data. Using more samples has a greater impact on accuracy
compared to the number of locations as sampling 5000 times
over 100 locations only provided at most an increase of 2% in
identification accuracy. Nonetheless, this improvement comes
at the cost of a lengthier training time. To balance the size of
the dataset and constraints of the model training time available,
subsequent datasets that were generated used a Monte-Carlo
simulation of 5000 realizations over 50 random locations to
sufficiently average over the coverage area.

Fig. 4 shows the detection accuracy of IDNet versus the ED
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Fig. 5. IDNet identification accuracy versus ED transmit power for different
feature vectors. M = 100, L = 16,K = 4, N = 1.
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Fig. 6. IDNet identification accuracy versus ED transmit power for different
combinations of the delay factor, D, and the frequency offset, ∆f . M =
100, L = 16,K = 4, and N = 1.

power for four different cases of feature vectors representing
varying degrees of complexity. These four cases are: PAPs,
PPRs, EVs, and EVs and PPRs6. For each one of these
feature vectors we consider both synchronous (i.e., D = 0
and ∆f = 0) and asynchronous (i.e., only a timing mismatch
of D = 4 or only a frequency mismatch of ∆f = 0.005)
pilot spoofing attacks. For the synchronous case (D = 0 and
∆f = 0), we can see that the feature vector consisting of

6The AP and PR features provided the lowest performance and were not
included to keep the figure clear. The power only based features are still
represented by PAPs and PPRs, which performed much better than AP and
PR.



8

-10 0 10 20 30

0.5

0.6

0.7

0.8

0.9

1

-10 0 10 20 30

0.5

0.6

0.7

0.8

0.9

1

-10 0 10 20 30

0.5

0.6

0.7

0.8

0.9

1

Fig. 7. Comparison of IDNet and other methods in terms of detection accuracy versus ED transmit power. (a) shows the synchronous case, i.e., D = 0
and ∆f = 0, (b) shows the asynchronous case where D = 4 and ∆f = 0.005, and (c) shows the asynchronous case where D = 7 and ∆f = 0.005.
M = 100, L = 16,K = 4, and N = 1.

EVs and PPRs provides the best detection accuracy across
all ED powers. We can also observe that the feature vector
consisting only of PPRs performs better than that consisting
only of EVs. This is due to the fact that, when the ED pilot
signal is synchronous with that of the targeted UE, the signal
subspace dimension is the same as that of no attack case.
The real benefit of the EVs is shown in the asynchronous
cases, i.e., when D = 4 or ∆f = 0.005, where using
EVs significantly outperforms the energy-only based feature
vectors, i.e., PAPs and PPRs. The detection accuracy increases
when using the EVs as the timing/frequency mismatch in
the ED pilot transmission causes the signal to become less
correlated with the attacked UE pilot signal when sampled at
the BS. The low correlation between these two pilot signals
effectively creates an extra source signal (i.e., increases the
signal subspace by one) that the IDNet can distinguish. It
should be noted that in the case of only timing mismatch
(i.e., D = 4 and ∆f = 0), unlike in the case of frequency
mismatch (i.e., ∆f = 0.005 and D = 0), using only PAPs
or PPRs decreases the detection accuracy. This is because as
the timing mismatch increases, unlike frequency mismatch, the
ED pilot signal becomes less correlated with the attacked UE,
so less energy is recovered from the projection of the received
signal onto the attacked UE pilot signal. EVs provide insights
into the overall signal structure and dimensionality of the
signal subspace, while PPRs offer more granular information
about signal power distribution. Leveraging these synergistic
features, allows to achieve the best detection accuracy for both
synchronous and asynchronous cases.

Fig. 5 shows the identification accuracy of IDNet versus
the ED power for the same feature vectors above for both the
synchronous and asynchronous cases. Similar to the results
in Fig. 4, we observe that the feature vector consisting of
the EVs and PPRs provides the best identification accuracy.
We can also clearly see that using only the EVs does not
provide any identification capability. This can be explained
by the fact that the EVs by themselves do not provide any
indication of which UE is attacked, whereas projecting the
received signal onto each training sequence can help isolate

the power of the attacked UE and ED. From Figs. 4 and 5
it is apparent that the feature vector containing both the EVs
and PPRs outperforms all the other feature vectors for both
synchronous and asynchronous attacks. Therefore, the feature
vector containing both the EVs and PPRs will be used in the
rest of this section.

