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Abstract: We define biequivalent planar graphs, which are a generalisation of the uniform polyhedron
graphs, as planar graphs made out of two families of equivalent nodes. Such graphs are required to
identify polyhedral cages with geometries suitable for artificial protein cages. We use an algebraic
method, which is followed by an algorithmic method, to determine all such graphs with up to
300 nodes each with valencies ranging between three and six. We also present a graphic representation
of every graph found.
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1. Introduction

Recently, we showed that to construct a polyhedral cage (p-cages for short) one must
use planar graphs to characterise how the different faces of a p-cage are linked together [1].
P-cages are assemblies of regular or nearly regular polygons but with holes. The nodes
of the graph correspond to the faces of the p-cage, while the edges determine which of
the faces are sharing an edge. P-cages correspond to the mathematical description of
the geometry of artificial protein cages, which are being developed for targeted drug
delivery [2]. To form spontaneously, such protein cages must be symmetric so that each face
is equivalent, modulo a rotation, to all the other faces. The simplest p-cages candidates for
artificial protein cages are hence p-cages made out of a single type of polygon, where all the
faces are equivalent, thus having modulo rotation [3]. To be good candidates, p-cages must
have small holes, and each face should have at least four neighbours each. Unfortunately,
the number of such p-cages is relatively small. As an alternative, it is natural to consider
protein cages made out of two types of polygons. In [4], we have constructed such p-cages
but with the restriction that each face of a given type must be connected to face of the other
type. Unfortunately, very few of these p-cages have small holes.

The next step is then to construct p-cages made out of two types of polygons but
allowing each face to be adjacent to any type of face. To achieve this task, as explained
in [1], one must characterise all the planar graphs made out of two families of nodes
such that the nodes of a given family are equivalent to each other modulo to achieve
automorphism of the graph. Planar graphs for which all the nodes are equivalent to each
other correspond to the planar graphs of all the convex uniform polyhedra [5] (They are
examples of Cayley graphs). The aim of this paper is to determine a list of all the planar
graphs made out of two equivalent types of nodes with valencies ranging from three to
six. This restriction comes from the fact that the faces of a p-cage must have at least three
neighbours and cannot have more than six without being heavily irregular.

Artificial protein cages have been experimentally generated by a number of research
groups. One of the first ones was the TRAP-cage made out of 24 hendecagonal faces, which
are also called TRAP-rings [2,6]. More recently, a smaller protein cage was shown to be
made out of 12 of the same TRAP-protein hendecagonal rings [7].
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A number of other artificial protein cages have been made experimentally [8–11].
These cages are similar to virus capsids but require metal atoms to bind together [12].
The motivation to create these protein nanocages is to develop new method of drug
delivery [13–17] by enclosing the drug inside such cages. By adding to the protein cages
receptors that can bind to a target cell, such as cancer cells for example [13], the protein
cages can be swallowed by the cell, where the drug is then released [18]. For expensive
drugs, this method would greatly reduce the cost of medical treatment, and as only the
targeted cells receives the drug, thus greatly reducing the side effects. Our ultimate aim it
to identify geometries that can be used by nanobioengineers to create new protein cages.

The study of the structure of protein cages is quite new, and most investigations have
so far been mostly experimental [19,20]. The formal mathematical description of polyhedral
cages, as well as the connection between their structure and planar graphs, were identified
in our previous work [1].

Graphs do occur in a number of areas of science such as the study of complex protein
networks [21], quantum field theory [22], neurology [23], or mathematics [24]. The symme-
try of graphs has been studied extensively [25], but here, we restrict ourselves to planar
graphs. As we have stated above, planar graphs where all the nodes are equivalent, modulo
of an automorphism of the graphs, and correspond to the planar graphs of convex uniform
polyhedra. In this paper, we are constructing planar graphs made out of two families of
equivalent nodes.

