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Abstract

In this paper, we study the dynamic capacity allocation problem of an airline using allotment

contracts among travel agencies. The capacity allocation problem is formulated as a dynamic pro-

gramming model where the initial fixed allotment is determined on the basis of a contract between

agencies and the airline while the variable allotment is distributed over the planning horizon. We

develop approximation methods based on linear programming and Lagrangian relaxation to solve the

underlying dynamic programming model. The computational experiments are designed to illustrate

the performance of the proposed approaches using real data. The numerical results show that the

capacity allotment policy in terms of fixed and variable allotments is significantly affected by price

and demand patterns. Even though fixed allotments can provide a cushion against the loss due to

potential empty seats, they may not be in the best interest of the airline. Moreover, the booking rules

and the airline’s capacity allocation strategy have an impact on the airline’s revenue and the agency’s

profit.

Keywords: OR in airlines, capacity allotment, dynamic programming, approximation methods

1 Introduction

Airlines sell flight tickets via different channels. They can either sell directly through their proprietary

reservation system, sales offices, and call centres, or indirectly through traditional brick-and-mortar stores,

tour operators and travel agencies. Since the 1970s, airlines have been selling flight tickets using travel

agencies as their distribution channels (Buhalis, 2004). With technological advances and the spread

of the internet, online ticket sales for flights have been heavily used by airlines, online travel agencies

and tour operators. Fiig et al. (2015) and Vinod (2009) discuss the roles and industrial evolution of

distribution channels in airline revenue management. According to Fiig et al. (2015), airlines and agencies

are considered as partners in the air travel industry and traditional travel agencies will continue to play

an important intermediary role between airlines and customers in the future. Individual and corporate

customers prefer agencies since they can offer products from different providers. According to the U.S.

airline market report published by PhocusWright (2022), travel agencies are expected to process more

than 40% of gross airline bookings in 2023. Blackler (2023) discusses that demand for travel has gradually

returned to pre-pandemic level and passengers prioritize flexibility provided by travel agencies over other

factors such as cost due to the uncertainty faced during the pandemic. A recent study on the UK travel
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market shows that 54% of UK passengers prefer a travel agency or a travel management company to

book their flights rather than booking independently (Flight Centre, 2022). Despite their market share

in airline sales, revenue management with travel agencies has received very limited attention within the

extensive research in airline revenue management.

In distribution channels, airlines and travel agencies share a similar booking control system. This

system allows travel agencies to access fares, booking rules, and information related to seat availability in

real-time (Fiig et al., 2015; Isler and D’Souza, 2009). Travel agencies can either dynamically sell tickets as

customers arrive or reserve a block of seats (so-called allotments) from flights (Amadeus, 2023; Gunther

et al., 2012; Hitit, 2023). Allotments are negotiated between the airline and travel agencies for a specific

traveling season. The airline sets contracts with travel agencies before the selling season starts. The

contract specifies a list of flights with requested seat capacities and associated pricing schemes. There

are two main types of capacity allotments, fixed and variable (Bravo, 2023; IBS Software, 2023). In

fixed allotment, agencies reserve seats prior to the start of the selling season, during which the airline is

unable to modify the initial allocation. Moreover, the unsold fixed allotment seats cannot be returned

to the airline without incurring charges. Thus, a fixed allotment contract enables agencies to secure seat

capacity while it allows the airline to mitigate risk of unsold seats under demand uncertainty. In variable

allotment (also known as prorata or soft allotment), on the other hand, agencies reserve seats for a certain

period of time and have flexibility to return the unsold seats to the airline. Throughout the selling season,

the airline periodically monitors the bookings recorded in their own system and those made by agencies.

Based on the sale performance and expected future bookings, the remaining variable allotment capacities

allocated to each agency can be updated. Insufficient capacity allocation to different agencies may result

in rejecting high-fare class requests arriving towards the end of the reservation period, which in turn

may lead to a significant revenue loss. Thus, the airlines need to develop an effective capacity planning

policy by taking into account customer demand to maximize the total revenue received by different sales

channels.

In this paper, we formulate the capacity planning problem of an airline selling tickets of a single-leg

flight through multiple travel agencies, where the seat capacity can be further classified into fixed and

variable allotments. The underlying capacity allotment planning problem is motivated by a real-world

case study introduced by a travel technology company providing commercial and operational IT systems

for the airline and travel industry Hitit (2023). We consider a stream of customers requesting tickets

during the booking horizon of the flight. Customers can book flight tickets via either travel agencies or

the airline reservation system. Each customer can request a ticket from exactly one sales channel. We

assume that the airline has full information about how flight tickets will be priced during the booking

horizon by travel agencies and in its own reservation system. At the beginning of the booking horizon,

the airline allocates fixed and variable allotments to all contracted travel agencies and its reservation

system. During the booking horizon, the airline periodically reviews and re-allocates the remaining

variable allotment capacity among all agencies and the reservation system as well as to accept/reject

customers’ booking requests for a flight ticket through its reservation system. The allocated capacity of

fixed allotment cannot be changed and the agencies cannot return any unsold tickets to the airline. On

the other hand, the variable allotment seats allocated to each sales channel can be updated during the

planning horizon. Given the allocated fixed and variable allotment capacities, each agency independently
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makes the seat booking decisions for customers arriving between two consecutive review periods without

knowing how the other sales channels behave. At the end of the booking horizon, the total revenue of the

airline is calculated as the total of the immediate revenue gained by assigning fixed allotment seats to

sales channels and the revenue obtained from selling variable allotment seats through all sales channels

including the airline’s reservation system.

To the best of our knowledge, the fixed and variable capacity allotment problem with travel agencies

has not been previously studied in the passenger airline literature. The contribution of this paper lies in

development of the modelling and solution approaches.

• We introduce a dynamic programming formulation of the capacity allotment problem from the air-

line’s perspective where the airline anticipates agencies’ capacity management strategies based on

their remaining seats to maximize their revenue. Unlike the traditional single-leg capacity manage-

ment problem, we consider two types of seat capacities in terms of fixed and variable allotments.

We assume that the fixed allotment capacities are decided at the beginning of booking horizon and

cannot be changed during the booking horizon whereas the variable allotment allocations can be

updated at specific review periods. As the airline and travel agencies manage their own reservation

(booking) systems independently between two consecutive review periods, they apply different de-

cision rules for customer requests arriving to each individual sale channels. Each travel agency’s

contribution to the airline’s revenue is evaluated from the perspective of the airline by considering

the agency’s capacity management strategy.

• The airline’s dynamic capacity planning model requires keeping track of the bookings performed

by each agency as well as the type of capacity; thus it has a high-dimensional state variable. Con-

sequently, the dynamic program model becomes intractable. Due to curse of dimensionality of the

stochastic dynamic programming model, we propose two different approximation methods to obtain

the dynamic capacity allotment policy for the airline. In both approximation methods, the problem

is decomposed into smaller sub-problems with respect to the sales channels by excluding the review

periods. In the first approximation method, the expected revenue obtained from travel agencies is

computed by using a deterministic programming approach while the airline’s reservation system is

formulated as a dynamic programming model. The resulting optimisation problem corresponds to

a large linear programming model that can be efficiently solved. As the second approach, we intro-

duce a Lagrangian relaxation-based decomposition method. We formulate the capacity allotment

problem as a binary programming model where binary variables denote each capacity allotment

decision. Similar to the first approximation method, each sales channel is treated as a single sub-

problem by relaxing the linking constraints for sales channels with a Lagrange multiplier. Due

to the special structure of the problem, one can easily obtain the capacity allotment policy using

the sub-gradient method. The proposed decomposition method utilizes the dynamic programming

formulation. Hence, it captures the temporal dynamics of the customer arrival process.

• We design a series of computational experiments to illustrate performance of the proposed ap-

proaches using a real agency data obtained from a European airline information technology provider

through a consulting project. We analyse capacity management strategies of agencies considering

different decision rules for the seat booking strategy including the dynamic policy given the fixed

and variable allotment capacities. Our numerical results demonstrate that under certain conditions,
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fixed and variable capacity allocations are not always in the best interest of the airline.

The remainder of the paper is organised as follows. In Section 2, we review the most relevant liter-

ature on airline capacity management. In Section 3, we present the dynamic programming formulation

of the capacity allotment problem for an airline selling tickets for one single-leg flight through multiple

travel agencies. In Section 4, we focus on the solution methodologies for the dynamic programming model

and introduce two channel based approximation methods. In Section 5, we first describe our real data

and design of computational experiments and then present the numerical results. Section 6 summarises

the main findings and concluding remarks.

2 Review of Related Literature

In this section, we will review the literature on capacity management through agency channels and

outline the most related studies on the capacity allocation problems in airline revenue management. There

is a large body of literature on capacity allocation problems in revenue management. For a comprehensive

review of this area, we refer the reader to Phillips (2005), Talluri and van Ryzin (2004), and Klein et al.

(2020). We classify the most relevant research papers developing policies for the capacity allotment

problem into two groups in terms of application areas in Table 1.

References Capacity Type Agency Contract Solution Approach

Cargo Transportation

Amaruchkul et al. (2007) Weight and volume — One-dimensional approximation
Gupta (2008) Weight and volume Flexible allotment Single period solution
Levin et al. (2012) Weight and volume Fixed allotment Benders decomposition
Moussawi (2014) Weight and volume Fixed allotment Two-stage approach
Moussawi et al. (2021) Number of containers Fixed allotment Two-stage approach

Airline Passenger Booking

Gunther et al. (2012) Number of seats — Mixed-integer program
Wang et al. (2018) Number of seats — Bid prices - DP model
Our paper Allotment size Fixed and variable allotment Channel-based decomposition

Table 1
Comparison of the most relevant literature

Only a few studies focus on the capacity control problem with agency distribution channels in airline

revenue management. These studies mainly investigate effects on sales of offering tickets through agency

channels. Isler and D’Souza (2009) review the development of global distribution systems for travel

agencies over years. They discuss various difficulties of integrating a pricing mechanism between airline

booking control and travel agencies. Castillo-Manzano and Lopez-Valpuesta (2010) explore the recent

customer trends and analyse the profile of airline passengers according to the chosen purchase channel.

Gunther et al. (2012) present a comprehensive overview of airline distribution channels by discussing

several applications in this area such as customer behaviour prediction in choice models and airline

channel management. In the airline channel management problem, the authors consider the effects of

offering a promotion in an airline’s own web system and on the other distribution channels. In particular,

they develop a model using deterministic demand and analyse a customer shift between competing airlines

and agencies. One of the challenges in this problem is to estimate model parameters affecting the demand
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shift between competing airlines. Gunther et al. (2012) also point out several research directions such as

the seat allotment problem in airline distribution systems. Roma et al. (2014) focus on price dispersion

in the airline industry. They perform an empirical analysis to investigate which factors in airlines’ direct

sales channel and the online travel agencies affect daily price dispersion. Wang et al. (2018) study the

capacity control problem of an airline selling seats through travel agencies and its own online reservation

system. They assume that the airline has full control of the reservation system and decides to accept

or reject each arriving agency request. They present a dynamic programming (DP) model to find an

optimal booking policy and analyse the demand shift between agencies. The DP model can be expressed

as the standard capacity allocation model introduced by Lautenbacher and Stidham (1999) for single-leg

airline revenue management as there is no pre-defined capacity limit for an agency. Song et al. (2021)

work on the dynamic pricing problem in a multi-channel setting by considering the demand substitution

effect among channels. They formulate the problem as a stochastic dynamic programming model and

investigate the optimal pricing policies.