Fig. 6 shows the identification accuracy of IDNet versus
the ED power for different combinations of the delay factor,
D, and the frequency offset, ∆f . We can clearly see that
the identification accuracy improves with increasing timing
and/or frequency mismatches. Specifically, Fig. 6 shows that
a 100% identification accuracy is reached for ∆f = 0.02
for any timing mismatch for an ED power of −10 dBm.
So, higher timing and/or frequency mismatches enhances the
identification accuracy.

Fig. 7 compares IDNet with three conventional methods,
used as benchmarks, in terms of detection accuracy versus
the ED power. The three benchmarks are: 1) Benchmark
1: the well known MDL method [13]7, 2) Benchmark 2:
the method in [12], and 3) Benchmark 3: the method in
[11]. For comparison fairness, when implementing the MDL-
based detector, no power budget was allocated to a random
signal superimposed onto the pilot signal transmitted from the
attacked UE. We can see that the proposed IDNet significantly
outperforms all the benchmarks for both the synchronous (in
Fig. 7(a)) and asynchronous (in Figs. 7(b) and (c)) cases.
It is observed that the gap between IDNet and Benchmarks
2 and 3 increases with increasing time delay factor D. In
particular, for the synchronous case of (D = 0, ∆f = 0)
in Fig. 7(a), IDNet outperforms all the benchmarks across
the entire power range and that the detection accuracy gap
increases with PED. It is worth noticing that MDL has no
capability of accurately detecting an ED in the synchronous
case. This is expected as MDL cannot distinguish between the
attacked UE and ED unless a random signal is superimposed
onto the pilot signal transmitted from the attacked UE as

7It is important to note that MDL cannot identify the attacked UE and can
only detect whether there is an ED.
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Fig. 8. IDNet identification accuracy versus ED transmit power for different
combinations of the number of BS antennas, M , the delay factor, D, and the
frequency offset, ∆f . L = 16,K = 4, and N = 1.

in [13]. The average detection accuracy of 50% for MDL
implies that it predicts no ED present for most trials, implying
a high false negative rate. Unlike Benchmarks 2 and 3, the
performance of MDL8 improves in the asynchronous cases of
(D = 4,∆f = 0.005) and (D = 7,∆f = 0.005) but IDNet
still significantly outperforms it. Also, from Figs. 7(b) and
(c), we observe that the detection accuracy of IDNet improves
in the asynchronous cases but, on the contrary, the detection
accuracies of Benchmarks 2 and 3 degrade. Therefore, this
clearly shows the advantage of IDNet over the benchmarks
especially for asynchronous attacks. Since it is difficult for the
ED to achieve perfect time/frequency synchronization, IDNet
is therefore a more compelling choice in the more realistic
scenario of asynchronous PSA attacks. It should be noted that
the outstanding performance of IDNet comes at an increased
complexity cost compared to the benchmarks.

Next, in Fig. 8 we investigate the impact of the number of
antennas, M , at the BS on the identification accuracy of IDNet
for different combinations of the delay factor, D, and the
frequency offset, ∆f . It is notable that the number of antennas
at the BS has a clear impact on the identification accuracy.
For example, in the synchronous case (D = 0,∆f = 0),
increasing M from 100 to 200 leads to 10.3% increase in the
identification accuracy at PED = 5 dBm. This is because larger
antenna arrays improve the spatial diversity and hence reduce
the impact of fading. This benefit of using more antennas at the
BS is less apparent for PED < −5 dBm and PED ≥ 15 dBm.
For the asynchronous cases of D ∈ {4, 7} and ∆f = 0.005,
we also observe a slight increase in the identification accuracy
by increasing the number of antennas at the BS even at
PED = −10 dBm. However, increasing the number of antennas
for (D = 7,∆f = 0.005) resulted in negligible identification

8Note that according to Proposition 1 the signal subspace dimension
increases by one in the presence of the asynchronous ED and hence MDL
can be used to estimate the signal subspace dimension and consequently the
detection of the ED.
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Fig. 9. IDNet identification accuracy versus ED transmit power for different
combinations of the pilot signal length, L, the delay factor, D, and the
frequency offset, ∆f . M = 100,K = 4, and N = 1.

accuracy improvement.
Fig. 9 shows the impact of the pilot signal length, L, on the

identification accuracy of IDNet for different combinations of
the delay factor, D, and the frequency offset ∆f . We can
see that using a longer pilot signal does enhance the accuracy
in all cases. However, the largest gains can be seen in the
asynchronous cases at low ED powers, e.g., at -10 dBm. This is
because longer pilot signals allow the BS to average the noise
but more importantly they allow to obtain a better estimate of
the sample covariance matrix and consequently more accurate
eigenvalues that are used as input features. Note that increasing
both M and L in tandem can help increase the identification
accuracy, whilst also providing other benefits such as reducing
the effect of pilot contamination and improving the accuracy
of the CSI.