2. Characteristics of Potential Graphs

We define a biequivalent planar graph as a planar graph made out of nodes split in
two families such that any node of a given family can be mapped to any other node of
the same family via an automorphism of the graph. For the reasons mentioned in the
introduction, in what follows, we restrict ourselves to graphs with a node valency ranging
from three to six. Notice that loops are excluded from planar graphs.

Each planar graph is made of a number of nodes connected together by edges that
then define faces. Each face is then characterised by the number of nodes from each family,
as well as their cyclic order around the face. To be equivalent, the nodes of a given family
must all be adjacent to the same type of faces and in the same order. To find biequivalent
graphs, we start by using the Euler formula that states that for any planar graph consisting
of F faces, E edges, and V nodes/vertices, the following condition is always satisfied:
V − E + F = 2. This will allow us to find restrictions on the number of nodes, as well as the
number and types of faces belonging to the graphs. We must emphasise that in the Euler
formula, the outside of the graph is considered as a face. This is easy to understand when
one visualises the graphs as a planar projection of a 3D polyhedron.

Considering planar graphs made out of V1 nodes of type 1, with each having valency
L1 and V2 nodes of type 2 of valency L2, we denote n(i1, i2) as the number of faces with i1
nodes of type 1 and i2 nodes of type 2. Then, we have that the total number of edges E
and faces F are given by

E = ∑
j=1,2

1
2

LjVj (1)

F = ∑
i1

∑
i2

n(i1, i2). (2)

Moreover,

V1 = ∑
i1

i1
L1

∑
i2

n(i1, i2)

V2 = ∑
i2

i2
L2

∑
i1

n(i1, i2). (3)
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Then, as a result,

V = V1 + V2 = ∑
i1

∑
i2

(
i1
L1

+
i2
L2

)
n(i1, i2). (4)

Substituting these expressions for F, E, and V into the Euler formula, we have

∑
i1

∑
i2

n(i1, i2)
(

1 +
i1
L1

+
i2
L2

)
− 1

2 ∑
i1

∑
i2

(i1 + i2)n(i1, i2) = 2. (5)

Now, by multiplying (5) by 2L1L2, we obtain

∑
i1

∑
i2

n(i1, i2)(2 L1 L2 + i1L2(2 − L1) + i2L1(2 − L2)) = 4 L1 L2. (6)

If each node of type j belongs to vj,i1,i2 faces with i1 nodes of type 1 and i2 nodes of
type 2, we have

V1 =
i1 n(i1, i2)

v1,i1,i2
, (7)

and similarly for any i2:

V2 =
i2 n(i1, i2)

v2,i1,i2
. (8)

Indeed, for every face with i1 nodes of type 1 and i2 nodes of type 2, i1n(i1, i2) is the number
of nodes of type 1, and V1 is multiplied by the number of faces of that type adjacent to
nodes of type 1 and similarly for nodes of type 2. This only works because all the nodes of
a given type are equivalent.

Then, by definition, we also have

∑
i2

∑
i1

v1,i1,i2 = L1, ∑
i1

∑
i2

v2,i1,i2 = L2 . (9)

To construct all biequivalent planar graphs, we must find the integers i1, i2, and
n(i1, i2) satisfying (6). We must then compute V1 and V2 using (3) and reject the cases where
V1 and V2 are not integers. We must next compute v1,i1,i2 and v2,i1,i2 using (7) and (8), thus
keeping only the cases for which they are integers that satisfy (9).

To do so, we have written a computer program (available from zenodo), which when
given values for L1 and L2, scans all the possible combinations of n(i1, i2) polygons made
out of i1 type 1 and i2 type 2 nodes, thus considering polygonal faces such that 3 ≤ i1 + i2 ≤
10, with a maximum of 300 faces.