Unlike the passenger airline systems, capacity management with agency contracts is an active area of

research in cargo transportation. Most carriers sell a significant portion of their cargo capacity through

long-term contracts to agencies (so-called forwarders). This contracted capacity, known as allotments,

was first studied by Kasilingam (1996). Considering spot market demand and allotment contracts, he

investigates the differences between air cargo and passenger revenue management over different problems

such as forecasting, overbooking and seat allotment. Similarly, Billings et al. (2003) compare the air cargo

system with the passenger airline and discuss the benefits and challenges of adopting revenue management

systems in air cargo. Amaruchkul et al. (2007) consider an airline selling cargo capacity solely through

the spot market and formulate a dynamic programming model for managing the spot booking requests

for a single-leg problem. Due to the high-dimensional state space of the dynamic programming model,

they propose a one-dimensional approximation to the value function. Delgado et al. (2019) focus on

spot bookings in network cargo transportation under demand and capacity uncertainty. They propose

a multistage stochastic programming model in which uncertainty is modelled as a scenario tree. Several

studies in air cargo revenue management focus on the allotment contracts. Allotment contracts typically

cover a period of few months up to a year and contract conditions remain the same during this duration.

Gupta (2008) studies flexible allotment contracts for a single period that allow adjustments in contract

parameters depending on realised demand. He divides the interaction between an airline and forwarders

into three stages. In the first stage, the airline decides on the allocated cargo capacity and the associated

fee for the forwarders. In the second stage, forwarders return the unused capacity to the airline while

in the third stage, the airline executes a new contract considering the given information. Gupta (2008)

discusses whether flexible allotment contracts increase profitability compared to fixed contracts.

There are studies exploring the coordination between allotment contracts and spot market booking

decisions. For instance, Levin et al. (2012) study the allotment problem for parallel flights. The airline

can either sell its capacity through the spot market or by long-term contracts. The problem is addressed

in two stages. In the first stage, the airline sets the long-term fixed allotment contracts and in the second

stage, the remaining capacity is sold through the spot market. The spot market capacity control problem

is formulated as a dynamic programming model. Since the resulting model is computationally intractable,

they propose a value function approximation to tackle the curse of dimensionality within the dynamic
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programming model and the overall problem is solved by Benders decomposition. Moussawi (2014) follows

a two-stage approach to solve the allotment problem for a single-leg flight. Similar to the model proposed

by Levin et al. (2012), the airline first decides how much capacity to allocate to each contract. Then, given

the initial decision, a dynamic capacity allocation policy is devised for requests from the spot market.

In order to tackle the curse of dimensionality in the dynamic programming model, they approximate

the two-dimensional state space as a one-dimensional space to obtain a spot market booking policy.

Moussawi et al. (2021) study the allotment problem in sea cargo transportation. Following Moussawi

(2014), they also formulate the problem as in two stages. Considering the specific features of sea cargo

transportation, they propose a heuristic method for the spot market booking control. Wang et al. (2022)

study the risk-averse capacity management strategies in sea cargo transportation considering both spot

market booking and long-term allotment contracts. They develop a two-stage stochastic programming

model to decide which contracts to select and how to allocate capacity for the selected contracts and spot

market customers.

It is important to note that the allotment problem shows different characteristics in cargo and

passenger airlines from the booking and capacity management perspectives (Meng et al., 2019). To begin

with, there are two types of allotment contracts in passenger airlines which are fixed and variable. Fixed

allotment is similar to the long-term contracts in cargo airlines. The travel agency purchases a fixed

amount of capacity at a given price through a fixed allotment agreement. Unlike cargo reservations,

the purchased capacity cannot be returned to the passenger airline. On the other hand, in a variable

allotment agreement, the travel agency reserves some capacity from the passenger airline, and the reserved

capacity may change during the reservation period. In addition, the price of variable capacity is not fixed

and can change throughout the reservation period. Compared to fixed allotment, variable allotment is

more flexible; hence, the travel agencies generally prefer this type of agreement. The variable allotment

system is not common in cargo airlines. Also, the studies in cargo airlines generally assume that the

contracted cargo bookings arrive or are realised just before the flight departure. Therefore, unlike the

passenger airlines, there is no interaction between long-term cargo allotments and spot market bookings

during the reservation period. Due to these features, it is crucial to develop novel modelling and solution

approaches specific to the allotment problem in passenger airlines. To the best of our knowledge, there

are no studies examining the fixed and variable capacity allotment problem in the passenger airlines.

We formulate the dynamic capacity allotment problem from the airline’s perspective and investigate the

interaction between fixed and variable allotments.

The modelling and solution approaches considered in this study build upon the literature on the

capacity control problems in revenue management. Approximation and decomposition methods are

widely used to construct various capacity control strategies such as the bid-prices and booking limits for

complex capacity control problems in revenue management. Topaloglu (2009) proposes a decomposition

approach to divide the network revenue management problem into single-leg sub-problems. Although

resulting single-leg problems can be efficiently solved, the method itself is computationally demanding

for large-scale problems. Erdelyi and Topaloglu (2009) study the network capacity control problem

with overbooking and develop separable approximations to decompose the problem by individual flight

legs. They consider an iterative and simulation-based method to generate approximations. Thus, the

quality of the solution depends on the number of iterations and samples. Kunnumkal and Topaloglu
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(2010) introduce an approximation method to allocate flight itinerary prices to the itinerary’s flight legs

and obtain a single-leg problem for each flight leg in an airline network. Birbil et al. (2014) present a

general decomposition framework based on origin-destination path decomposition for the network revenue

management problem. The proposed method first allocates network capacities to each origin-destination

path. A capacity allocation policy is then determined within each path. Using the structural properties

of the decomposed problem, they reformulate the model as a linear programming model. The optimal

solution of the linear programming model can be used for bid-price and capacity control policies. The

reader is referred to Gonsch et al. (2013), Hosseinalifam et al. (2016), Kunnumkal and Talluri (2016)

and Dai et al. (2019) for alternative strategies for decomposing and approximating the complex capacity

control problems in revenue management. In this paper, we introduce a stochastic dynamic programming

model for the capacity allotment problem considering different capacity restrictions due to fixed and

variable allotments. We utilize decomposition methods to tackle the high-dimensional state vector of the

proposed dynamic programming model. While developing the decomposition methods, we consider the

interaction between fixed and variable allotments and different sales channels.

3 Dynamic Programming Formulation

In this section, we present a dynamic programming (DP) formulation of an airline’s capacity al-

lotment problem using a discrete state Markov Decision Process. The airline distributes the capacity

allotments of a single-leg flight among different sale channels as travel agencies and their own reserva-

tion system. The airline and agencies use their own selling channels operating at different markets. Let

I represent a set of sales channels including n contracted agencies and the airline’s online reservation

system (denoted by o). Let C denote the total capacity of the single flight in terms of number of seats.

We consider a planning horizon consisting of T stages denoted by discrete times t ∈ T = {1, . . . , T}.
The flight departs at the beginning of T + 1. Let S = {s1, . . . , sK} denote a set of K review periods at

which variable allotments are reallocated by the airline, where s1 = 1 and S ⊂ T . The remaining time

periods T \S are assumed to be sufficiently small such that the probability of more than one customer

requesting a ticket through any sales channel during each time period is negligible. As shown in Figure

1, the capacity allotment process involves decision stages where (re)allocation of capacity allotments and

customer bookings are implemented.

At the beginning of the planning horizon s1, the airline allocates fixed and variable allotments to

all travel agencies and its online reservation system. During the booking horizon, the airline reviews

and re-allocates the remaining variable allotment capacity among all agencies and the online reservation

system at each review period sl for l = 2, · · · ,K. The airline and travel agencies accept or reject

arriving customers’ seat requests by considering these allocated capacities during the booking horizon.

A description of notation is summarised in Table 2.

We assume that each agency’s request regarding the number of fixed allotments is received before the

booking/seat allocation procedure begins. Thus, the airline does not allocate more than the requested

seat capacity. Let di denote the fixed allotment capacity requested by agency i ∈ I\{o}. We assume that

each channel sets seat selling prices to their own customers independently. The airline receives pre-defined

payment from travel agencies through assigning a seat capacity. Agency i pays fi and rit to the airline
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Figure 1
Decision stages of the dynamic capacity allotment problem

for selling fixed and variable allotments, respectively. Travel agencies are not allowed to return unsold

fixed allotments to the airline (Bravo, 2023). In practice, the payment of the fixed allotment is collected

according to the initial agreement between the airline and travel agencies. In this study, we assume

that the agencies pay the cost of unsold fixed allotment capacity at the end of the planning horizon. A

customer’s request for a flight ticket may arrive to any of sales channels at t ∈ T \S, that is defined as an

intermediate time between any two review periods. We assume that each sales channel targets a different

market. Let pit represent the probability of a customer purchasing a ticket through sales channel i at

time t such that
∑
i∈I

pit ≤ 1.

A state of the dynamic system is defined as the remaining seat capacities of sales channels at time

t. The remaining fixed and variable allotments of sales channel i at time t are denoted by xit and yit,

respectively, and written in a vector form as (xt,yt) ∈ N|I|×|I|. In particular, the initial state of the

dynamic model arising at the first review period t = 1 is denoted by (01,01). The airline reservation

system does not use fixed allotment capacity at any time period; thus, we set xot = 0 for t ∈ T .

