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• We propose to minimize BER in a RIS-assisted communication system without CSI.

• We present an efficient action-composition based PPO algorithm in our design.

• We evaluate the effetiveness of our proposed design by numerical simulations.
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Abstract

This paper studies a dynamic reconfigurable intelligent surface (RIS)-assisted broadcast communication system where a trans-
mitter broadcasts information to multiple receivers with time-varying locations via a RIS. The goal is to minimize the maximum
bit error rate (BER) at the receivers by optimizing RIS phase shifts, subject to a given discrete phase shift constraint. Unlike most
existing works where channel state information (CSI) is required, only location information of the receivers is needed in our work,
due to the great challenge of instantaneous CSI estimation in RIS-assisted communications and the reason that statistical CSI does
not apply to the dynamic scenario. The involved optimization problem is hard to tackle, because the BERs at the receivers can-
not be calculated by classical CSI-dependent analytical expressions for lack of CSI and exhaustive searching is computationally
prohibitive to achieve the optimal discrete phase shifts. To address this issue, a deep reinforcement learning (DRL) approach is
proposed to solve the problem by reformulating the optimization problem as a Markov decision process (MDP), where the BERs
are measured by the Monte Carlo method. Furthermore, to tackle the issue of the high-dimensional action space in the MDP, a
novel action-composition based proximal policy optimization (PPO) algorithm is proposed to solve the MDP. Simulation results
verify the effectiveness of the proposed PPO-based DRL approach.
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1. Introduction

Reconfigurable intelligent surfaces (RISs) are programmable
surfaces that can control the phase shifts of reflecting elements,
allowing them to redirect incident electromagnetic waves in
specific directions and hence mitigate the impact of external
obstacles on radio frequency signal propagation. Because of
this, RISs can improve wireless communication performance,
making it a crucial technology in next-generation wireless com-
munication systems. Numerous studies related to RIS-assisted
wireless communication systems have been conducted in recent
years, with the majority assuming the availability of instanta-
neous channel state information (I-CSI) as a basis for system
optimization. However, it is challenging to estimate I-CSI in
RIS-assisted communication systems. This is because the over-
head (e.g., the number of pilot symbols) of channel training in
the estimation of I-CSI scales up with the increase of the num-
ber of reflecting elements at a RIS [1, 2], which causes that
the estimation of the I-CSI in the involved systems is resource-
intensive since the number of reflecting elements at a RIS is
usually large. Moreover, because the I-CSI usually changes
rapidly, the update of optimized communication parameters for
effective RIS functions, i.e., RIS optimal phase shifts, may be
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delayed due to channel training and communication latency,
resulting in suboptimal system performance. To tackle these
problems, researchers have studied how to design RIS-assisted
communication systems with statistical CSI (S-CSI). Neverthe-
less, S-CSI-based designs can only apply to fixed wireless net-
work typologies in which the locations of transmitters, RISs and
receivers are static (see [3–7]). This is because to achieve S-CSI
in wireless communication systems, channel estimations are re-
quired to be implemented over a time period with fixed trans-
mitter and receiver locations. Therefore, the S-CSI-based ap-
proach is not appropriate for RIS-assisted mobile communica-
tion systems, particularly when transmitters or receivers change
their locations rapidly. To address this issue, a small number of
studies recently have conducted to design RIS-assisted commu-
nication systems with the location information of devices (i.e.,
the transmitter, RIS and receiver) rather than I-CSI or S-CSI
[8–10].

Meanwhile, error performance is critical for RIS-assisted
communication systems, which is usually evaluated with the
metrics of bit error rate (BER), symbol error probability (SEP),
outage probability (OP) and block error rate (BLER). Thus,
how to design RIS-assisted communication systems with su-
perior error performance has attracted much attention in wire-
less communications recently[11–17]. In these studies, it is
assumed that I-CSI and S-CSI can be achieved, and how to
achieve superior error performance in RIS-assisted communi-
cation systems without any CSI has been rarely studied in the
literature.
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1.1. Related works

1.1.1. Studies on RIS-assisted communications with I-CSI and
S-CSI

In the literature, there are many works on RIS-assisted wire-
less communications with I-CSI, e.g., [18–22]. In [18], by as-
suming that I-CSI could be perfectly estimated, the weighted
sum power received by energy harvesting receivers was maxi-
mized via jointly optimizing the access point (AP) transmit pre-
coders and RIS phase shifts, subject to signal-to-interference-
plus-noise ratio (SINR) constraints at the receivers in a RIS-
assisted communication system with simultaneous wireless in-
formation and power transfer (SWIPT). In [19], the beamform-
ing matrix at a base station (BS) and the phase shifts of reflect-
ing elements at a RIS were jointly optimized to maximize sum
rate in a multi-hop RIS-assisted Terahertz network by using I-
CSI. In [20], with the assumption that I-CSI can be achieved,
the transmit power of a BS was minimized by jointly optimiz-
ing successive interference cancellation (SIC) decoding order,
BS transmit beamforming vector, power splitting ratio and RIS
phase shifts in a RIS-assisted non-orthogonal multiple access
(NOMA) network with SWIPT. In [21], the transmit power of
users was minimized subject to quality-of-service requirements
of users in the downlink of a RIS-assisted multi-user multiple-
input single-output (MISO) communication system. In [22],
energy efficiency was maximized by jointly optimizing beam-
forming vectors, power splitting ratios, common message rates,
and RIS phase shifts in a rate splitting multiple access-based
RIS-assisted network with SWIPT.

Due to the great challenge posed by the estimation of I-CSI,
some studies have been carried out to use S-CSI for the opti-
mization of RIS-assisted communication systems, e.g., [3–7].
In [3], a RIS-assisted communication system consisting of a
transmitter, a RIS and a receiver was studied. A tight upper
bound of the ergodic spectral efficiency was derived by using
S-CSI, based on which an optimal phase shift design was pro-
posed. In [4], the downlink of a RIS-assisted multiple-input-
multiple-output (MIMO) wireless communication system was
studied. Based on S-CSI, the approximation of normalized
achievable ergodic rate was derived, and then the design of
covariance matrix of transmitting signals and diagonal phase-
shifting matrix of RIS was presented. In [5], a RIS-assisted
multi-user MISO system was studied. The analytical expres-
sion for the ergodic sum capacity of the system was derived
based on S-CSI, and then the ergodic sum capacity was max-
imized by jointly optimizing transmit beamforming and RIS
phase shifts in the uplink and downlink, respectively. In [6],
a RIS-assisted massive MIMO system with a direct link was
studied. The uplink ergodic sum data rate was maximized based
on the closed-form expression of the ergodic data rate of users
that was obtained by using S-CSI. Also, in [7], a RIS-assisted
massive MIMO uplink network was studied. The RIS phase
shifts were designed by leveraging the asymptotic deterministic
equivalent of the minimum SINR that depended only on S-CSI
to maximize minimum SINR.

1.1.2. Studies on RIS-assisted communications without CSI
To design RIS-assisted communication systems without any

CSI, a handful of work [8–10] has been carried out by only us-
ing the location information of the transmitter, RIS and receiver
in the systems. In [8, 9], a RIS-assisted point-to-point commu-
nication system was considered, with the goal to maximize the
signal-to-noise ratio (SNR) at the receiver of the system without
CSI. In [10], a multi-RIS-assisted communication system with
multiple receivers was studied, where the goal was to minimize
the transmit power by optimizing RIS phase shifts without CSI,
subject to individual user rate requirements. However, to sim-
plify analysis and facilitate design, it was assumed in [10] that
only one single receiver could be served by each RIS, which
was similar to that in [8, 9].