We have restricted ourselves to decagonal faces, because they are the largest polygons
occurring in Archimedean solids and also because they already lead to p-cages with very
large holes. We restricted ourselves to 300 faces to capture all the graphs, which are
derivatives of the planar graphs corresponding to the Archimedean solids. We did so for
3 ≤ L1 ≤ 6 and L1 ≤ L2 ≤ 6. When L1 = L2 = 3, the program completes in a few minutes,
but for L1 = 5, L2 = 6 it ran for 3 months on a powerful workstation. We did run the
program for larger polygons and more faces (up to 1000) for some of the smaller values of
L1 and L2 but did not obtain any more graphs other than the one derived from the prisms
and antiprisms, of which there is an infinite number.

The program generates a list of potential graph characteristics (PGCs) of the type

[4 5; 5 4 0, 10 2 1; 2 0, 2 1; 5 1; 10 2]
valencies faces 0 & 1 node 1 node 2 # nodes
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The first two numbers correspond to the valencies of the graphs 4 and 5 for nodes of
type 1 and 2, respectively. The value 5 4 0, 10 2 1 indicates that the graph is made out
of five squares of valency, four nodes, and 10 triangles made out of two valency 4 and one
valency 5 nodes. The value 2 0, 2 1 indicates that the type 1 nodes are adjacent to two
faces of type 0 (the squares) and two faces of type 1 (the triangles). The value 5 1 indicates
that the nodes of type 2 are adjacent to five faces of type 1. The value 10 2 specifies that
there are 10 nodes of type 1 and 2 nodes of type 2. The total number of faces is hence 15 in
this case.

Between the nine pairs of valencies considered and after filtering out double entries
when L1 = L2 and in cases where there are no edges linking the two types of nodes, the
program generated over 30,000 PGCs, but only just over 1% of these correspond to an
actual planar graph. As an example of an impossible graph, the PGC [3 3; 1 0 4, 2 2
1, 2 4 0; 1 1, 2 2; 1 1, 2 0; 4 2] specifies that the type 2 nodes must be adjacent
to two squares 0 4, but as there is only one square, this is not possible.

As the next step, we must consider all the PGCs and try to convert them into actual
graphs, thus discarding those for which this is not possible.

3. Construction of the Graphs
3.1. The Faces of the Graph

Each graph is made out of the faces and nodes as specified in the PGC described in the
previous section. A face with i1 nodes of type 1 and i2 nodes of type 2 can assume different
configurations referring to the order in which the nodes are distributed. For example, up to
cyclic rotations, an hexagon (2, 4) can have the following configurations: (1, 2, 2, 1, 2, 2),
(1, 2, 1, 2, 2, 2), or (1, 1, 2, 2, 2, 2). In the first case, all the nodes 1 are equivalent, and there are
two types of nodes of type 2 (Some nodes 2 have the cyclic sequence 1, 2, 2, 1, 2 on the right,
while others have 2, 1, 2, 2, 1). For the last two cases, there are two types of node 1 and four
types of node 2. In what follows, we refer to these as the C-signature of the face, and we
call Nc(i1, i2) the number of different C-signatures for the face (i1, i2). We then label these
configurations as Cj(i1, i2), where j ∈ [1, Nc(i1, i2)] indexes the different configurations.
In the example above, Nc(2, 4) = 3, C1(2, 4) := (1, 2, 2, 1, 2, 2), C2(2, 4) := (1, 2, 1, 2, 2, 2),
and C3(2, 4) := (1, 1, 2, 2, 2, 2).

The cycle of the configuration, CyCj(i1,i2), is the smallest number of single cyclic rota-
tions needed to recover the configuration. In the example above, we have CyC1(2,4) = 3 and
CyC2(2,4) = CyC3(2,4) = 6.

Each node on a face will have an index number, as well as a reduced index number
corresponding to the lowest index amongst all the equivalent nodes of the same type.
The reduced index of index i is simply i mod CyCj(i1,i2) (Notice that the index corresponds
to an offset and hence starts at 0). For example, the reduced indices of 1, 2, 2, 1, 2, 2 are
(0, 1, 2, 0, 1, 2), while the reduced indices of (1, 2, 1, 2, 2, 2) and (1, 1, 2, 2, 2, 2) are the actual
indices: (0, 1, 2, 3, 4, 5).