Airline’s Capacity Allotment Model: The airline decision process involves both capacity allo-

cation decisions at review periods and also seat booking decisions for their own online reservation system

between two consecutive review periods. At time t = 1, the total seat capacity C of a specific flight needs

to be allocated among agencies (through fixed and variable allotments) and its own online reservation

system. Let ω ∈ N|I| and σ ∈ N|I| denote vectors of decision variables ωi and σi, respectively, repre-

senting the number of fixed and variable allotments allocated to channel i. The search space at review

period t = 1

H(01,01) =
{
(ω, σ) ∈ N|I| | ωi ≤ di, ∀i ∈ I\{o}; ωo = 0;

∑
i∈I

ωi + σi = C
}
,
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Notation Description

Sets

I = {1, . . . , n, o} sales channels where o indicates airline’s online reservation system
T = {1, . . . , T} discrete time periods over the booking horizon
S = {s1, . . . , sK} K review periods specified over the booking horizon
H(·) and U(·) search spaces for allocating capacity and accepting customers, respectively
Y(·) search spaces for accepting customers in approximation method
Wk search spaces for variable allotment at review period k in approximation method
Pk(·) search spaces for allocating capacity at review period k in approximation method

Parameters

di amount of fixed allotment capacity requested by agency i
fi and rit revenue to receive from sale of each fixed and variable allotments by channel i
git price of flight ticket sold by agency i at time t
pit probability of customer purchasing a ticket through sales channel i at time t
xit and yit remaining fixed and variable allotments of sales channel i at time t
C total capacity of a single flight in terms of number of seats
C ′

t available capacity at time t
θik upper bound on fixed allotment capacity for agency i at review period k
γl and ρl slope and intercept values for the piece-wise linear function
et |I|-dimensional unit vector with eit = 1 if channel i accepts customer demand at t

Discrete Decision Variables

ωi and σi amount of fixed and variable allotments allocated to agency i at t = 1
δit amount of variable allotments reallocated to channel i at t ∈ S\{1}
κt ∈ {1, 0} denotes whether a customer receives variable allotment from the airline at t, or not
µit ∈ {1, 0} denotes whether a customer receives fixed allotment from agency i at t, or not
νit ∈ {1, 0} denotes whether a customer receives variable allotment from agency i at t, or not
αi ∈ {1, 0} represents whether customer demand is satisfied from fixed allotment, or not
uiωσ ∈ {1, 0} represents whether ω fixed and σ variable allotments are allocated to channel i or not

Table 2
A description of notation

determines the optimal allocation of fixed and variable allotments for all channels. Given the allocation

decisions ω and σ at t = 1, a state at t = 2 is (0 + ω, 0 + σ).

In any other review periods t ∈ S\{1}, the airline first reviews the remaining fixed and variable

allotment capacities, and then reallocates the currently available variable capacity C ′
t among all channels,

including the airline’s own reservation system. Let δt ∈ Z|I| denote a vector of decision variables δit,

which represents the number of reallocated variable allotments to channel i. Note that δit is unrestricted

in sign; this implies that the airline may increase or decrease the number of variable allotments to be

assigned to any sales channel at each review period. Given state (xt,yt) at review period t ∈ S\{1}, the
search space for δt is represented as

H(xt,yt) =
{
δt ∈ Z|I| | − yit ≤ δit ≤ C ′

t, ∀i ∈ I;
∑
i∈I

δit = 0
}
.

This basically ensures the best allocation of total available variable capacity C ′
t among different sales

channels. Once the reallocation decision δt is taken at t, the state at t+ 1 then becomes (xt,yt + δt).

During the seat booking process, the airline dynamically accepts customers to maximize the total

revenue from its own reservation system. At any intermediate time period t ∈ T \S, the action set

involves the booking decision for the airline’s reservation system. Let κt denote a binary decision variable
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representing whether a customer request arriving at the airline’s reservation system at time t is satisfied

or not. We also define an |I|-dimensional unit vector et whose i-th element corresponding to sales channel

i ∈ I is set to one if channel i accepts a customer’s request at t. The feasible set Ut(xt,yt) at state (xt,yt)

can be described as follows;

Ut(xt,yt) =
{
κt ∈ {0, 1} | κt ≤ yot

}
.

Depending on the airline’s action κt taken at state (xt,yt) at time t, the next state of the system

(xt+1,yt+1) at time t+ 1 is (xt,yt − etκt). The airline receives revenue rot from the sale of a seat in its

own reservation system at time t.

For any time between any two consecutive review periods, the airline also collects payments from

agencies as they sell their own fixed and variable allotments. Note that the airline does not have any

influence on the agencies’ decisions to accept or reject the customer’s request; thus, agency i can fulfill a

customer demand from available fixed or variable allotment capacities. Let µit and νit denote the booking

(binary) decisions for fixed and variable allotment capacities of agency i at time t, respectively. When

agency i fulfills a customer demand from fixed or variable allotment capacity at time t (i.e., µit = 1 or

νit = 1), the price of fixed or variable allotment capacities (fi or rit) is paid to the airline. The next state

of the system (xt+1,yt+1) at t + 1 is given by (xt − etµit,yt − etνit). Note that, as the fixed allotment

payment is pre-defined and unsold fixed allotments are not allowed to return to the airline, the same

amount of total expected revenue is collected if the payment is received either at the time of customer

reservation or at the end of the planning horizon.

The airline anticipates each agency’s capacity management strategy based on their remaining fixed

and variable allotment capacity to maximize their revenue. In order to formulate the expected revenue

obtained from sales channel i ∈ I\{o}, we introduce indicator functions 1(µit=1) and 1(νit=1) for fixed and

variable allotment capacity consumption, respectively. Note that the indicator functions are computed

on the basis of the booking decisions received from each agency. Then we can compute the expected

revenue At(xt,yt) to be collected from all agencies at time t as follows;

At(xt,yt) =
∑

i∈I\{o}

pit

([
rit + Lt+1(xt+1,yt+1)

]
1(νit=1) +

[
fi + Lt+1(xt+1,yt+1)

]
1(µit=1)

)
+ pitLt+1(xt+1,yt+1)1(µit=0)1(νit=0) + (1− pit)Lt+1(xt+1,yt+1).

Given a state (xt,yt) of remaining allotment capacities at time t ∈ T , the value function Lt(xt,yt)

computes the airline’s expected total revenue received by all sales channels from t to the end of planning

horizon T and can be formulated as the following dynamic optimisation model;

Lt(xt,yt) =



max
ω,σ∈H(0,0)

{
Lt+1(xt+1,yt+1)

}
, for t = 1

max
δt∈H(xt,yt)

{
Lt+1(xt+1,yt+1)

}
, for t ∈ S\{1}

max
κot∈Ut(xt,yt)

{
pot

[
rotκt + Lt+1(xt+1,yt+1)

]
+ (1− pot)Lt+1(xt+1,yt+1)

}
+At(xt,yt), for t ∈ T \S.

(1)
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The corresponding transition function updates the state space as follows:

(xt+1,yt+1) =



(ω,σ), if t = 1

(xt,yt + δt), if t ∈ S\{1}

(xt,yt − etκt), if airline receives customer request at t ∈ T \S

(xt − etµit,yt − etνit), if agency i receives customer request at t ∈ T \S

(xt,yt), otherwise.

(2)

The airline collects the unsold fixed allotment fee at the end of the booking horizon. Then the boundary

condition at state (xT+1,yT+1) for time T + 1 is represented as

LT+1(xT+1,yT+1) =
∑

i∈I\{o}

fixi,T+1. (3)

The dynamic capacity allotment model in (1)-(3) becomes computationally intractable because of expo-

nential growth in the state space as the number of contracted agencies increases. Although this dynamic

model cannot be directly solved by an analytical approach, it still provides motivation in designing a

capacity planning policy for airlines with multiple sales channels. If a relationship between the capacity

allocated to a specific sales channel and the expected revenue was somehow established (by independently

considering the capacity planning problem of each individual sales channel), then the overall capacity

planning problem of the airline (that allocates the seat capacity over all sales channels by maximizing

the total expected revenue) could be solved. In Section 4, we will present solution approaches based on

decomposition of the dynamic programme with respect to sales channels.

4 Channel-Based Decomposition Methods

In order to obtain the capacity allotment policy for the airline, we propose two alternative approx-

imation methods by relaxing review periods and decomposing the dynamic programming model (1)-(3)

with respect to sales channels. The approximation methods are based on linear programming (LP) and

Lagrangian relaxation. Both approaches treat each sales channel as a single sub-problem for given fixed

and variable allotment capacities. The first approximation method estimates the expected revenue ob-

tained from agencies deterministically and solves an optimisation problem over all possible allocations

of these capacities.The resulting optimisation problem corresponds to a large linear programming model

that can be efficiently solved. However, the optimal solution of this linear programming model may

not be integer. The second approximation method, on the other hand, is based on an integer (binary)

programming model, where binary variables denote each capacity allotment decision. Similar to the

first method, the capacity allotment problem is decomposed into many single capacity sub-problems by

relaxing the linking constraint with a Lagrange multiplier. The proposed decomposition method utilizes

the dynamic programming formulation. The performances of these approaches are numerically tested by

using real flight booking data in Section 5. Next, we will briefly describe the linear programming and

Lagrangian relaxation based approximation methods.
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4.1 LP Based Approximation

The fundamental idea behind this approach is to decompose the dynamic programming model of

the airline’s capacity allotment problem (1)-(3) into sub-problems corresponding to sales channels and to

re-optimize the allotment decision at each review period. For a generic description of the decomposition

method, let us consider a review period k ∈ S. For ease of notation, we define variables xik and yik to

represent fixed and variable allotment capacities, respectively, to be allocated to channel i for i ∈ I at the

beginning of review period k. We assume that at review period k, the remaining capacity C ′
k needs to be

allocated among all sales channels and fixed allotment capacity dik is requested by channel i. Notice that

the DP model (1)-(3) is developed under the assumption that fixed allotment capacities are determined

at the beginning of the reservation period and cannot be reallocated at future review periods. As we

wish to present a decomposition model for the generic formulation of the capacity allotment problem, we

use dik as the initial fixed allotment capacity at review periods k ∈ S\{1}.
Let yok denote the variable allotment capacity to be allocated to channel o at review period k. We

introduce ϑok(yok) to define the expected optimal revenue obtained through the airline reservation system

from review period k to time T given the variable allotment capacity yok. We develop an optimization

model to approximate the expected total revenue obtained through all sales channels without considering

any specific booking strategy of travel agencies. Let µit and νit denote the satisfied demand from the

fixed and variable allotment capacities through sales channel i ∈ I\{o} at time t ∈ T \S. Due to the

linear approximation, we can relax the binary conditions on decision variables µit and νit. Then the

optimization model at review period k can be formulated as follows;

max
∑

i∈I\{o}

fikxik +
∑

i∈I\{o}

T∑
t=k

ritνit + ϑok(yok) (4)

subject to
∑
i∈I

xik + yik ≤ C ′
k, (5)

xik ≤ dik, i ∈ I (6)

T∑
t=k

µit = xik, i ∈ I\{o} (7)

T∑
t=k

νit ≤ yik, i ∈ I\{o} (8)

µit + νit ≤ pit, i ∈ I\{o}, t = k, . . . , T (9)

µit, νit ≤ 1, i ∈ I\{o}, t = k, . . . , T (10)

µit, νit ≥ 0, i ∈ I\{o}, t = k, . . . , T (11)

xik, yik ∈ Z+, i ∈ I (12)

where the total expected revenue obtained through sales channels from review period k to the end of the

planning horizon T is maximized. Constraint (5) ensures that the total allocated fixed and variable seats

do not exceed the available flight capacity at review period k. Constraints (6) guarantee that the fixed

allotment requests from agencies are not violated. Constraints (7) and (8) satisfy that the accommodated

demand from the fixed and variable seats does not exceed the allocated fixed and variable capacities,
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respectively. Constraints (9) guarantee that the accepted reservation requests do not exceed the expected

number of arrivals at each time period.