1.1.3. Studies on error performance of RIS-assisted communi-
cation systems

In the literature, the studies mainly used BER, SEP, OP and
BLER as the metrics to evaluate the error performance of RIS-
assisted communication systems, e.g., [11–17]. In [11], the
analytical expression of BER performance was derived by us-
ing moment-generating function of the fading channel distri-
bution in the RIS-assisted downlink NOMA system. In [12],
by deriving the optimal discrete RIS phase shifts, the closed-
form expressions of SNR and BER were obtained in a RIS-
assisted MISO system with a transmitter and a receiver. In
[13], the probability density function and the cumulative dis-
tribution function (CDF) of the received SNR were derived by
utilizing a double generalized-K distribution, and the closed-
form expressions of BER and OP were obtained in a practical
channel model for a RIS-assisted MIMO communication sys-
tem. In [14], a general mathematical framework was presented
for the calculation of SEP by deriving the distribution of the
received SNR in a RIS-assisted point-to-point communication
system. In [15], the closed-form expression of SEP was de-
rived by using method of moments in the cooperative multi-
ple RIS-direct link system over Nakagami-m fading channels.
By deriving the distributions of the received SNRs at a legit-
imate user and an eavesdropper, a tight bound of secrecy OP
under the constraint of discrete phase control at the RIS was
achieved. In [16], by approximating the received power of the
users as Gamma random variables via moments matching, the
expression of OP under interference cancellation was derived in
a RIS-assisted NOMA uplink system with Nakagami-m fading.
In [17], the closed-form expression for the average BLER with
random and optimal RIS phase shifts were derived by using the
CDF of SINR in a RIS-assisted short-packet NOMA systems
under perfect and imperfect SIC.

It is noticed that to obtain the optimal discrete phase shifts
and the closed-form expressions of error performance metrics,
I-CSI and S-CSI must be known in [11–17].

1.2. Motivations and contributions

In this paper, we investigate the design of a dynamic RIS-
assisted broadcast communication system which consists of a
transmitter, a RIS and multiple receivers, where the receivers
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are also referred to as mobile users (MUs) whose locations
change over time. Similar to that in [8], we consider a dis-
crete phase shift for each reflecting element and assume that
only the locations of the transmitter, RIS and MUs are avail-
able and neither the I-CSI nor the S-CSI of the system can be
achieved. However, the work in [8] only considered one sin-
gle receiver, and it cannot apply to the scenario with multiple
receivers. This is because in the case of a single receiver, the
phase shifts of all reflecting elements at a RIS just need to be
set to enhance the signals received at the single receiver, but
it is not straightforward to determine the reflecting elements
assisting in communication for each receiver in the presence
of multiple receivers. Moreover, unlike the work in [8] where
the goal was to maximize received signal power at the receiver,
our goal is to minimize the maximum BER of all MUs in the
investigated broadcast communication system. To the best of
our knowledge, as the goal is to improve BER performance,
how to achieve the optimal discrete phase shift design for a dy-
namic RIS-assisted broadcast communication system with mul-
tiple MUs without the knowledge of CSI has not been tackled
yet, which motivates our work in this paper. By solving BER
minimization problem for RIS-assisted broadcast communica-
tion systems, our contributions are presented as follows:

• To minimize the maximum average BER of all MUs, we
propose a novel deep reinforce learning (DRL) frame-
work to design the optimal discrete RIS phase shifts for
a dynamic RIS-assisted broadcast communication system
without using any CSI. In the literature, the BER mini-
mization problem is usually solved by conventional op-
timization theory (e.g., nonlinear programming and dis-
crete programming theory). However, due to the un-
availability of CSI, the BER at each MU cannot be cal-
culated with classical CSI-dependent analytical expres-
sions, which causes that the formulated problem cannot
be solved by the conventional optimization theory. More-
over, it is computationally prohibitive to achieve the op-
timal discrete phase shifts by exhaustive searching (ES)
since the number of reflecting elements at a RIS is usually
large. Thus, the average BER minimization problem in-
vestigated in this paper is quite challenging. To tackle this
challenge, we formulate the involved optimization prob-
lem as a Markov decision process (MDP), which can be
solved by the proposed DRL framework. In the proposed
DRL framework, the locations of the MUs are defined as
states, and the reward is defined with the average BERs at
the MUs, in which the average BERs are estimated with
the Monte Carlo method by transmitting adequate number
of bits from the transmitter to the MUs.

• Under the proposed DRL framework, we further present
an efficient action-composition based proximal policy op-
timization (PPO) algorithm to achieve the optimal RIS
phase shifts. Because the dimension of the action space
in the formulated MDP is high due to normally a large
number of reflecting elements at a RIS, traditional DRL
approaches (e.g., deep Q-network (DQN)) not suitable for
solving the involved MDP due to their exhaustive search

nature in selecting the action in each iteration [23]. To ad-
dress this issue, we propose to employ an efficient PPO
algorithm to solve the MDP, where an action composition
technique is employed to tackle the high-dimensional ac-
tion space issue in the MDP by redefining an action as a
combination of smaller independent actions.

• Our numerical simulation results verify that our proposed
approach can achieve near-optimal BER performance and
significantly outperform the existing baseline schemes.

2. System model and problem formulation

Consider a RIS-assisted broadcast communication system, as
depicted in Figure 1. The system consists of a transmitter (T ,
e.g., BS or AP), a RIS with N = Nx × Ny passive reflecting el-
ements, and K MUs, where T and each MU are equipped with
a single antenna, respectively. Denote the set of the MUs and
the set of reflecting elements at the RIS as K = {1, 2, · · · ,K}
and N = {1, 2, · · · ,N}, respectively. As in [24–26], it is as-
sumed that the direct link between T and each MU is blocked
by obstacles, and the RIS is deployed to assist T to broadcast
information to the MUs. Furthermore, in line with real-world
scenarios, it is assumed that the locations of T and the RIS re-
main fixed, while the location of each MU can vary randomly
at any time within a given zone Z which is determined by the
reflecting coverage area of the RIS and the distribution of ob-
stacles in the practical environment. The accurate location in-
formation of T , the RIS and the MUs can be achieved by using
highly accurate positioning techniques (e.g., differential GPS
[27] for outdoor scenarios or the technique proposed in [28] for
indoor scenarios). Moreover, it is assumed that the MUs can
send their location information to T with negligible delay and
the location information of the MUs can be known at T and the
MUs synchronously.

Figure 1: The RIS-assisted broadcast communication system.

2.1. Channel model

For the considered RIS-assisted broadcast communication
system, the information transmissions from T to the MUs are
on a time-slot basis, and the length of one time slot is T sec-
ond. In each time slot, the channels of the system are invariant,
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but they can change independently among different time slots.
Because the locations of the MUs change over time, the chan-
nel coefficient vectors corresponding the T -to-RIS (TR) link
and the RIS-to-MUk (RUk) link in the i-th time slot are denoted
as hTR(i) ∈ CN×1 and hRUk (i, qk,i) ∈ CN×1, respectively, where
qk,i =

{
xk,i, yk,i, zk,i

}
∈ Z with (xk,i, yk,i) and zk,i denoted as the

k-th MU’s horizontal coordinates and vertical height, respec-
tively. Note that the locations of MUs usually change more
slowly than the channels. In other words, the locations of the
MUs can remain static in the duration of multiple time slots.
Thus, the time slot index i in qk,i is omitted in the remaining
part of this paper.

Meanwhile, in this paper, it is assumed that the I-CSI and S-
CSI of the system cannot be achieved. Therefore, the RIS phase
shifts cannot be adjusted in each time slot based on the CSI.
Nevertheless, because the locations of MUs can be achieved,
the RIS phase shifts can be adjusted based on Q = {qk,∀k ∈
K} ∈ Z. As a result, let θQ = [θQ,1, θQ,2, · · · , θQ,N]T ∈ CN×1

denote the equivalent phase shifts vector of RIS for a given Q,
where θQ,n is the phase shift of the n-th element for the given
Q, and the reflection coefficient amplitude of each element is
set as 1 so that the signal reflection power can be maximized.
Then, the channel coefficient of the TRUk (T → RIS→ MUk)
link in the i-th time slot can be expressed by hTRUk (i,Q) =
hT

RUk
(i, qk)ΘQhTR(i) with ΘQ ≜ diag(e jθQ,1 , e jθQ,2 , · · · , e jθQ,N ).