Fig. 10 investigates the impact of the number of frames on
the identification accuracy. We consider three cases, namely
N = 1, 3, and 5. We can clearly see that the identification
accuracy increases with the increase of the number of frames.
It is worth noticing that for D = 4 and D = 7, there is a
noticeable improvement in identification accuracy even for low
ED powers confirming that it is easier to detect and identify
asynchronous attacks even if the ED power is very low. This
can be justified as follows:

• The PPRs are averaged over the set of available frames,
providing a more accurate value that is more robust
against the effect of noise and channel fluctuations.

• By using multiple frames, the number of eigenvalues
available to learn from increases, thereby suppressing the
impact of noise if one or more frames become more
corrupted with noise, compared to other frames.

We can also observe that for D = 4 and 7, increasing N
from 3 to 5 leads to a smaller gain compared to increasing
N from 1 to 3. So, it is expected that increasing N beyond 5
will result in increased complexity with diminishing accuracy
improvement.
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Fig. 10. IDNet identification accuracy versus ED transmit power for different
combinations of the number of frames, N , and the delay factor, D. M =
100, L = 16, and K = 4.
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Fig. 11. IDNet identification accuracy versus ED transmit power for different
combinations of the number of UEs, K, and the delay factor, D. M =
100, L = 16, and N = 1.

In Fig. 11 we evaluate the impact of the number of UEs on
the identification accuracy. We can see that as the number
of UEs increases from K = 2 to K = 8 the accuracy
decreases for both the synchronous and asynchronous cases.
This decrease could be explained by the fact that as K
increases the dimension of the feature space increases leading
to increased complexity and variability of the data making it
more difficult for the model to generalize from the training
data. From Figs. 6, 8, and 10, to improve the identification
accuracy for a certain value of K we can increase the number
of BS antennas and/or the length of the pilot signal and/or the
number of frames.

Fig. 12 shows the confusion matrices which evaluate the
performance of the categorical class predictions made by
IDNet for K = 4 and D ∈ {0, 7}. The labels UEi,
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Fig. 12. IDNet confusion matrices for D = 0 (top) and D = 7 (bottom).M =
100, K = 4, L = 16, PED = 20 dBm, N = 3, and ∆f = 0.

i = 1, ...,K, denote the case of UE i being attacked. By
observing the leading diagonal, the percentage of correctly
identified attacked UEs is higher when the delay factor is
higher with an average increase of 7.1%. In both cases,
the true negative precision is high with an average accuracy
of 98.4% resulting in a low false alarm rate of 1.6%. In
the case of an attack, we can clearly see that most miss-
classifications are classified as no attack which minimises
the risk of terminating downlink communication to unaffected
UEs, limiting unnecessary disruptions to the network.

V. CONCLUSION

In this paper, we have proposed a DNN framework, called
IDNet, to detect pilot spoofing attacks and identify the attacked
UE in massive MIMO networks. We have developed a new
model in which the active ED is asynchronous with the
system and showed that this asynchronous attack results in
increasing the received signal subspace dimension by one,
which was exploited for attack identification. We have used the
eigenvalues of the sample covariance matrix the received pilot
signal as well as the ratio between the power of the received
signal projected onto the pilot signals and its expected value as
input features to IDNet. It was shown that IDNet is effective
in identifying the attacked UE even for small ED’s powers.
We have also showed that IDNet outperforms conventional
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approaches for all ED’s powers and different timing/frequency
mismatches. Simulation results also showed that the larger the
timing and/or frequency mismatches of the ED, the higher
the identification accuracy meaning that asynchronous pilot
spoofing attacks are easier to be identified compared to syn-
chronous pilot spoofing attacks. We have also showed that
increasing the number of antennas at the BS, the pilot signal
length, or the number of frames lead to enhanced identification
accuracy. Given the effectiveness of IDNet in detecting pilot
spoofing attacks and identifying the attacked UE, the BS can
use it to selectively terminate or pause transmission to only the
attacked UE, minimizing unnecessary network downtime and
disruption for the unaffected UEs. These findings, therefore,
make a compelling case for DL-aided pilot spoofing attack
detection in massive MIMO networks. In the future, it is
worthwhile extending our IDNet to a more general system
where multiple EDs can attack different UEs.
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