Notice that for k = 1, the solution of model (4)-(12) provides an optimal size of both fixed and

variable allotments allocated to each sales channel to achieve the maximum expected revenue given the

initial flight capacity C. On the other hand, at any review period k ∈ S\{1}, we re-optimise the problem

(i.e., resolve the optimisation model (4)-(12) for given fixed allotment capacity) to determine only the

size of variable allotment allocation over all sales channels given the remaining C ′
k capacity. Since the

airline receives the fixed allotment revenue at k = 1, we set fik = 0 for other review periods k ∈ S\{1}.
The model (4)-(12) does not consider the booking strategy of agencies and hence, it overestimates the

expected revenue obtained by the airline. In our numerical experiments, we discuss the impact of different

booking strategies used by agencies on the airline’s expected revenue.

After presenting the approximation model (4)-(12), let us explain further the expected revenue of

airline given the variable allotment capacity yok, ϑok(yok). Similar to the DP model (1)-(3), we introduce

κt to denote booking decision for the airline reservation channel at time t. If κt = 1, then the reservation

request is accepted by the airline using the variable allotment capacity. The set of feasible capacity

booking decisions at time t ∈ T \S can be written as follows;

Yot(yot) =
{
κt ∈ {0, 1} | κt ≤ yot

}
,

where yot is the available variable allotment capacity at time t. Then, the dynamic programming model,

that calculates the expected revenue obtained through airline reservation system from time t to T ,

becomes

ϑot(yot) = max
κt∈Yot(yot)

{
pot

[
rotκt + ϑo,t+1(yot − κt)

]
+ (1− pot)ϑo,t+1(yot)

}
, (13)

with boundary conditions of ϑo,T+1(yo,T+1) = 0 for all states yo,T+1 at time T + 1, and ϑot(0) = 0 for all

t ∈ T \S. The optimisation problem (4)-(12) is difficult to solve efficiently due to the nonlinear objective

function of the airline and the integrality conditions. The following proposition displays a structural

property for airline’s objective function.

Proposition 4.1. The expected revenue function of airline, ϑot(yot), is discrete concave in variable yot.

Proof. The proof is provided in Appendix A.3.

Using this proposition, the nonlinear expected revenue function of airline ϑok(yok) in (4)-(12) can be

reformulated as a piece-wise linear function. The remaining available capacity C ′
k provides a bound on

the number of pieces for the concave function. Given the remaining capacity C ′
k at review period k ∈ S,

we define set Wk = {1, . . . , C ′
k} to store the feasible variable allotments. We also introduce parameters γl

and ρl for l ∈ Wk to denote the slope and intercept values for the piecewise linear function. Due to the

concavity property, we have γ1 ≥ γ2 ≥ · · · ≥ γC′
k
and ρ1 ≤ ρ2 ≤ · · · ≤ ρC′

k
. Then, the expected revenue

function of airline ϑok(yok) can be rewritten as

ϑok(yok) = min
l∈Wk

{γl yok + ρl}.

13



To linearize the airline’s objective function, we introduce an auxiliary decision variable zk and move the

piece-wise linear function into constraints. Then the linear optimization model at review period k can

be reformulated as

max
∑

i∈I\{o}

fikxik +
∑

i∈I\{o}

T∑
t=k

ritνit + zk (14)

subject to Constraints (5)− (11), (15)

zk ≤ γl yok + ρl, l ∈ Wk (16)

xik, yik ≥ 0, i ∈ I. (17)

Note that the number of variables in the resulting model can be quite large even for a moderate-size

single-leg problem after piece-wise linear approximation since we consider all feasible variable allotments.

To efficiently solve this capacity allotment problem, the integrality constraints can be relaxed. In this

case, the optimal fixed and variable allotment capacities obtained by solving the optimization model

(14)–(17) may not satisfy the integrality conditions. By simply rounding down the non-integer allotment

allocation decisions, we can obtain a suboptimal solution. Next, we present a Lagrangian relaxation-based

approximation method that provides integer fixed and variable allotment capacities.

4.2 Lagrangian Relaxation Based Approximation

Similar to the LP based decomposition approach described in the previous section, the Lagrangian

relaxation method first decomposes the capacity allotment problem into subproblems corresponding to

sales channels, each of that provides the expected revenue through the sale of allocated fixed and vari-

able allotment capacities. This method uses a binary programming model where the binary variables

denote the capacity allocation decisions for sales channels. In general, binary optimisation models are

considered impractical for large-scale problems due to their computational complexity. Therefore, most

of the existing studies develop a linear programming model of the network revenue management problem.

Instead, we introduce an alternative solution method using the Lagrangian relaxation approach in this

paper. Our approximation method builds upon the approach presented in Section 4.1 and estimates

the expected revenue from agencies dynamically. Recall that the model (4)-(12) estimates the expected

revenue obtained from travel agencies using a deterministic approach.

We use xik and yik to denote the size (in terms of units) of fixed and variable allotment capacities

allocated to sales channel i at review period k, respectively. Since there are at most θik = min{dik, C ′
k}

units of fixed allotment to be assigned to sales channel i, we have xik = 1, · · · , θik. In addition, yik varies

between 0 and the remaining capacity C ′
k at review period k such that xik + yik ≤ C ′

k.

In addition, we define a binary decision variable for each sales channel i ∈ I to represent the capacity

allotment decisions. For ease of notation, we use x and y instead of xik and yik to denote the fixed and

variable allotment capacities in definition of the binary decision variable. Let uixy be a binary variable

representing whether x fixed and y variable allotment capacities are allocated to sales channel i or not.

In other words, uixy = 1 only when fixed and variable capacities to be allocated to channel i ∈ I are

given as x and y, respectively. Otherwise, we have uixy = 0. Notice that uixy = 0 for x+ y > C ′
k due to

the violation of the flight capacity restriction. The feasibility set Pk of binary decisions at review period
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k ∈ S is defined as

Pk =
{
uixy

∣∣ θik∑
x=0

C′
k∑

y=0

uixy = 1, i ∈ I; uixy ∈ {0, 1}, 0 ≤ x ≤ θik, 0 ≤ y ≤ C ′
k, i ∈ I

}
.

The first set of the constraints ensures that exactly one combination of fixed and variable allotments

(that is represented as (x, y)) is to assign to each sales channel i ∈ I. The second set of constraints

corresponds to binary restrictions. Let ϑ̄ik(x, y) denote the expected revenue obtained by allocating x

fixed and y variable allotment capacities to channel i ∈ I at review period k ∈ S. Then the capacity

allotment model at review period k can be formulated as follows;

max
uixy∈Pk

∑
i∈I\{o}

θik∑
x=0

C′
k∑

y=0

ϑ̄ik(x, y)uixy +

θok∑
x=0

C′
k∑

y=0

ϑ̄ok(x, y)uoxy

subject to
∑
i∈I

θik∑
x=0

C′
k∑

y=0

(x+ y)uixy ≤ C ′
k.

(18)

This optimisation model determines the best fixed and variable capacity allocation policy for all channels

to maximise the total expected revenue. The main constraint ensures that the allocated allotment

capacities cannot exceed the available capacity at review period k ∈ S. Note that the airline’s reservation
system does not use a fixed allotment capacity. Thus, we set θok = 0 for channel o.

Although the predefined review periods are not explicitly considered in this formulation, the optimal

capacity allotment policy can be updated at each review period through re-optimisation of (18). Recall

that the fixed allotment capacities allocated at the initial review period cannot be revised throughout

the planning horizon. Therefore, the optimisation model (18) can be resolved at review period k ∈ S\{1}
to revise variable allotment capacities for all channels. Next, we will focus on how to estimate the

expected revenue contributions ϑ̄ok(x, y) and ϑ̄ik(x, y) obtained by the airline’s reservation system and

travel agencies for i ∈ I\{o}, respectively.
Airline’s Expected Revenue Contribution: Suppose that 0 fixed and y variable allotment capacities

are assigned to the airline’s booking system. The expected revenue ϑ̄ot(0, y) obtained through the airline’s

reservation system from time t to T can be computed by the following dynamic programming model.

ϑ̄ot(0, y) = max
κt∈Yot(y)

{
pot

[
rotκt + ϑo,t+1(0, y − κt)

]
+ (1− pot)ϑo,t+1(0, y)

}
(19)

Notice that (19) is formulated by adapting the model (13) where fixed and variable allotment capacities

are set as x = 0 and y, respectively. In addition, the boundary conditions are ϑ̄o,T+1(0, y) = 0 for all y

at time T + 1, and ϑ̄ot(0, 0) = 0 for all t ∈ T \S.
Agency’s Expected Revenue Contribution: The expected revenue ϑ̄ik(x, y) obtained by allocating x

fixed and y variable allotment capacities to agency channel i ∈ I\{o} is estimated from the airline’s

perspective by solving the agency capacity management model presented in Appendix A.1. Next, a brief

description of this process follows.

Let µ∗it and ν∗it denote binary variables representing the estimated booking decisions for agency i

at time t given the available fixed and variable capacities (x, y), respectively. If µ∗it = 1, then it is
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expected that agency i will use the fixed allotment capacity to satisfy demand at time t, generating

revenue fi×µ∗it for the airline. Conversely, ν∗it = 1 indicates that agency i is expected to use the variable

allotment capacity to meet demand, which in turn generates revenue rit × ν∗it for the airline. Given the

available fixed and variable allotment capacities (x, y) at time t, the expected revenue obtained from

agency i from t to T can be formulated as follows;

ϑ̄it(x, y) = pit

[
fiµ

∗
it + ritν

∗
it + ϑ̄it+1(x− µ∗it, y − ν∗it)

]
+ (1− pit)ϑ̄i,t+1(x, y) (20)

where the boundary condition is ϑ̄i,T+1(x, y) = fix for all states (x, y) at time T+1. Note that the booking

decisions, µ∗it and ν
∗
it, for agency i depend on the allocated fixed and variable allotment capacities.

As in the DP model (1)–(3), the expected revenue contribution of each agency is also considered from

the airline’s perspective. We can compute the estimated booking decisions (µ∗it and ν
∗
it) and expected rev-

enue contribution ϑ̄ik(x, y) received via channel i by solving the agency capacity management model (25)

outlined in Appendix A.1. It is worthwhile to highlight that although we use dynamic programming to

estimate the expected revenue contribution through channel i, the framework outlined in (18) is versatile

and can be generalised to other cases where the agency contribution is derived by using a deterministic

approach. In this case, ϑ̄ik(x, y) for all agencies i ∈ I by considering all possible combinations of x and

y are input to the optimization model (18). Since the state space of dynamic programming recursion

for channel i ∈ I is defined for x = 0, · · · , θik and y = 0, · · · , C ′
k, the optimal solution table for x = θik

and y = C ′
k already includes the expected revenues for all possible values of x and y. Consequently, the

expected revenue ϑ̄ik(x, y), i ∈ I for all x = θik and y = C ′
k can be easily computed.

The next proposition establishes a lower bound on the optimal expected revenue over the whole

planning horizon.