Furthermore, considering that the RIS phase shifts are discrete
in practice, it is assumed that the RIS phase shifts are quantized
with D bits, the set of discrete phase shift value of each ele-
ment can be expressed as Ω =

{
0,∆θ, · · · , (2D − 1)∆θ

}
, where

∆θ = π
2(D−1) .

2.2. Signal model and definition of bit error rate
For the RIS-assisted broadcast communication system con-

sidered in this paper, it is assumed that M-ary modulation and
Gray encoding are employed. Denote Ts as the time length of
a modulated symbol. Then, the number of modulated symbols
transmitted by T in each time slot can be calculated as

J =
T
Ts
. (1)

Denote the j-th modulated symbol transmitted in the i-th time
slot as S i, j. Then, given the MUs’ locations Q, the correspond-
ing symbol received at MUk can be expressed as

Yi, j,k = S i, jhTRUk (i,Q) + nk, (2)

where nk ∼ CN(0,N0B) is the independent and identically dis-
tributed (i.i.d.) additive white Gaussian noise (AWGN) at the
receiver of MUk with N0 denoted as the power spectral density
of AWGN and B denoted as the bandwidth of the considered
system.

Furthermore, it is assumed that the transmit power at T is
constant, which is denoted as PT watts. Then, the received SNR
at MUk for decoding each symbol in the i-th time slot can be

expressed as γk(i,Q) = ρ
∣∣∣hTRUk (i,Q)

∣∣∣2 = PT|hTRUk (i,Q)|
2

N0B , where
ρ is the transmit SNR. Assume that the energy of each mod-
ulated symbol is constant, which is denoted as Es. Then, the

received SNR can also be expressed as γk(i,Q) =
Es|hTRUk (i,Q)|

2

N0BTs

since PT =
Es
Ts

. As pulse shaping at T satisfies that Ts = 1/B
(e.g., raised cosine pulse with rolloff factor β = 1 is employed),

it follows that γk(i,Q) =
Es|hTRUk (i,Q)|

2

N0
, which is equal to the re-

ceived symbol SNR at MUk in the i-th time slot (denoted as
γs,k(i,Q)) [29]. In other words, one has γs,k(i,Q) = γk(i,Q) =
Es|hTRUk (i,Q)|

2

N0
= ρ
∣∣∣hTRUk (i,Q)

∣∣∣2. Further, denote the bit SNR at

MUk in the i-th time slot as γb,k(i,Q) = γs,k(i,Q)
log2 M =

ρ|hTRUk (i,Q)|
2

log2 M .
As a result, the BER for decoding each symbol in the i-th time
slot at MUk can be described as Pb,k(γb,k(i)) since the bit er-
ror rate is determined by the bit SNR [29]. For example, when
QPSK is employed, one has Pb,k(γb,k(i,Q)) = Q(

√
2γb,k(i,Q)),

where Q(·) is the complementary cumulative distribution func-
tion of the standard normal distribution.

For a given Q, because γb,k(i,Q) is a random variable due to
the time-varying channel coefficients in hTR(i) and hRUk (i, qk),
Pb,k(γb,k(i,Q)) varies randomly in each time slot. Therefore,
the average BER [29] over a long period of time is considered
in this paper. To be specific, given the locations of MUs (i.e.,
Q), the average BER is defined as

P̄b,k(Q) = Eγb,k(i,Q)
[
Pb,k(γb,k(i,Q))

]
, (3)

where E[·] denotes the expectation operation.
Remark: Just as mentioned previously at the beginning of

this section, it is assumed that the direct links between T and
the MUs do not exist in this paper. Nevertheless, our work can
be extended to the general scenario where the direct links are
present. To achieve this, one just needs to replace hTRUk (i,Q)
with hTRUk (i,Q) + hTUk (i,Q) in (2) and the involved statements,
where hTUk (i,Q) denotes the direct link between T and the k-th
MU, and it can be found that our proposed design can still apply
in the general scenario.

2.3. Problem formulation

In this paper, because the locations of the MUs are time-
varying, our goal is to improve the BER performance for all
MUs wherever the MUs locate in the given zoneZ by optimiz-
ing RIS phase shifts without CSI. To this end, the goal is set
as minimizing the maximum average BER at all MUs for any
given Q ∈ Z, and the optimization problem is formulated as

min
{θQ,∀Q∈Z}

max
k∈K

P̄b,k(Q) (4a)

s.t. θQ,n ∈ Ω,∀Q ∈ Z,∀n ∈ N . (4b)

Conventionally, problem (4) are solved by two approaches. The
first approach is to exhaustively search the optimal phase shifts
of the reflecting elements at the RIS for all possible MUs’ lo-
cations. Denote the number of possible locations of the MUs
as Z. Then, the computational complexity of the ES approach
is O
(
Z × 2DN

)
. Since Z and N are usually large, making such

an approach impractical in the scenarios of real world. The sec-
ond approach is to derive the closed-form expression of P̄b,k(Q),
and then solve the involved discrete programming problem by
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using conventional optimization theory for discrete program-
ming. However, such an approach requires the knowledge of
the S-CSI for hTR(i) and hRUk (i, qk). Note that qk (∀k) can vary
within the given zoneZ, which makes it challenging to achieve
the S-CSI of hRUk (i, qk), especially when the surroundings of
the MUs are complex so that the statistical CSI of the links
between T and the MUs is different for different locations of
the MUs. Moreover, even if the S-CSI can be achieved, it is not
easy to derive the closed-form expression of P̄b,k(Q). Therefore,
problem (4) is an optimization problem that is quite challenging
to solve. To tackle this challenging problem, a PPO-based DRL
approach will be proposed in the next section.

3. Proposed PPO-based DRL approach

To solve problem (4) with the DRL approach, T is regarded
as an agent and makes phase shift decisions for the RIS based
on the observation of MUs’ locations. To be specific, problem
(4) will first be reformulated as an MDP, and then a PPO-based
DRL approach will be introduced to solve the MDP, of which
the details are described in the follows.

3.1. MDP formulation

The formulated MDP is defined by the agent T and 4-tuples
⟨S,A, r, γ⟩, where S, A, r and γ ∈ [0, 1] represent state space,
action space, reward, and discount factor, respectively. The
state space S is the set of possible states, the action space A
is the set of possible actions, and the discount factor γ reflects
the proportion of the value of future rewards at the current time
step. To be specific, the action, state and reward are defined as
follows.

3.1.1. Action
The optimization variables in problem (4) are the RIS phase

shifts. Thus, the action at the t-th time step is defined as the
RIS phase shifts, i.e., at = θQ,t =

{
θQ,1,t, θQ,2,t, · · · , θQ,N,t

}
, where

θQ,n,t ∈ Ω (∀n ∈ N) denotes the phase shift of the n-th reflecting
element at the RIS when the locations of the MUs are given by
Q at the t-th time step. Then, the dimension of the action space
(i.e., the cardinal number of the action) is N, and the size of the
action space for at can be calculated as 2DN .

3.1.2. State
The definition of the state should be able to directly present

key information about the current environment. For the RIS-
assisted broadcast communication system considered in this pa-
per, recall that the CSI is not known and only the locations of
T , the RIS and the MUs can be achieved. As the locations of T
and the RIS are fixed, the information of the time-varying MUs’
locations is equivalent to the information of the distances be-
tween the RIS and the MUs. Then, because large-scale fading
of wireless channels is determined by the distance between a
transmitter and a receiver, the CSI of the links between the RIS
and the MUs is determined by the MUs’ locations since and the
small-scale fading of the involved wireless channels is assumed
to be unknown in this paper. In other words, the time-varying

location information of the MUs reflects the channel quality of
the wireless channels between the RIS and the MUs. Thus, the
location information of the MUs should be included in the def-
inition of the state. At the t-th time step, denote the MUs’ loca-
tions as Qt =

{
q1,t, q2,t, · · · , qK,t

}
. Moreover, as the smart radio

environment enabler, RISs are able to partly “control” the wire-
less propagation channels. Besides, the state should be (partly)
controlled by the action such that the interaction is effective.
Thus, the action at the (t − 1)-th time step (i.e., at−1 = θQ,t−1)
should be also included in the state at the t-th time step. As a re-
sult, st can be defined as st =

{
Qt, θQ,t−1

}
. The methodology of

state definition in this paper is similar to that in [30, 31] where
the state at the t-th time step is defined by CSI at the t-th step
and RIS phase shifts at the (t − 1)-th step, since both Qt in this
paper and the CSI defined in [30, 31] change independently in
different time step.

Note that the t-th time step in the definition of the state in an
MDP only refers to the t-th interaction between the agent and
the environment in the training phase, and the time length of
one time step can vary in different scenarios. For example, the
definition of one time step in the literature [30, 31] corresponds
to one time slot. However, for the time step in this paper, be-
cause each time step corresponds to a given Qt, the time length
of one time step is set to be large enough which includes a large
number of time slots so that the average BER defined in (3)
can be achieved, of which the details will be described later in
the definition of reward. Furthermore, it is also noticed that in
the testing phase or while employing the trained deep neural
network for information broadcasting from T to the MUs, the
time length corresponding to one state (i.e., a given Qt) can be
any value since it is not necessary to calculate average BER for
the state.

Because the location of MUk is expressed with three coordi-
nates (i.e., qk = {xk, yk, zk}), the cardinal number of the state can
be calculated as 3K + N.

3.1.3. Reward
The definition of the reward is determined by the objective

function in problem (4). Because the objective of problem (4)
is to minimize the maximum average BER at all MUs for any
given Q, the reward at the t-th time step for a given Qt is defined
as

rt = min
k∈K

{
rk,t
}
, (5)

where

rk,t =

−η log(P̄b,k(Qt)), if P̄b,k(Qt) , 0,
−η · δ, if P̄b,k(Qt) = 0.

(6)

In (6), the appropriate positive constant factor η and the log(·)
function are used to enlarge the difference between the average
BERs at the MUs obtained by taking different actions so that
the learning efficiency and stabilization of the proposed algo-
rithm can be improved, and the negative constant δ is used to
handle the special case when P̄b,k(Qt) = 0, which should be val-
ued so that −η · δ is greater than the reward when there is only
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one bit error. To obtain rt, it is required to calculate P̄b,k(Qt)
for all k ∈ K , i.e., the average BERs at all MUs for a given Qt

at the t-th time step. As mentioned previously in section 2.3,
it is difficult to derive the closed-form expression of P̄b,k(Qt).
Nevertheless, it is observed that as Qt is given, P̄b,k(Qt) can be
obtained by Monte Carlo method [32]. To be specific, assume
that T broadcasts L bits to the MUs via the RIS as the locations
of the MUs are given by Qt at the t-th time step. Then, T needs
to transmit V = L

log2 M symbols since M-ary modulation is em-
ployed. According to (1), T transmits J = T

Ts
symbols in each

time slot. Thus, to transmit V symbols, T keeps the transmis-
sions for I = V

J =
LTs

T log2 M time slots. Based on (2), denote the
j-th symbol in the i-th time slot received at MUk at the t-th time
step as Yi, j,k,t, and let

Xi, j,k,t =

0, if Yi, j,k,t can be decoded correctly,
1, otherwise.

(7)

Then, given Qt (i.e., the MUs’ locations at the t-th time step),
the average symbol error rate at the t-th time step can be esti-
mated as

P̂s,k(Qt) =
1
IJ

I∑
i=1

J∑
j=1

Xi, j,k,t. (8)

Meanwhile, as Gray encoding is used, the estimated average
BER can be expressed as P̂b,k(Qt) =

P̂s,k(Qt)
log2 M since one symbol

error corresponds to exactly one bit error [29]. Then, based on
(8), the average BER can be obtained as

P̂b,k(Qt) =
1

IJ log2 M

I∑
i=1

J∑
j=1

Xi, j,k,t. (9)

It has been proved in [32] that as long as L > 10
P̄b,k(Qt)

, P̂b,k(Qt)
can be regarded as a reliable estimate of P̄b,k(Qt). That is, with
an adequate value of L, one can obtain the reliable estimate of
P̄b,k(Qt) for all k ∈ K by (9), and thus can obtain the reward rt

by (6).

3.2. The action-composition based PPO approach

As mentioned earlier, the action space of the MDP corre-
sponding to problem (4) has a dimension of N and a size of 2DN .
Because the number of reflecting elements is usually large, the
action space dimension is high and its size is large. Traditional
DRL approaches, such as DQN, struggle to solve MDP prob-
lems with such a high-dimensional action space. Therefore, an
action-composition based PPO is proposed in this section to ad-
dress this issue, and the details are presented in the follows.

3.2.1. The PPO framework to solve the MDP
PPO is a policy-based algorithm, it directly optimizes the pa-

rameters of the policy to maximize cumulative rewards. The
policy determines the agent’s actions and is a mapping from
states to actions, denoted as π(at |st), which represents the prob-
abilities of various possible actions for the agent in different

states. To present the action-composition based PPO approach,
the PPO framework to solve the MDP is described as follows.
In the PPO framework, there are two deep neural networks
(DNNs), namely critic and actor. The critic is used to estimate
the value function, while the actor is responsible for outputting
the policy π(at |st) of action selection which is parameterized
with parameters µ. By using the critic and actor in the PPO
framework and based on the definitions of action, state and re-
ward provided in section 3.1, the interactions between the agent
T and the environment (i.e., the RIS-assisted broadcast com-
munication system illustrated in Figure 1) can be described ac-
cording to the illustration in Figure 2.

Figure 2: The framework of the proposed PPO-based approach.

As illustrated in Figure 2, at the t-th time step, the agent T
first observes the locations of K MUs (i.e., Qt). Then, T can
obtain the environment state st = {Qt, at−1} since the action at
the (t−1)-th time step (i.e., at−1 = θQ,t−1) is known at the agent.
Subsequently, based on the state st, T achieves the action at

by using the two DNNs, and then adjusts the RIS phase shifts
via the RIS controller according to at, which can change the
wireless radio environment. As the RIS phase shifts have been
adjusted, T broadcasts L information bits to the MUs via the
RIS, while each MU estimates the average BER based on the
received information bits according to (9) and feeds the aver-
age BER back to T . Based on the average BERs received from
the MUs, T calculates the reward rt. After that, all MUs move
to their next locations, generating the next state st+1 for the next
time step (i.e., the (t + 1)-th time step). As a result, a transi-
tion {st, at, rt, st+1} can be obtained, which is to be stored into a
replay buffer B for training the critic and actor.

3.2.2. Action composition
To tackle the high-dimensional action space issue in the

MDP, the action composition technique [33] is proposed to
reformulate the MDP by redefining the action while imple-
menting the PPO approach. To be specific, by using the ac-
tion composition technique, an action at is composed of some
smaller independent actions. For the MDP in this paper, at is
redefined as the composition of N smaller actions, i.e., at =

{a(1)
t , a

(2)
t , · · · , a

(N)
t }. Then, the agent T only needs to learn the

policies for these smaller actions. In other words, the actor does
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not directly output π (at |st), but instead outputs

π̂ (at |st) =
{
π
(
a(1)

t |st

)
, π
(
a(2)

t |st

)
, · · · , π

(
a(N)

t |st

)}
. (10)

This means that, for a given state st, there are 2DN possible ac-
tions, and the actor needs to output the probability for each of
these actions, with the sum of the probabilities of these 2DN ac-
tions being 1. After adopting the action-composition technique,
you only need to consider each smaller action. For each smaller
action, there are 2D possible actions, and the sum of the proba-
bilities of these 2D actions is 1.