Proposition 4.2. The optimal objective value of the binary programming model (18) at the first review

period provides a lower bound on the optimal expected revenue of the dynamic programming model (1)-(3).

Proof. The proof is provided in Appendix A.4.

We next describe the Lagrangian relaxation method to efficiently solve the binary optimisation model

(18). The constraint linking the capacity allocation decisions across all sales channels is transferred into

the objective function with a Lagrange multiplier. The Lagrangian function is obtained as

L(u,Γ) =
∑

i∈I\{o}

θik∑
x=0

C′
k∑

y=0

(
ϑ̄ik(x, y)− Γ(x+ y)

)
uixy +

θok∑
x=0

C′
k∑

y=0

(
ϑ̄ok(x, y)− Γ(x+ y)

)
uoxy + C ′

kΓ,

where Γ represents a Lagrange multiplier associated with the linking constraint. The Lagrangian relax-

ation problem can be stated as

Z(Γ) = max
uiωσ∈Pk

L(u,Γ) (21)

whose optimal solution clearly depends on the Lagrange multiplier Γ whereas the dual problem of the

Lagrangian relaxation model is

min
Γ≥0

Z(Γ). (22)
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Note that the constraint set Pk associated with review period k ∈ S has a totally unimodular structure

since each column has exactly one +1. Therefore, for any Lagrange multiplier Γ, we can relax the binary

requirements on decision variables uixy without affecting the optimal solution. The resulting relaxation

model is convex in Γ and also separable over channels for a given Lagrange multiplier. Therefore, we

can efficiently compute the optimal value of the Lagrange multiplier by using a standard subgradient

optimisation algorithm. A brief description of the subgradient algorithm is provided below. For further

information, the reader is referred to Bertsekas (2015).

Let Γ(n) represent the value of the Lagrangian multiplier and φ(n) denote the predetermined step

size at iteration n. The algorithm starts with an initialisation of Γ(1) = 0 at the first iteration (n = 1).

At iteration n + 1, we update the value of Γ(n+1) based on the value of Γ(n) obtained in the previous

iteration n as follows;

Γ(n+1) = Γ(n) − φ(n)
(
C ′
k −

∑
i∈I\{o}

θik∑
x=0

C′
k∑

y=0

(x+ y)u
(n)
ixy −

θok∑
x=0

C′
k∑

y=0

(x+ y)u(n)oxy

)
.

The algorithm stops when the iteration limit is reached.

We close this section with a remark on our approximation method. The number of binary variables

in (18) increases with the number of sales channels and flight capacity. In order to solve this model

efficiently, we propose the Lagrangian relaxation method that considers the temporal dynamics of the

customer arrival process since the expected revenues in (18) are obtained from the dynamic programming

model. Unlike the LP-based decomposition approach, the Lagrangian relaxation method guarantees the

integrality condition due to the total unimodularity property.

5 Computational Experiments

We design computational experiments in order to illustrate performance of the proposed airline’s

dynamic capacity allotment model and the approximation approaches to determine fixed and variable

allotments among different sales channels for a single-leg flight. In particular, we aim to answer the

following questions:

• What are the benefits of introducing fixed and variable allotments to travel agencies within airline

revenue management?

• How do different factors such as pattern of demand, price of flight ticket and acceptance rule impact

on performance of dynamic capacity planning decisions in terms of fixed and variable allotments?

• How do different capacity allotment policies of the airline and booking acceptance rules of sales

channels impact on airline’s revenue and agency’s profit?

In this section, we first describe the design and data structure used for numerical experiments and then

present the computational results of the dynamic capacity planning model of airlines with contracted

travel agencies.
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5.1 Data and Design of Experiments

For the computational experiments, we use real booking data for a single-leg flight of an international

airline provided by our industrial partner. The flight has a fixed seat capacity of C = 219. The airline

tickets are sold via two kinds of sale channels: travel agencies and an online reservation system owned

by the airline. In this case study, we consider five travel agencies (labelled as A1, A2, · · · , A5) that are

selling flight tickets of domestic and international airlines. As stated in the problem description, travel

agencies bid on the initial seat allocation (so-called ‘fixed allotment’) before the selling season starts.

A contract signed between the airline and travel agencies specifies the size of fixed allotment and its

price. According to the contract, travel agencies are not allowed to return any unsold seats (initially

assigned as fixed allotment). Similarly, they cannot demand more fixed allotments than the limit set by

the airline. In our numerical experiments, it is set as at most 20 seats. On the other hand, unlike fixed

allotments, variable allotments provide full flexibility in terms of reassignment of seat capacity among

all sales channels and the airline. The booking horizon for the flight consists of T = 2000 discrete time

periods in which at most one customer may arrive and request a flight ticket.

We assume that the arrival of customers is stochastic and the customer requests arrive based on

a homogeneous Poisson process with rate λ. Let parameter ρ denote the load factor that indicates

different arrival intensities. It is computed as the ratio of total expected demand over the flight capacity,

ρ = T (1−exp(−λ))
C . In our computational experiments, we examine two distinct scenarios for the load factor,

ρ = 1.0 and ρ = 1.2 by adjusting the arrival rate λ to assess the potential impact of demand and price

patterns on capacity allocation decisions.

In order to illustrate impact of demand pattern on performance of policies, we consider two different

demand patterns in our experiments. For the first demand pattern, we assume that the probability of a

customer requesting capacity from a specific sales channel increases or decreases over time (abbreviated

as ‘Dfixed’). We generate these arrival probabilities following the approach proposed by (Aydin et al.,

2013). Let a customer request from sales channel i arrive at time t with probability ψi(t) such that∑
i∈I ψi(t) = 1. These multinomial probabilities for demand pattern Dfixed are given as follows;

ψi(t) =
πi(t)∑
i∈I πi(t)

, i ∈ I, t ∈ T \S,

where πi(t) are predetermined piece-wise linear functions. In the second demand pattern (abbreviated as

‘Drandom’), the arrival probabilities are generated by Dirichlet distribution with parameters ηi(t), i ∈ I.
Notice that, the parameters of the Dirichlet distribution vary over time. We define ηi(t) at time t ∈ T \S
for channel i ∈ I as ηi(t) = vi + (v̄ − vi)(1 − exp(−|I|t/T )) where v̄ and vi are non-negative constants.

Then, the multinomial probabilities for demand pattern Drandom are given as follows;

ϕi(t) =
ηit∑
i∈I ηit

, i ∈ I, t ∈ T \S.

We refer to Birbil et al. (2009) for the details of this arrival process. Given the customer requests

arriving according to a homogeneous Poisson process with rate λ, no arrival probability at time t is

p0t = exp(−λ). Using the multinomial probabilities defined for demand patterns Dfixed and Drandom,

the arrival probability pit for sales channel i is given by pit = ψi(t)(1 − p0t) and pit = ϕi(t)(1 − p0t),
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respectively. Figure 2 illustrates the arrival probabilities over time for these two demand processes.
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Figure 2
Fixed (left) and random (right) passenger arrival probabilities over the booking horizon

In practice, the prices of fixed allotments (for each travel agency) are set at the beginning of the

selling season by the airline. Since pricing information for the fixed allotment was not available in the real

booking data provided by our industrial partner, we set fixed allotment prices based on the lowest ticket

price rmin
i to charge agency i. Then the fixed allotment price for agency i is determined as fi = θrmin

i

where parameter θ ∈ {0.9, 1.1} represents the price multiplier. The prices (rit) of variable allotments for

the airline and agencies are taken from the real dataset. On the other hand, the selling price (git) used

by travel agencies was not available in the real booking data. Thus, the ticket selling price for agency i

at time t is determined in terms of the variable allotment price (rit) as git = 1.2× rit.

For the computational experiments, we consider two different price patterns set by the airline and

they are used by each sales channel over the booking horizon. As presented in Figure 3, Panel A displays

the price pattern observed from the real data set while Panel B shows a hypothetical price pattern where

flight prices for all channels are assumed to be increasing over time during the booking horizon. In Figure

3, the variable and fixed allotment prices are displayed by solid and dotted lines, respectively.

The proposed dynamic capacity allocation model is solved by the optimization based decomposition

methods as described in Section 4. The airline’s capacity planning policies are obtained by solving the

dynamic capacity allotment problem using the linear programming and Lagrangean relaxation based

approximation methods and abbreviated as ‘LP-Apr’ and ‘Lag-Rel’, respectively. In addition to these

optimization based decomposition methods, we also consider performance-based capacity allocation ap-

proach that is widely used in practice as a benchmark. In this approach, the airline determines the

variable allotment capacities to be distributed among agencies at review time periods. At the beginning

of the planning horizon, the airline decides the fixed allotment capacity for each travel agency (i.e., ωi

for i ∈ I\{o}) and the variable allotment capacity for its reservation system (σo) while the remaining

capacity is evenly distributed among agencies as their initial variable allotment capacities. Then, at each

review period, the airline reallocates the variable allotment capacity considering the percentage of sold

flight tickets by each agency since the previous review period. The variable allotment capacity for the

airline’s reservation system is determined by either LP-Apr or Lag-Rel.

All optimization algorithms are implemented in MATLAB and the computational experiments are

run on a desktop computer Intel(R) Core(TM) i5-700 CPU 3.40GHz.
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Panel A: Fixed and variable allotment prices observed from real data
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Figure 3
Patterns of real (Panel A) and generated (Panel B) prices over the booking horizon

5.2 Simulation Study

We conduct a simulation study to evaluate performance of capacity allotment policies by reducing

the potential impact of uncertain customer arrivals and also customer preferences. We first randomly

generate a stream of customers arriving during the discretised booking horizon based on the probability

distribution defined by different demand patterns. Then we apply the capacity allotment policy to allocate

fixed and variable allotments to all sales channels at the beginning of the booking horizon. During the

booking horizon, the remaining variable allotment capacities are reallocated among sales channels at every

review period. At each time period within the booking horizon, one customer requests a ticket from a

specific sales channel and an appropriate acceptance rule is adopted to reject or accept the customer.
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The total expected revenue of the airline from selling both fixed and variable allotments is collected at

the end of the booking horizon. Algorithm 1 (presented in Appendix A.2) summarises the simulation

procedure used in our computational experiments.

For the airline’s capacity allotment model, the expected revenue obtained from each agency is esti-

mated from the airline’s perspective where each agency may adopt different decision rules as the booking

strategy. Given the available seat capacity, the acceptance rules are adopted by travel agencies as well

as the airline’s reservation system to determine whether a customer request for a flight ticket is fulfilled

or not. We specifically implement two acceptance rules in our simulation study.

• First-Come-First-Serve (abbreviated as ‘FCFS’) Rule: In practice, this acceptance rule has been

widely used by travel agencies. Given the allocated fixed and variable capacities, travel agencies

intend to accept all customers arriving during the booking horizon as long as they have sufficient

capacity. Considering that agencies purchase the fixed allotment capacity in advance, they use fixed

allotment capacity first and then variable allotment capacity to accommodate customer requests.