Based on the learned output π
(
a(n)

t |st

)
, the agent T performs

random sampling to obtain the definite phase shift of the n-th
reflecting element at the RIS, i.e., θQ,n,t (∀n ∈ N). Finally, by
using the obtained phase shifts in sampling, the actor can output
the definite action at =

{
θQ,1,t, θQ,2,t, · · · , θQ,N,t

}
.

Note that by using the action composition technique, the
number of neurons in the output layer of actor is reduced from
2DN in the original MDP to 2DN in the reformulated MDP, and
thus the proposed PPO approach can solve the MDP efficiently,
of which the details are described as follows. For the original
MDP, recall that the size of the action space is 2DN . That is, at

has 2DN possible values. Because the probability of each pos-
sible value of at is required to be obtained at the actor, a total
of 2DN neurons are required at the output layer of the actor.
However, for the reformulated MDP with action composition,
because the number of the value for the n-th smaller action a(n)

t
is 2D, only 2D neurons are required at the the output layer of
the actor for each smaller action. Considering there are N such
smaller actions, the required total number of neurons is 2DN.

3.2.3. Training of critic and actor
To achieve the optimal critic and actor by training, it is

required to define the appropriate objective functions for the
two DNNs in the PPO framework. To this end, let Vπ (st) =

Eπ
[
∞∑
τ=0
γτrt+τ|st

]
be the state-value function, which is the ex-

pected value of rewards obtained starting from the current state
st while following the policy π. Let µold represent the parameter
µ before each round of training. Then, the objective function of
PPO can be expressed as

L (st, at;µ) = E
[
pµ (at |st) Aπµold

(st, at)
]
, (11)

where pµ (at |st) =
πµ(at |st)
πµold (at |st)

and

Aπµold
(st, at) = rt + γVπµold

(st+1) − Vπµold
(st) (12)

represent the probability ratio of the new policy to the old policy
and the advantage function, respectively. To obtain the state-
value function in the advantage function, the state-value func-
tion Vπ (st) is parameterized with the parametersω of critic, i.e.,
Vπ (st) ≈ Vπ (st;ω) [34].

Furthermore, to ensure that policy performance is monoton-
ically non-decreasing, the proposed PPO approach employs a
PPO-clip technique. With the PPO-clip technique, the objective
function is constrained to ensure that the difference between the

new and old policies does not become too large [35]. The ob-
jective function of PPO-clip is defined as

LClip (st, at;µ) = Eπ
[
min
{
pµAπµold

(st, at) , clip
(
pµ, 1 − ϵ, 1 + ϵ

)
Aπµold

(st, at)
}
+ κH

(
πµ (·|st)

)]
, (13)

where clip(x, l, r) ≜ max (min (x, r) , l) is used to restrict x to
the range [l, r], ϵ is a hyper-parameter controlling the range of
clipping, and H

(
πµ (·|st)

)
is the policy entropy with coefficient

κ, which can further improve exploration ability of PPO ap-
proach. If Aπµold

(st, at) > 0, it indicates that the action’s value
is above the mean, and maximizing the objective function in-
creases pµ (at |st) but does not exceed 1 + ϵ. Conversely, it re-
duces pµ (at |st) without falling below 1 − ϵ.

Based on (13), the mini-batch stochastic gradient descent
(SGD) method is employed to update the parameter µ to maxi-
mize the objective function of PPO-clip. To be specific, F tran-
sitions {st, at, rt, st+1}

F
t=1 are randomly sampled from the replay

buffer, and µ is updated by

µ← µ + αµ
1
F

F∑
t=1

∇µLClip (st, at;µ) , (14)

where αµ denotes the learning rate of the actor. Besides, the
mini-batch SGD method is also utilized to update the parameter
ω by using a mean square error function that is regarded as the
loss function, which is given by

ω← ω − αω
1
F

F∑
t=1

∇ω (V (st;ω) − Vtar (st))2︸                     ︷︷                     ︸
mean square error

, (15)

where αω denotes the learning rate of the critic and Vtar (st)
denotes the target state-value function, which is given by

Vtar (st) = rt + γV (st+1;ωold) , (16)

where ωold represents the parameter ω before each round of
training.

3.2.4. The action-composition based PPO Algorithm
According the above-mentioned descriptions, the proposed

action-composition based PPO algorithm is summarized in Al-
gorithm 1. Specially, to implement Algorithm 1, at the t-th
time step, the agent T first observes the MUs’ locations and
the phase shifts of the reflecting elements at the last time step
to obtain st. Then, based on st, T achieves the policy π̂ (at |st)
according to (10), which is obtained by the action composition
technique. Following the achieved policy π̂ (at |st), T performs
random sampling to obtain the action at, and then sends it to
the RIS controller. According to at, RIS can adjust the phase
shift of each reflecting element to control the radio environ-
ment. Under the radio environment controlled by the RIS, T
broadcasts L bits to the MUs so that the MUs can calculate the
average BERs for the given st and at with Monte Carlo method
based on (9). As the MUs have calculated the average BERs,
they feed the average BERs back to T , and then T can calcu-
late reward rt according to (5). After rt have been achieved, the
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MUs move to the next locations, which results in that a new
location set Qt+1 is generated. Accordingly, T can observe a
new state st+1 = {Qt+1, at} and a transition {st, at, rt, st+1} that is
obtained by the interaction between the agent and the environ-
ment, which will be stored in the replay buffer B. Next, as the
interactions for tstep time steps have been completed, the value
of the advantage function Aπµold

(st, at) and the target state-value
function Vtar (st) for each transition in B is calculated by (12)
and (16), respectively. Then, a mini-batch of transitions are
sampled from the replay buffer to train the critic and the actor.
Note that as illustrated from step 15 to step 21 in Algorithm
1, each sample in B is used for training the critic and actor
for nepoch times, which is for improving the efficiency of the
samples. This is because by repeatedly using the same sample
for training, the agent can better learn the features of the data,
thereby enhancing training efficiency and performance [35].

Remark 1: While training the DNNs (i.e., the critic and ac-
tor), a sequence of location sets (i.e., Q’s) are generated as the
MUs change their locations at each time step, which consist of
a training set Qtrain with a finite number of elements. How-
ever, after the two DNNs have been trained, they can be used to
achieve the optimal RIS phase shifts for any Q ∈ Z due to the
generalization capability of DNNs.

3.2.5. Complexity analysis
The complexity of the Algorithm 1 is mainly from predict-

ing and training, which can be described separately. Assume
that the critic has Iω layers and the actor has Iµ layers, and the
numbers of neurons at each layer in the critic and actor are de-
noted as pωi and pµi , respectively. Furthermore, a ‘tanh’ layer
is employed, and it is assumed that the numbers of neurons at
the ‘tanh’ layer in the critic and actor are denoted as pωt and pµt ,
respectively.

• Predicting complexity: As the optimal DNNs has been
trained, for the action prediction (obtaining the optimal
phase shifts of reflecting elements at the RIS by a given
Q), the complexity only caused by the actor, which can
be calculated as O

(∑Iµ
i=1 pµi−1 · p

µ
i

)
[36]. Actually, the com-

plexity is very small and can be ignored.

• Training complexity: The most intuitive complexity is
caused by the back propagation. For the back propa-
gation training, 6 times floating point operations is re-
quired for a single ‘tanh’ neuron. Since both the ac-
tor and the critic need to be trained, the complexity of
a single back propagation training can be calculated as
O
(
6 · pµt +

∑Iµ
i=1 pµi−1 · p

µ
i

)
and O

(
6 · pωt +

∑Iω
i=1 pωi−1 · p

ω
i

)
.

It is also worth to notice that the training process
needs the prediction results, which can be calculated as
O
(∑Iµ

i=1 pµi−1 · p
µ
i +
∑Iω

i=1 pωi−1 · p
ω
i

)
. Moreover, at each in-

teraction between the agent T and the environment, the
BERs are required to be obtained by executing step 8 and
step 9 in Algorithm 1, of which the computational com-
plexity is denoted as CBER. Therefore, the total complexity

Algorithm 1: The Proposed Action-composition based
PPO Algorithm

Initialize: Actor with parameters µ, critic with
parameters ω, replay buffer B and tcnt = 0

1 for episode e = 1, 2, · · · , emax do
2 T observes initial state s1;
3 for time step t = 1, 2, · · · , tmax do
4 tcnt ← tcnt + 1;
5 Actor outputs the policy π̂ (at |st) according to

(10) based on st;
6 T obtains action at by sampling based on (10);
7 T sends at to the RIS controller and the RIS

adjusts phase shifts based on at;
8 T broadcasts L bits to K MUs via the RIS;
9 The MUs calculate average BERs according to

(9) and feed them back to T ;
10 T calculates reward rt according to (5);
11 Each MU moves to the next location to generate

Qt+1, and T observes st+1 = {Qt+1, at};
12 Store the transition {st, at, rt, st+1} into B;
13 if tcnt % tstep == 0 then
14 Compute Aπµold

(st, at) and Vtar (st) for each
transition in B by (12) and (16),
respectively;

15 for epoch n = 1, 2, · · · , nepoch do
16 Shuffle all transitions in B;
17 repeat
18 Sample a mini-batch of transitions

{st, at, rt, st+1}
F
t=1 from B;

19 Update µ by (14) and update ω by
(15);

20 until all transitions in B are sampled;
21 end for
22 Clear the replay buffer B;
23 end if
24 end for
25 end for

of training is given by [36]

O
((

emax · tmax

)
·
(
nepoch ·

(
6 · pµt + 2

Iµ∑
i=1

pµi−1 · p
µ
i

+ 6 · pωt + 2
Iω∑

i=1

pωi−1 · p
ω
i

)
+CBER

))
, (17)

While training the DNNs in practical environment, CBER
can be evaluated by the maximum transmission delay
of L bits from T to the MUs, which is calculated as
L
R + max

k

{
dTR+dRUk

c

}
with R and c respectively denoted as

the transmit rate at T and the speed of light. Such a de-
lay is very small. For instance, if L = 106, R = 10 Mbps,
dTR = 140 m and dRUk = 60 m (∀k ∈ K), it can be obtained
that CBER ≈ 0.1 s. On the other hand, if the DNNs are
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trained by computer simulations, CBER can be evaluated as
O (I × K × 2N × J) since multiply operation is required to
represent the transmission of signal symbols from a trans-
mitter to a receiver via a wireless channel.

4. Simulation results

This section verifies the performance of the proposed PPO-
based DRL approach by numerical simulations. The locations
of T , the RIS and the MUs are specified by a three-dimensional
(3D) Cartesian coordinate system, and the unit for each coordi-
nate axis is in meter (m). The T ’s location is set as (0, 0, 10).
The RIS is placed at the x-z plane and the location of its mid-
point is set as (100, 100, 8). Without loss of generality, it is
assumed that there are two MUs in the considered system, i.e.,
K = 2. Furthermore, MU1 is assumed to move randomly in the
given zone Z with x1 ∈ [90, 110], y1 ∈ [20, 60] and z1 = 1.5,
and MU2 is assumed to remain static at a fixed location that is
set as q2 = (100, 40, 1.5). The top-down view of the above-
mentioned setting is illustrated in Figure 3.

Figure 3: Simulation setup (top-down view).

To validate our proposed approach, the wireless channels
in the environment of the considered system are generated
by computer programming in the numerical simulations, of
which the information (i.e., CSI) are unnecessary to be known
when employing our proposed approach in practical scenar-
ios. While generating the wireless channels by computer
programming, all the channel matrices are modeled accord-
ing to the Rician fading channel model. Thus, it follows

that hl =

√
Γ
(

dl
d0

)−vl
(√

ξl
(1+ξl)

hLOS
l +

√
1

(1+ξl)
hNLOS

l

)
, where l ∈

{TR,RUk}, Γ is the path loss at the reference distance d0 = 1m,
dl is the distance of the link l, vl is the path-loss exponent of the
link l, ξl is the Rician factor of the link l, and the Line-of-Sight

(LoS) component hLOS
l =

[
e
− j2πdl,1
λ , e

− j2πdl,2
λ , · · · , e

− j2πdl,N
λ

]T
, in

which λ is carrier wavelength, dl,n is the distance of the between
the n-th RIS element and T or MUk, and hNLOS

l ∼ CN(0, IN)
is the non-LoS component. Moreover, the spatial correlation
among the elements of the channel matrices is neglected [37].
The parameters used for the generation of wireless channels are

set as f = 2 GHz (i,e., λ = 15 cm), Γ = −30 dB, vTR = 2,
vRUk = 2.7, ξTR = 10 dB, and ξRUk = 4 dB, respectively.

To implement the transmitter and receivers in our simula-
tions, QPSK is assumed to be employed, the default value of
the transmit SNR is set as ρ = 130 dB (including that is used
for training the DNNs which are used in all of the simulations
in this section), and the other parameters for information trans-
mission are set as follows: the number of transmitted bits is
set as L = 106 , the number of transmit symbols in each time
slot is set as J = 250 and the number of time slots used for
information transmission is set as I = 2000, respectively. It is
worth pointing out that similar to that the CSI does not have
to be known, the above settings are only for the implementa-
tion of transmitter and receiver in simulations and they can be
unknown when employing our proposed design in practice. In
other words, to employ our proposed design in practice, it is
only required to send L bits from an off-the-shelf transmitter to
K off-the-shelf receivers (with unknown modulation technique,
transmitter power, and all of the parameters mentioned above in
this paragraph) in a RIS-assisted broadcast communication sys-
tem to calculate the average BERs at the receivers while train-
ing the DNNs. After the DNNs have been trained, they can
be used for controlling the RIS phase shifts by only using the
location information of the receivers.

For the the DNNs used in our DRL approach, the structure
and hyperparameters are listed in Table 1. When training the
DNNs, the number of episodes is set as emax = 3500; and in
each episode, the location of MU2 is fixed and the locations of
MU1 are sampled randomly in a location set where all locations
are uniformly distributed in the given zone, which means that
tmax = 150.

Table 1: The DNNs structure and hyperparameters
DNN Structure Hyperparameter Value

Actor

Linear (6, 1024) αµ 8e-5
tanh αω 8e-5

Linear (1024, 1024) F 128
tanh η 5

Linear (1024, 4N) δ -6.1

Critic

Linear (6, 1024) γ 0
tanh ϵ 0.2

Linear (1024, 1024) κ 0.1
tanh tstep 8192

Linear (1024, 1) nepoch 8

For the parameters used for the RIS in the simulations, the
default value of the number of reflecting elements (i.e., N) is set
as 60, the number of quantization bits for each RIS phase shift is
set as D = 2, and the spacing length between two adjacent RIS
reflecting elements is assumed to be equal to half a wavelength
[37]. Moreover, to validate our proposed design extensively, N
will be set as different values in some simulations. When not
specified, N = 60. As N = Nx × Ny, the values of Nx and Ny

corresponding to different values of N are listed in Table 2.