• Dynamic Opportunity Cost (abbreviated as ‘DP’) Rule: Given the allocated fixed and variable al-

lotments, each agency solves the dynamic capacity planning model (23)-(24) presented in Appendix

A.1 at each review period by considering the whole booking horizon. When there is sufficient capac-

ity, the value functions are compared between the cases where the request is accepted or rejected.

The acceptance decision is made when the case of accepting the request has a higher value than the

alternative one. The travel agencies first use fixed allotment capacity to fulfil customer demand.

5.3 Numerical Results

We present results of our numerical experiments under three main categories to illustrate i) per-

formance and robustness of the capacity allotment policies determined by two approximation methods,

ii) impact of various model parameters (such as demand and price patterns, and fixed allotment price)

on the fixed and variable allotment allocation decisions and and the airline’s revenue, and iii) impact of

airline’s capacity allocation strategies on agencies’ expected profit.

Performance and Robustness of Capacity Planning Policies: We are first interested in illustrating

performance and robustness of the optimization-based approaches introduced to solve the dynamic capac-

ity allotment problem of the airline. The performance of an approach is measured in terms of maximum

revenue achieved by the airline over the booking horizon of a single flight, whereas the robustness is

determined by the regular performance of an approach over different demand scenarios, load factors and

price patterns. We use two specific settings for load factor parameter (LF = 1.0 and 1.2) and price

multiplier (PM = 0.9 and 1.1).

Table 3 presents the airline’s revenue obtained by LP-Apr and Lag-Rel policies using different sale

channels as travel agencies (selling fixed and variable allotments) and the online reservation system. The

maximum revenue is highlighted in bold to show the best policy among all different problem settings

under different demand and price patterns. We also investigate the case where the airline does not allocate

any fixed allotment (abbreviated as ‘No-Fixed’) under both LP-Apr and Lag-Rel policies to demonstrate

the benefit of using fixed versus only variable allotments.

Overall, these results show that the Lag-Rel policy outperforms to the LP-Apr one under all settings.
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Table 3
Airline revenues obtained by different policies

Stable Demand Random Demand

PM(1.1) PM(0.9) PM(1.1) PM(0.9)
Policy Allotment LF(1.0) LF(1.2) LF(1.0) LF(1.2) LF(1.0) LF(1.2) LF(1.0) LF(1.2)

Panel A: Real Price Pattern

LP-Apr

Fixed 7220 6260 0 0 5545 5295 0 0
Variable 18384 21022 25990 27703 19943 22102 25854 27822
Total 25604 27282 25990 27703 25488 27397 25854 27822

Lag-Rel

Fixed 875 875 0 0 750 625 0 0
Variable 25511 26980 26356 27821 25528 27382 26253 27986
Total 26386 27855 26356 27821 26278 28007 26253 27986

LP-Apr No-Fixed 25990 27703 25990 27703 25854 27822 25854 27822
Lag-Rel No-Fixed 26356 27821 26356 27821 26253 27986 26253 27986

Panel B: Increasing Price Pattern

LP-Apr

Fixed 4030 2684 0 0 4691 3630 0 0
Variable 17536 19914 21272 22397 16401 18663 20730 22008
Total 21566 22598 21272 22397 21092 22293 20730 22008

Lag-Rel

Fixed 4455 7925 3287 3008 6055 6560 4319 3766
Variable 18546 15974 19011 20134 16676 17316 17566 19263
Total 23001 23899 22298 23142 22731 23876 21885 23029

LP-Apr No-Fixed 21272 22397 21272 22397 20730 22008 20730 22008
Lag-Rel No-Fixed 21710 22595 21710 22595 21710 22595 21710 22595

This is mainly because the Lagrangean-based optimization model considers future demand uncertainty

of agency channels. It allows the airline to dynamically obtain higher total revenue by updating variable

allotment allocations. We investigate the impact of various factors such as load factor, demand and price

patterns on the airline’s expected revenue. Both Lag-Rel and LP-Apr policies perform better as the load

factor increases. When the load factor is high, more customers request flight tickets and both policies

benefit from the increase in the number of higher paying customers. When we compare the results for

different price patterns, we observe that the airline allocates less fixed allotment capacity to agencies

under the real price pattern and low fixed price (PM = 0.9). This provides more flexibility for the

airline to redistribute the remaining capacity at the review periods. Considering the low price of fixed

allotment, allocating less fixed capacity under this scenario could increase the total revenue obtained by

the airline. On the other hand, when fixed price is high (PM = 1.1), the airline allocates more fixed

allotment capacity since fixed allotment price is higher than the lowest variable allotment price. The

effect of fixed allotment price is more striking under the increasing price pattern. We observe that both

methods allocate more fixed allotment under both demand patterns. This is mainly due to the increasing

variable prices over time. Since variable allotment price is low at the beginning of the booking horizon,

the airline allocates more fixed allotment which could potentially increase the airline’s revenue.

We also investigate benefit of allocating fixed allotment capacity among agencies by implementing

the LP-Apr and Lag-Rel policies with no fixed allotment capacity (i.e., only variable allotment is used).

We observe that both policies provide lower revenue when no fixed allotment is considered in comparison

to the ones using fixed allotment. Since the agencies cannot return the unsold fixed allotment capacity,

fixed allotments help the airline to reduce the loss in revenue especially when the load factor is low.

Having fixed allotment reduces impact of uncertainty in the booking process and it could generate more

revenue for the airline.
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In order to analyse potential impact of capacity allocation policies on overall performance of sales

channels, we present the fixed allotment allocations to each travel agency provided by both solution

methods under demand realisations using the real and generated price patterns in Table 4. Across all

demand scenarios and price patterns, when the price of fixed allotment for any sales channel is lower than

its variable allotment price (with price multiplier 0.9), both LP-Apr and Lag-Rel policies become more

conservative in using fixed allotments. Thus, we only present results obtained by high fixed price case

when PM = 1.1. As we discussed before, the fixed allotment provides a cushion for the airline against

Table 4
Fixed allotments allocated by different policies under high fixed capacity price and
different demand scenarios

Real Price Pattern Increasing Price Pattern
Policy Agencies A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

Panel A: Stable demand pattern

LF (1.0) 16 17 8 7 15 10 8 7 9 11
LP-Apr LF (1.2) 19 - 10 8 14 12 - 5 7 5

LF (1.0) - - - 7 - 4 5 5 13 11
Lag-Rel LF (1.2) - - - 7 - 19 4 7 16 20

Panel B: Random demand pattern

LF (1.0) 14 14 7 6 7 15 10 8 7 12
LP-Apr LF (1.2) 17 - 8 7 11 18 - 10 - 11

LF (1.0) - - - 6 - 7 6 6 13 20
Lag-Rel LF (1.2) - - - 5 - 8 6 7 15 20

the loss in total revenue. In other words, when the airline expects to generate less revenue under low

demand or low price situations, they tend to increase the allocation of fixed allotment capacity to travel

agencies. The results presented in Table 4 show that under real price pattern, the LP-Apr policy tends to

allocate more fixed allotments than the Lag-Rel policy does under both demand scenarios. Similar to our

previous discussion, both policies allocate more fixed allotments as the load factor decreases. However,

each policy behaves differently in allocating fixed allotments under any load factors and different price

patterns as they assess the agencies’ ability and performance in generating revenue varies. Specifically,

Lag-Rel tends to allocate more fixed allotments compared to LP-Apr under the increasing price pattern,

whereas LP-Apr allocates more fixed allotment under the real price pattern. This behaviour can be

attributed to the lower variable prices at the beginning of the reservation period in the increasing price

pattern. Considering that Lag-Rel outperforms LP-Apr by generating higher revenue, we can conclude

that Lag-Rel can anticipate the changes in the demand pattern much better than LP-Apr when making

fixed allotment decisions.

Figure 4 illustrates how variable allotment capacity varies among all sales channels at each review

period using the real price pattern. In this figure, the load factor and price multiplier are set as 1.0

and 1.1, respectively. Overall, we observe that both LP and Lagrangian relaxation based approximation

methods allocate allotment capacity to all sales channels at each review period. In fact, the Lag-Rel policy

allocates more variable allotments (especially to agencies) than LP-Apr under both demand patterns. For

example, under stable demand scenario, agencies 2 and 5 receive less variable allotment in the LP-Apr

policy. This is mainly because these two agencies have relatively low prices for variable allotment as
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Figure 4
Variable allotment capacity allocated by LP (left) and Lagrangian relaxation (right) based
approaches at each review period using real price pattern under stable (top) and random
(bottom) demand scenarios

illustrated in Figure 3. Similarly, under both demand patterns, we notice that the LP-Apr policy tends

to allocate more variable allotment to airline’s online channel, whereas the Lag-Rel policy distributes

variable allotment capacity more evenly among all sale channels. Since the LP based approximation

method uses the expected agency demand, it tends to allocate less variable allotment to travel agencies.

Impact of Capacity Allotment Policies and Acceptance Rules: The computational experiments con-

ducted so far aim to show performance of the optimization-based capacity planning approaches assuming

that all travel agencies apply strategic acceptance decision rule (described as dynamic opportunity cost

‘DP’) for booking the customer requests. Now we wish to analyse impact of different capacity allotment

strategies on the airline’s revenue if the airline implements a performance-based allotment allocation

approach and the agencies use less strategic and less forward looking FCFS acceptance rule. Figure 5

displays the airline’s expected revenue obtained by the optimization-based (left) and performance-based

(right) capacity allotment strategies over all sale channels under both price patterns with high priced fixed

allotment. Note that, as the customer arrival probability changes for each sale channel under random
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demand pattern, we analyse the results under this setting with high load factor. We present numerical
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Impact of different allotment allocation strategies and booking rules on airline’s expected
revenue using random demand with real (top) and increasing (bottom) price patterns

results for optimization-based (left) and performance-based (right) capacity allocation policies obtained

by solving the dynamic programming model at review periods by using the decomposition method with

linear programming and Lagrangean relaxation approaches. We differently label each combination of spe-

cific capacity allocation policies of the airline and acceptance rules of agencies. For example, ‘Dec-DP’

under optimization-based allocation indicates that the airline uses LP-Apr policy and agencies apply for

the DP booking rule while ‘Lag-FCFS’ under performance-based allocation indicates that the airline uses

Lag-Rel with performance based allocation to distribute the capacity among sale channels and agencies

apply for a FCFS booking rule.