4.1. Convergence of the proposed PPO algorithm
To illustrate the convergence of the proposed PPO-based ap-

proach, Figure 4 depicts the variation in return with the increase
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Table 2: The values of Nx and Ny for different values of N
Parameter Value

N 20 30 40 50 60
Nx 4 5 5 5 6
Ny 5 6 8 10 10

of the number of training episodes. Here, the return represents
the cumulative sum of rewards across all time steps within an
episode, with the number of reflecting elements (i.e., N) set as
20, 30, 40, 50 and 60, respectively. Furthermore, although the
DQN approach is not suitable for solving the MDP in our work,
it is compared with the proposed PPO approach for N = 20 in
Figure 4 by using the method in [38] to reduce the dimension of
the action space, where a column-wise control method is used
to adjust the RIS phase shifts by setting the phase shifts of the
reflecting elements in this same column as the same value so
that the the dimension of the action space decreases to Ny = 5.
From Figure 4, it is observed that the return for the proposed
PPO approach converges after 1000 episodes for all values of N.
In contrast, the return for the DQN-based approach converges
more slowly and has worse performance even N is a relatively
small value (i.e., 20). Thus, these simulation results validate
the superiority of the PPO-based approach over the DQN-based
approach in addressing the challenge resulting from the high-
dimensional action space in the MDP of our work. Moreover,
it is observed from Figure 4 that the return increases with the
increase of N. This is because increasing the number of reflect-
ing elements can decrease the average BERs at the MUs, which
results in the increase of returns. Furthermore, it can be found
that for the proposed PPO approach, there are small variations
when the returns converge. This is because the agent uses an
exploring mechanism in the training of DNNs, which can avoid
being trapped in local optima by random sampling an action.

Figure 4: Convergence of the proposed PPO algorithm.

4.2. BER performance of the proposed design for different
MUs’ locations

As the location of MU1 varies in the given zone as illustrated
in Figure 3 and the location of MU2 is fixed, Figure 5(a) and
Figure 5(b) illustrate the maximum average BERs achieved by

(a) ρ = 130 dB (b) ρ = 134 dB

Figure 5: The BER performance of the proposed design as the locations of MUs
varies and the transmit SNR is set as 130 dB and 134 dB, respectively.

our proposed design by using the DNNs (i.e., a critic and an
actor) trained with Algorithm 1, where and the transmit SNR
is set as 130 dB (Figure 5(a)) and 134 dB (Figure 5(b)), re-
spectively. From Figure 5(a) and Figure 5(b), it can be ob-
served that when the horizontal coordinate of MU1’s location
is (x1, y1) = (100, 60), the maximum average BER is the low-
est. This is because in this case, MU1 is nearest to the RIS and
both of the two MUs locate at the same direction to the RIS,
which indicates that all of the reflecting elements at the RIS can
be used to serve both of the two MUs simultaneously. Further-
more, it is found that as MU1 departs away from the location
with the horizontal coordinate indicated by (x1, y1) = (100, 60),
the maximum average BER increases. The reason is that the
distance between the RIS and MU1 increases and the number
of the reflecting elements at the RIS that can be used for simul-
taneously serving both of the two MUs decreases.

The above-mentioned analyses validate that although the
DNNs are trained by sampling 150 locations of the two MUs,
they can be used to obtain the optimal phase shifts of the re-
flecting elements at the RIS for any locations of the MUs in the
given zone. Finally, from Figure 5(a) and Figure 5(b), it can
be observed that as the transmit SNR increases from 130 dB to
134 dB, the maximum average BERs decrease, which is just as
expected. Also, these results verify that although the DNNs are
trained with ρ = 130 dB, they can be used to obtain the optimal
phase shifts when the value of ρ is different from that used for
the training of the DNNs.

4.3. BER performance comparisons as the locations of the
MUs varies

In Figure 6 - Figure 8 provided in the following subsections,
the BER performance achieved by our proposed design is com-
pared with that achieved by four baseline schemes, namely
an I-CSI based semi-definite programming relaxation (SDR)
scheme, a S-CSI based semi-definite programming relaxation
(SDR) scheme, a S-CSI based partition strategy (PS) scheme,
and a random phase shift scheme, in terms of different system
configurations. To be specific, the four baseline schemes are
described in detail as follows:

• The I-CSI based SDR scheme: The scheme is derived from
the scheme proposed in [39] by using the I-CSI, where
the continuous phase shifts of reflecting elements are op-
timized by using the SDR technique to maximize the min-
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Figure 6: The BER performance achieved by our proposed design and the base-
line schemes when x2 varies.

imum received SNR at the MUs and the optimal discrete
phase shifts are obtained by mapping the continuous phase
shifts to discrete ones.

• The S-CSI based SDR scheme: In this scheme, an upper
bound of the ergodic rate is derived based on the results
provided in [3] by using the S-CSI (i.e., the parameters of
the Rician fading model for the wireless channels in the
considered system), and then the SDR technique is em-
ployed to optimize the continuous phase shifts of reflect-
ing elements to maximize the minimum ergodic rate upper
bound achieved at the MUs. By mapping the continuous
phase shifts to discrete ones, the optimal discrete phase
shifts can be obtained, just as that in the I-CSI based SDR
scheme.

• The S-CSI based PS scheme: In this scheme, an upper
bound of the ergodic rate is derived by following the ap-
proach used in the S-CSI based SDR scheme, and then the
PS strategy provide in [40] is employed to obtain the op-
timal discrete phase shifts of reflecting elements to max-
imize the minimum ergodic rate upper bound achieved at
the MUs, where the reflecting elements are equally allo-
cated to assist the communication for each MU.

• The random phase shift scheme: In this scheme, the phase
shift of each reflecting element in each time slot is set by
randomly selecting a discrete phase shift in Ω.

Note that to compare our proposed design with the the S-
CSI based schemes, it is assumed that the wireless channels in
the considered system can be described with the Rician fading
channel model so that the S-CSI can be achieved in the sim-
ulations. However, as mentioned previously, the environment
may be more complex in practical scenarios so that the wireless
channels between the RIS and the MUs cannot be described
with a uniform model, which can cause that the S-CSI cannot
be achieved since the locations of the MUs are time-varying in
the considered system.

In Figure 6, the proposed design is compared with the base-
line schemes by varying the locations of MU1, where the x-
coordinate of MU1 (i.e., x1) varies from 90 to 110 and the

y-coordinate of MU1 (i.e., y1) is set as 40. From Figure 6,
it is found that the BER performance achieved by the I-CSI
based SDR scheme is the best, since the I-CSI in each time
slot is assumed to be achieved in this scheme and enhancing re-
ceived SNR in each time slot can reduce the BER at the MUs.
Meanwhile, it is also observed that although the CSI cannot be
known, the BER performance achieved by our proposed design
is close to that achieved by the I-CSI based SDR scheme, espe-
cially in the region x1 ∈ [97.5, 102.5], and it is obviously better
than that achieved by the S-CSI based SDR scheme, the S-CSI
based PS scheme and the random phase shift scheme. Finally,
the results depicted in Figure 6 also show that the BER perfor-
mance is the best as x1 is equal to 100 for all the illustrated
schemes since MU1 is the nearest to the RIS when x1 = 100,
which is coincident with the result shown in Figure 5.

4.4. BER performance comparisons as the transmit SNR varies

Figure 7: The BER performance achieved by our proposed design and the base-
line schemes when the transmit SNR varies.

In Figure 7, the proposed design is compared with the base-
line schemes by varying the transmit SNR of T (i.e., ρ), where
the horizontal axis of MU1 is set as (x1, y1) = (106, 28). From
Figure 7, it is observed that the BER performance achieved by
the proposed design is similar to that achieved by the I-CSI
based SDR scheme with the instantaneous CSI for all values of
ρ. Particularly, when the transmit SNR varies between 120 dB
and 130 dB, the maximum average BER achieved by the pro-
posed design is very close to that achieved by the I-CSI based
SDR scheme. Meanwhile, it is also found that the proposed
design significantly outperforms the S-CSI based SDR scheme,
the S-CSI based PS scheme and the random phase shift scheme
for all values of ρ. Specially, it can be observed that the maxi-
mum average BER achieved by the S-CSI based SDR scheme,
the S-CSI based PS scheme and the random phase shift scheme
is about 4 times, 36 times and more than 50000 times higher
than that achieved by the proposed design.