From the numerical results presented in Figure 5, we observe that the airline obtains higher total

revenue by the optimization-based capacity allocation compared to the one obtained by the performance-

based capacity allocation. As the performance-based policy only considers the past sale performances of

agencies, it neglects the future demand uncertainty when allocating variable allotment capacity. There-

fore, it performs worse than the optimization-based capacity allocation policy under all scenarios. Con-
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sidering the expected revenues received from each sale channel, we observe that the revenue contribution

from agencies largely depends on the price pattern and the capacity allocation policy. For example, under

the real price pattern, the airline obtains higher revenues from agencies 1, 3 and 4 than agencies 2 and

5 when it allocates capacity allotment by the optimization-based method. This is mainly because the

three agencies generally charge higher price than the other two agencies. On the other hand, under the

performance-based allocation policy, the airline receives more revenue from agencies 1, 3 and 5 since these

agencies sell more at the beginning of the reservation period. Thus, they receive more capacity when the

performance-based capacity allocation procedure is followed. Notice that the airline does not receive any

revenue from agencies 2 and 4 in ‘Dec-DP’ case using the performance-based capacity allocation.

Under the increasing price pattern, these two agencies do not sell any tickets until the next review

period since they expect higher paying customers may arrive later during the reservation horizon. Since

the airline reallocates the variable allotment capacity considering the total sales of each agency, these two

agencies do not receive any variable allotment capacity at review periods. On the other hand, if these two

agencies use the FCFS approach (Dec-FCFS), they behave less strategically and accept any customers

as long as they have sufficient capacity. Considering the agencies’ perspective, we can conjecture that

the FCFS booking rule is generally more advantageous under the performance-based allocation policy.

Table 5
Expected profit of travel agencies and accepted/rejected customer requests

Policy-Method Agency 1 Agency 2 Agency 3 Agency 4 Agency 5

Panel A: Real Price Pattern

Dec-DP 1165 (41/-/3) 197 (10/4/30) 1377 (42/-/2) 1141 (43/-/2) 920 (36/-/7)
OptP Dec-FCFS 1162 (41/-/3) 228 (12/-/32) 1377 (42/-/2) 1141 (43/-/2) 896 (35/-/8)

Lag-DP 1036 (39/-/-) 423 (21/9/-) 1115 (40/-/-) 1105 (42/-/-) 773 (34/-/-)
Lag-FCFS 1025 (39/-/-) 471 (24/-/-) 1108 (40/-/-) 1100 (41/-/-) 746 (33/-/-)

Dec-DP 1083 (38/-/6) 682 (35/3/5) 1268 (37/2/5) 625 (23/13/9) 1012 (40/-/3)
PerA Dec-FCFS 989 (34/-/10) 677 (35/-/9) 1213 (36/-/8) 970 (37/-/8) 923 (36/-/7)

Lag-DP 1013 (38/-/-) 662 (34/-/-) 1016 (36/-/-) 568 (21/-/1) 895 (40/-/-)
Lag-FCFS 897 (34/-/-) 669 (35/1/-) 983 (36/2/-) 960 (36/8/-) 801 (35/-/-)

Panel B: Increasing Price Pattern

Dec-DP 777 (41/-/2) 495 (23/19/2) 756 (41/1/2) 697 (36/7/2) 440 (29/10/3)
OptP Dec-FCFS 755 (40/-/4) 634 (35/-/9) 776 (42/-/2) 679 (37/-/8) 308 (24/-/19)

Lag-DP 560 (41/1/-) 602 (38/4/-) 522 (40/1/-) 144 (33/10/-) 130 (21/20/-)
Lag-FCFS 504 (39/-/-) 541 (36/-/-) 473 (39/-/-) 59 (36/-/1) -63 (29/-/-)

Dec-DP 813 (43/-/1) 0 (-/11/33) 822 (43/-/-) 0 (-/7/38) 658 (41/1/-)
PerA Dec-FCFS 618 (35/-/9) 648 (36/-/8) 638 (36/-/7) 682 ( 37/-/8) 549 (37/-/6)

Lag-DP 507 (26/18/-) 542 (18/25/-) 256 (10/31/-) 140 (21/24/-) 212 (43/-/-)
Lag-FCFS 378 (34/-/-) 508 (35/-/-) 379 (35/-/-) 60 (36/-/-) 61 (36/-/-)

Finally, we would like to investigate the impact of capacity allocation policies (based on optimisation

and agency performances - abbreviated as “OptP” and “PerA”, respectively) using different acceptance

rules on the performance of travel agencies in terms of expected profit and number of customer re-

quests admitted/rejected. Note that a customer’s request can be only rejected due to a value function

acceptance rule and a lack of capacity. Table 5 presents each agency’s expected net profit as well as

the number of customer requests accepted/rejected (due to value and lack of capacity). Specifically,

we report the number of accepted customers, customers rejected by the acceptance decision rule, and

customers rejected due to a lack of capacity, respectively, in a parenthesis in terms of three components
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as (-/-/-). The maximum profit obtained by each agency under different capacity allocation policies and

the acceptance rules is highlighted in bold. The results in Table 5 show that the DP acceptance rule is

usually more profitable for agencies than FCFS. This result can be attributed to the impact of forward

looking feature of the DP rule. Recall that DP considers the potential customer requests arriving in

future time periods when making acceptance decisions. However, one can notice that this acceptance

rule may not always work well, especially when the airline allocates capacities using the performance-

based policy. As we discussed before, the performance-based policy considers past sales of agencies when

allocating the capacity. In terms of number of rejected customers, we observe that DP tends to reject

more customers under performance-based policy than the optimization-based policy. Since the DP rule

does not consider past sales, it may perform poor when the airline uses performance-based allocation.

Note that FCFS accepts customers based on the available capacity, thus there is no rejected customers

due to the acceptance rule in FCFS. Although agencies accept more customers by FCFS, it may not be

always profitable. For example, agency 5 has a significant profit loss in ‘Lag-FCFS’ case under increasing

price pattern. Considering the variable prices of agency 5 given in Figure 3, we observe that this agency

accepts more low paying customers due to FCFS which results in loss of profit. The results in Table 5

also point out that performance of an acceptance rule used by agencies is significantly affected by the

capacity allocation policy used by the airline.

6 Conclusions

In this paper, we studied the dynamic capacity planning problem of an airline using (fixed and vari-

able allotment) contracts with travel agencies selling flight tickets. Finding the optimal fixed and variable

allotment policies requires solving a complex stochastic dynamic program due to a high-dimensional state

vector. To address the curse of dimensionality in the dynamic programming model, we propose two ap-

proximation methods for determining the allocation of capacity allotments across all sales channels. We

conducted a series of computational experiments in order to investigate impact of various factors on the

fixed and variable allotment decisions and overall performance of the capacity allotment policies. We

illustrated the added value of introducing fixed and variable allotments among travel agencies considering

different factors such as pattern of demand, ticket prices and booking rules of agencies using the real

airline data. Moreover, we investigated impact of different capacity allotment strategies of the airline on

their revenue and agency’s profit and implemented optimization-based and performance-based strategies

to allocate the capacity to sale channels. Our results show that the optimization-based capacity allocation

performs better than the performance-based strategy since it considers the future demand uncertainty

when making the capacity allocation decisions. We also analysed capacity management strategies of

agencies considering different booking rules. We implemented the first-come-first-serve booking rule as

a benchmark and compared its performance with the forward looking optimisation based booking rule.

We observed that the forward looking strategy is generally more profitable for agencies than the first-

come-first-serve rule. Having said that the performance of booking strategy is significantly affected by

the price pattern and the airline’s capacity allocation policy.

Our findings lead to important managerial insights. First, the airline generally allocates more fixed

allotment capacity when customer demand (low load factor) is low since fixed allotment provides a
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cushion against the loss due to potential empty seats. On the other hand, the variable allotment capacity

obtained from different allocation policies is significantly affected by the price pattern. Secondly, airlines

should take into account demand uncertainty when making capacity allotment decisions among travel

agencies. In particular, the reoptimisation of capacity allotments at specific review periods is crucial for

the airline to respond promptly to changes in customer demand. Similarly, agencies must consider the

airline’s capacity allocation strategy and customer demand uncertainty in addition to their acceptance

(or booking) strategy when making capacity allotment requests from the airline. A possible future avenue

is to investigate the optimal policy selection for travel agencies. In this paper, we focus on the airline’s

capacity planning problem where each agency’s contribution is evaluated from the airline’s perspective.

Developing a model that accounts for dynamic interactions between an airline and multiple travel agencies

presents a challenging yet interesting area for further exploration.
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A Appendix

A.1 Agency Capacity Management Model

In a dynamic setting, agencies make their own booking decisions about accepting or rejecting arriving

customer requests. Given the seat capacity being allocated by the airline at each review period, an

agency’s capacity management problem becomes a standard revenue management problem. A state of

the dynamic system for agency i at time t is determined by the remaining seat capacity in terms of fixed

and variable allotments (denoted by xit and yit, respectively). At the first review period t = 1, travel

agency i receives fixed (ωi) and variable (σi) allotments, where (ωi, σi) ∈ H(01,01). Given state (xit, yit)

at any review period t ∈ S\{1}, travel agency i receives variable allotments δit as the airline re-allocates

the remaining seat capacity among all sales channels without violating any constraints of H(xt,yt). Then

the next state for agency i at time t+ 1 is obtained as (xit, yit + δit).

A customer’s request for a flight ticket may arrive to agency i with purchasing probability pit at time

t ∈ T \S between any consecutive two review periods. In this case, agency i sells the flight ticket at price

of git and pays fi or rit to the airline depending on the use of fixed or variable allotment capacity at time

t, respectively. Let us define binary variables µit and νit, respectively, to represent whether the fixed and

variable allotments are used by channel i to make booking decisions at time t. If µit = 1 (or νit = 1),

then fixed (or variable) allotment capacity is used to source the seat for the customer demand at time t.

Given decisions µit and νit taken at state (xit, yit) of time t, the next state at time t+1 can be obtained

as (xit − µit, yit − νit). In this case, the agency’s profit is calculated as git(µit + νit)− fiµit − ritνit.

Travel agencies intend to first use fixed allotment capacity in order to fullfil the customer demand so

that the potential risk of unsold capacity and consequently potential revenue loss can be eliminated. In

order to impose this situation into decision-making, we introduce an auxiliary (binary) decision variable

αi. If αi = 1 (or 0), then the customer demand is satisfied from fixed (or variable) allotment. When no

fixed allotment is left, the customer requests are satisfied from variable allotments. Therefore, booking

decisions at state (xit, yit) at time t need to satisfy the following set of linear constraints:

Uit(xit, yit) =
{
µit, νit ∈ {0, 1} | νit ≤ yit, µit ≤ xit, νit ≤ 1− αi, xit ≤Mαi, αi ∈ {0, 1}

}
,

where M is a sufficiently large number that can be specified as C. Let Vit(xit, yit) denote the value

function for agency i at state (xit, yit) at time t. Given allocated capacity (ωi, σi and δit) by the airline

as well as fixed and variable allotment capacities (xit and yit), the value function at t ∈ T computes the

expected net revenue/profit from time t to the end of planning horizon T as follows;

Vit(xit, yit) =



Vi,t+1(xi,t+1, yi,t+1), for t = 1

Vi,t+1(xi,t+1, yi,t+1), for t ∈ S\{1}

max
µit,νit∈Uit(xit,yit)

{
pit

[
git(µit + νit)− fiµit − ritνit + Vi,t+1(xi,t+1, yi,t+1)

]
+ (1− pit)Vi,t+1(xi,t+1, yi,t+1)

}
, for t ∈ T \S.