4.5. BER performance comparisons as the number of reflecting
elements varies

In Figure 8, the proposed design is compared with the base-
line schemes by varying the number of reflecting elements
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Figure 8: The BER performance achieved by our proposed design and the base-
line schemes when the number of reflecting elements varies.

(i.e., N), where the horizontal axis of MU1 is set as (x1, y1) =
(106, 28) and the transmit SNR is set as ρ = 134 dB. From Fig-
ure 8, it is found that the proposed design can achieve the BER
performance that is similar to that achieved by the I-CSI based
SDR scheme for all values of N, although the instantaneous is
available in the I-CSI based SDR scheme and any CSI is not
known in the proposed design. Moreover, it is observed that
the maximum average BERs achieved by the S-CSI based SDR
scheme, the S-CSI based PS scheme and the random phase shift
scheme are much higher than that achieved by the proposed de-
sign for all values of N. The above-mentioned observations fur-
ther verify that the proposed design can achieve superior BER
performance in the considered RIS-assisted broadcast commu-
nication system.

4.6. The scenario involves direct link and more MUs

Figure 9: The BER performance achieved by our proposed design and the base-
line schemes when the number of MUs varies.

To further illustrate the generality of the proposed PPO algo-
rithm, this section considers the scenario with more MUs in the
presence of direct links from T to the MUs, which are mod-
eled as Rayleigh channels. Specifically, the channel coefficient
vector corresponding the T -to-MUk (TUk) link in i-th time slot

is denoted as hTUk (i, qk) =

√
Γ

(
dTUk
d0

)−vTUk
hNLOS

TUk
, the path loss

Figure 10: The BER performance achieved by our proposed design and the
baseline schemes when the transmit SNR varies and the number of MUs is set
as K = 6.

Γ = −30 dB at the reference distance d0 = 1m, path loss ex-
ponent vTUk = 5.4, and hNLOS

TUk
∼ CN(0, 1). The locations of

the MUs are set as q1 = (106, 28, 1.5), q2 = (100, 40, 1.5),
q3 = (90, 45, 1.5), q4 = (110, 30, 1.5), q5 = (95, 25, 1.5), and
q6 = (105, 50, 1.5).

In Figure 9, the proposed design is compared with the base-
line schemes by varying the number of MUs (i.e., K), where
the transmit SNR is set as ρ = 130 dB. It is observed that the
BER performance of all schemes gradually decreases with the
increase in the number of MUs. Moreover, when the number
of MUs more than 5, the performance gradually stabilizes. Fur-
thermore, the performance of the proposed design is superior
to both the S-CSI based schemes and the random phase shift
scheme for any number of users, indicating that the proposed
design can be applied to scenarios with direct links and more
MUs, achieving better performance.

In Figure 10, the proposed design is compared with the base-
line schemes by varying the transmit SNR of T (i.e., ρ), where
the number of MUs is set as K = 6. It can be observed that
as the transmit SNR increases, the advantage of the proposed
design becomes more apparent compared to the S-CSI based
schemes and the random phase shift scheme. This indicates
that the proposed design has significant advantages under high
SNR conditions. Furthermore, even with the presence of di-
rect links from the T to the MUs, the proposed design only
incurs a twofold BER performance loss compared to the I-CSI
based SDR scheme, further demonstrating the effectiveness of
the proposed design.

5. Conclusions

In this paper, a RIS-assisted broadcast communication sys-
tem was studied, in which the discrete phase shifts of reflecting
elements at the RIS was optimized to minimize the maximum
average BER performance at multiple MUs without any re-
quirement of CSI. The involved optimization problem was hard
to tackle due to the unavailability of the CSI. To address this is-
sue, the problem was reformulated as a MDP, and a DRL-based
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approach that employed an action-composition based PPO al-
gorithm was to solve the MDP to achieve the optimal phase
shifts. Simulation results validated the superior performance of
the proposed DRL-based approach.

In future works, the study in our work will be extended
to more general communication systems with advanced tech-
niques (e.g., multiple-input-multiple-output, orthogonal fre-
quency division multiple access, and non-orthogonal multiple
access). Also, based on the studied general RIS-assisted com-
munication systems, the application of RIS-assisted communi-
cation systems on personal health monitoring [41, 42] and se-
curity aspects [43] will also be investigated.
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[37] N. S. Perović, L.-N. Tran, M. Di Renzo, M. F. Flanagan, On the maximum
achievable sum-rate of the RIS-aided MIMO broadcast channel, IEEE
Transactions on Signal Processing 70 (2022) 6316–6331.

[38] P. Chen, X. Li, M. Matthaiou, S. Jin, DRL-based RIS phase shift design
for OFDM communication systems, IEEE Wireless Communications Let-
ters (2023).

[39] Q. Wu, R. Zhang, Intelligent reflecting surface enhanced wireless net-
work: Joint active and passive beamforming design, in: 2018 IEEE
Global Communications Conference (GLOBECOM), IEEE, 2018, pp. 1–
6.

[40] T.-H. Vu, T.-V. Nguyen, Q.-V. Pham, D. B. da Costa, S. Kim, STAR-RIS-
enabled short-packet NOMA systems, IEEE Transactions on Vehicular
Technology (2023).

[41] Nia, A.M., Mozaffari-Kermani, M., Sur-Kolay, S., Raghunathan, A.,
Jha, N.K., 2015. Energy-Efficient Long-term Continuous Personal Health
Monitoring. IEEE Trans. Multi-Scale Comp. Syst. 1, 85–98.

[42] Mozaffari-Kermani, M., Sur-Kolay, S., Raghunathan, A., Jha, N.K., 2015.
Systematic Poisoning Attacks on and Defenses for Machine Learning in
Healthcare. IEEE J. Biomed. Health Inform. 19, 1893–1905.

[43] Koziel, B., Azarderakhsh, R., Mozaffari Kermani, M., Jao, D., 2017. Post-
Quantum Cryptography on FPGA Based on Isogenies on Elliptic Curves.
IEEE Trans. Circuits Syst. I 64, 86–99.

14



Citation on deposit: Gong, B., Huang, G., & Tu, W. 

(online). Minimizing BER for RIS-assisted wireless 

broadcast communication systems with dynamic network 

topology without CSI. Computer 

Networks, https://doi.org/10.1016/j.comnet.2024.110729 

For final citation and metadata, visit Durham 

Research Online URL: https://durham-

repository.worktribe.com/output/2764684  

Copyright statement: This accepted manuscript is licensed under the Creative 

Commons Attribution 4.0 licence. 

https://creativecommons.org/licenses/by/4.0/ 

https://doi.org/10.1016/j.comnet.2024.110729
https://durham-repository.worktribe.com/output/2764684
https://durham-repository.worktribe.com/output/2764684

	Introduction
	Related works
	Studies on RIS-assisted communications with I-CSI and S-CSI
	Studies on RIS-assisted communications without CSI
	Studies on error performance of RIS-assisted communication systems

	Motivations and contributions

	System model and problem formulation
	Channel model
	Signal model and definition of bit error rate
	Problem formulation

	Proposed PPO-based DRL approach
	MDP formulation
	Action
	State
	Reward

	The action-composition based PPO approach
	The PPO framework to solve the MDP
	Action composition
	Training of critic and actor
	The action-composition based PPO Algorithm
	Complexity analysis


	Simulation results
	Convergence of the proposed PPO algorithm
	BER performance of the proposed design for different MUs' locations
	BER performance comparisons as the locations of the MUs varies
	BER performance comparisons as the transmit SNR varies
	BER performance comparisons as the number of reflecting elements varies
	The scenario involves direct link and more MUs

	Conclusions