(23)
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The corresponding transition function can be described as follows:

(xi,t+1, yi,t+1) =



(ωi, σi) if t = 1, (ωi, σi) ∈ H(01,01)

(xit, yit + δit), if t ∈ S\{1}, δit ∈ H(xt,yt)

(xit − µit, yit − νit), if customer request arrives at t ∈ T \S

(xit, yit) otherwise.

(24)

At the end of the booking horizon, agency i pays the cost of unsold fixed allotment to the airline. Then

the boundary condition for the agency i’s capacity management problem at time T+1 is described at state

(xi,T+1, yi,T+1) as Vi,T+1(xi,T+1, yi,T+1) = −fixi,T+1. Note that the DP model (23)-(24) cannot be solved

due to involving the airline’s future allotment decisions in review periods. We overcome this problem

without considering the review periods in our numerical experiments. We also investigate different

booking strategies for the agencies.

Next, we discuss the agency capacity management model with no review periods. Similar to the

DP model in (13), we introduce ϑit(xit, yit) to represent the expected revenue obtained by channel i

from t to T given the available fixed and variable capacity allotments (xit, yit) at time t. By excluding

review periods from model (23), we obtain the following dynamic programming function to calculate the

expected revenue of channel i, for i ∈ I\{o}, at time t ∈ T \S as

ϑit(xit, yit) = max
µit, νit ∈ Uit(xit, yit)

{
pit

[
git(µit + νit)− fiµit − ritνit + ϑi,t+1(xit − µit, yit − νit)

]}
+ (1− pit)ϑi,t+1(xit, yit) (25)

with boundary conditions of ϑi,T+1(xi,T+1, yi,T+1) = −fixi,T+1 for all states (xi,T+1, yi,T+1) at time

T + 1. In addition, ϑit(0, 0) = 0 for all t ∈ T \S with the boundary condition ϑ̄i,T+1(xit, yit) = fixi,T+1

for all states (xi,T+1, yi,T+1) at time T + 1. The optimal value function, ϑit(xit, yit), given the allocated

fixed and variable capacities (xit, yit) can be efficiently calculated using the standard backward dynamic

programming approach.
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A.2 Simulation Procedure

We conduct a simulation study to evaluate the performance of capacity allotment policies. The

pseudocode for the general simulation process is provided in Algorithm 1 and it can be summarised

summarised under three main steps:

Step 1: At time t = 1, we determine fixed and variable allotment capacities and compute the booking

policy for each sales channel i ∈ I using one of the following methods.

– For the LP-based approximation method, the linear optimisation model (14)-(17) is solved.

– For the Lagrangian relaxation based approximation method, the dual problem (22) is solved

by a standard subgradient algorithm.

Step 2: Between review periods, t ∈ T \S, the sale channels receive customer requests. Considering the

remaining capacity, each channel applies an acceptance rule for an arriving customer request to

decide whether to fulfil the request or not.

– The remaining fixed and variable allotment capacities are updated accordingly.

Step 3: At intermediate review period t ∈ S\{1}, we resolve the optimisation models (14)-(17) and (22)

for given values of remaining allotment capacities. This process carries on in the same manner until

the end of the planning horizon.

Algorithm 1: Simulation Procedure

Initialization: t = 1; Ct = C; TotalRev = 0; APi = 0, for i ∈ I\{o}
for t = 1, · · · , T do

if t = 1 then

− Solve model (14)-(17) or (22) to obtain (ωi, σi) for i ∈ I.
− Set xit := ωi and yit := σi, for i ∈ I
− Update capacity level Ct := Ct −

∑
i∈I\{o} ωi

− Compute total revenue as TotalRev := TotalRev +
∑

i∈I\{o} fiωi

− Calculate agency’s profit as APi := APi −fiωi, for i ∈ I\{o}
end if

if t ∈ S\{1} then

− Solve model (14)-(17) or (22) to obtain δi, for each agency i ∈ I given Ct and xit

− Set yit := δi for i ∈ I
else

− Apply acceptance rule of sale channel i ∈ I for each customer request

if fixed allotment is used by channel i, for i ∈ I\{o} then

− Update remaining capacity xit := xit − 1

− Compute agency’s profit as APi := APi + git

else if variable allotment is used by channel i ∈ I then

− Update remaining capacity yit := yit − 1 and Ct := Ct − 1

− Calculate total revenue as TotalRev := TotalRev + rit,

− Compute agency’s profit as APi := APi +(git − rit), for i ∈ I\{o}
end if

end if

end for
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A.3 Proof of Proposition 4.1

The proof follows from the concavity result presented by Lippman and Stidham (1977). For ease of

notation, we define ∆ϑot(yo) = ϑot(yo) − ϑot(yo − 1). The value function ϑot(yo) is discrete concave in

state variable yo, if the differences yo 7→ ϑot(yo)− ϑot(yo − 1) are non-increasing (Lippman and Stidham,

1977). In other words, we should show that ∆ϑot(yo) ≥ ∆ϑot(yo+1) using an induction over time periods.

The result holds at time T + 1 since ϑoT+1(yo) − ϑoT+1(yo − 1) and ϑoT+1(yo + 1) − ϑoT+1(yo) are

both zero for any given yo. We assume that the result holds for time period t+1. Our proof is completed

once we show that ∆ϑot(yo) ≥ ∆ϑot(yo + 1). The value function ϑoT+1(yo) can be given as follows:

ϑot(yo) = potmax{rot + ϑot+1(yo − 1), ϑot+1(yo)}+ (1− pot)ϑot+1(yo)

= potmax{rot + ϑot+1(yo − 1)− ϑot+1(yo), 0}+ ϑot+1(yo)

= potmax{rot −∆ϑot+1(yo), 0}+ ϑot+1(yo). (26)

Following the value function in (26), we can obtain ∆ϑot(yo) and ∆ϑot(yo + 1) as follows;

∆ϑot(yo) = potmax{rot −∆ϑot+1(yo), 0}+ ϑot+1(yo)

− potmax{rot −∆ϑot+1(yo − 1), 0} − ϑot+1(yo − 1),

= potmax{rot −∆ϑot+1(yo), 0} − potmax{rot −∆ϑot+1(yo − 1), 0}+∆ϑot+1(yo), and

∆ϑot(yo + 1) = potmax{rot −∆ϑot+1(yo + 1), 0}+ ϑot+1(yo + 1)

− potmax{rot −∆ϑot+1(yo), 0} − ϑot+1(yo),

= potmax{rot −∆ϑot+1(yo + 1), 0} − potmax{rot −∆ϑot+1(yo), 0}+∆ϑot+1(yo + 1).

Then, we investigate ∆ϑot(yo) ≥ ∆ϑot(yo + 1) as follows;

∆ϑot(yo) − ∆ϑot(yo + 1)

= potmax{rot −∆ϑot+1(yo), 0} − potmax{rot −∆ϑot+1(yo − 1), 0}+∆ϑot+1(yo)

− potmax{rot −∆ϑot+1(yo + 1), 0}+ potmax{rot −∆ϑot+1(yo), 0} −∆ϑot+1(yo + 1)

≥ potmax{rot −∆ϑot+1(yo), 0} − potmax{rot −∆ϑot+1(yo + 1), 0}+∆ϑot+1(yo)−∆ϑot+1(yo + 1) ≥ 0,

where the first inequality follows from the induction assumption. For the second inequality, we consider

two cases. We first investigate the case: rot −∆ϑot+1(yo) ≥ 0 and rot −∆ϑot+1(yo + 1) ≥ 0.

pot(max{rot−∆ϑot+1(yo), 0} −max{rot −∆ϑot+1(yo + 1), 0}) + ∆ϑot+1(yo)−∆ϑot+1(yo + 1)

= pot(rot −∆ϑot+1(yo)− rot +∆ϑot+1(yo + 1)) + ∆ϑot+1(yo)−∆ϑot+1(yo + 1)

= (1− pot)(∆ϑot+1(yo)−∆ϑot+1(yo + 1)) ≥ 0,

where the last inequality holds due to induction assumption. Given that ϑot+1(yo) ≥ ϑot+1(yo + 1), we
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also investigate the case where rot −∆ϑot+1(yo) ≤ 0 and rot −∆ϑot+1(yo + 1) ≥ 0 as follows;

pot(max{rot−∆ϑot+1(yo), 0} −max{rot −∆ϑot+1(yo + 1), 0}) + ∆ϑot+1(yo)−∆ϑot+1(yo + 1)

= −pot(rot −∆ϑot+1(yo + 1)) + ∆ϑot+1(yo)−∆ϑot+1(yo + 1)

= ∆ϑot+1(yo)− (1− pot)∆ϑot+1(yo + 1)− potrot

= pot∆ϑot+1(yo) + (1− pot)∆ϑot+1(yo)− (1− pot)∆ϑot+1(yo + 1)− potrot ≥ 0.

The last inequality follows from the condition rot−∆ϑot+1(yo) ≤ 0. Following the induction assumption,

it is clear that ∆ϑot(yo) ≥ ∆ϑot(yo + 1). Therefore, the value function ϑot(yo) is discrete concave in yo.

A.4 Proof of Proposition 4.2

The proof follows from the approximation bound result presented by Erdelyi and Topaloglu (2009).

Assume that x∗i and y∗i denote the optimal amount of fixed and variable allotment capacity allocated to

channel i ∈ I at the first review period t = 1 under the optimal solution of the binary programming

model (18). Suppose that Xit and Yit denote the number of reservations accepted for sales channel i ∈ I
at time period t using fixed and variable allotment capacity under the optimal policy, respectively. Due

to the feasibility restrictions in model (18), we have

∑
t∈T \S

∑
i∈I Xit + Yit ≤ C∑

t∈T \S Xit ≤ x∗i i ∈ I∑
t∈T \S Yit ≤ y∗i i ∈ I

where the first constraint ensures that the total number of accepted reservations do not exceed the

capacity at time period t = 1. Similarly, the second and third constraints guarantee that fixed and

variable capacity restrictions are satisfied, respectively. The total revenue under the optimal policy is∑
t∈T \S

∑
i∈I

fiXit +
∑
i∈I

fi(x
∗
i −

∑
t∈T \S

Xit) +
∑

t∈T \S

∑
i∈I

ritYit.

Since the number of accepted customers is restricted by the total number of requests arrived for channel i

over the time periods t ∈ T \S, we obtain the total expected revenue under the optimal policy as follows:∑
t∈T \S

∑
i∈I

fiE(Xit) +
∑
i∈I

fi(x
∗
i −

∑
t∈T \S

E(Xit)) +
∑

t∈T \S

∑
i∈I

ritE(Yit)

This solution is feasible for the airline’s dynamic programming model (1)-(3). However, the exact dynamic

programming model considers capacity updates at the review periods and hence, the objective value of

the binary programming model provides a lower bound on the optimal expected revenue.
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