We call the node multiplicity of a face configuration CJ(i1, i2) as the number of
nonequivalent nodes of type t that it contains, and we label it as MtCJ(i1,i2). The multiplicity
of a type t node for a given configuration is simply given by MtCJ(i1,i2) = it/CyCj(i1,i2).

In the example above, M1C1(2,4) = 1, and M1C2(2,4) = M1C3(2,4) = 2; as well, M2C1(2,4) = 2,
and M2C2(2,4) = M2C3(2,4) = 4.

Having described the faces of the graph, we must now consider the nodes.

3.2. The Nodes of the Graph

The planar graphs we are considering are of two types and can be of different valencies.
Each node of a given type will be surrounded by a sequence of faces of the different types,
and to be equivalent, that sequence must be the same for every node, thus being modulo
for a cyclic rotation.

As described above, each node of type t will be surrounded by vt,i1,i2 faces made out of
i1 nodes of type 1 and i2 nodes of type 2, and for the type t nodes to be equivalent, it is not
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just the type of face that must be in the same sequence, but the C-signatures of these faces
must be in the same sequence as well. Moreover, every nodes of type t must have the same
reduced indices for each of the matching face signatures in the sequence. By convention,
we label them in the anticlockwise order.

Figure 1 illustrates this as an example where the nodes of type 1 have valency 3, and
the nodes of type 2, marked with a read dot, have valency 4. The graph is made out of
two triangles, (0, 3), and nine squares, (2, 2). So, we have Nc(0, 3) = 2 and Nc(2, 2) = 9,
and we define C1(0, 3) = (2, 2, 2), C1(2, 2) = (1, 2, 1, 2), and C2(2, 2) = (1, 1, 2, 2). Notice
that one of the 222 face sits outside the graph, but if we picture the graph as a polyhedron,
it corresponds to the bottom of the polyhedron. In what follows, we call that face the
outside face.

The nodes of type 1 have the face sequence (C1(2, 2), C2(2, 2), C2(2, 2)) with the corre-
sponding reduce indices (0, 1, 0). This also means that v1,0,3 = 0, and v1,2,2 = 3. The multi-
plicity of the face configurations are then M1,C1(0,3) = 0, M1,C1(2,2) = 1, and M1,C2(2,2) = 2.

The nodes of type 2 have the face sequence (C1(0, 3), C2(2, 2), C1(2, 2), C2(2, 2)) with
the corresponding reduced indices (0, 2, 1, 3). This also means that v2,0,3 = 1, and v2,2,2 = 3.
The multiplicity of the face configurations are then M2,C1(0,3) = 1, M2,C1(2,2) = 1, and
M2,C2(2,2) = 2.
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Figure 1. Graph made out of six valency 3 nodes (type 1), six valency 4 nodes (type 2) and the
following faces: 2 C1(0, 3) = (2, 2, 2), 3 C1(2, 2) = (1, 2, 1, 2), and 6 C2(2, 2) = (1, 1, 2, 2). Nc(0, 3) = 2,
and Nc(2, 2) = 9. The reduced indices of each node are the black digits in the corner of each face.

Notice that the sum of the multiplicities of a type t node for the different configurations
must be less than or equal to vt,i1,i2 :

∑
j

MtCj(i1,i2) ≤ vt,i1,i2 . (10)

In the example above, we have

M1C1(0,3) = 0 ≤ v1,0,3 = 0

M2C1(0,3) = 1 ≤ v2,0,3 = 1

M1C1(2,2) + M1C2(2,2) = 1 + 2 ≤ v1,2,2 = 3

M2C1(2,2) + M2C2(2,2) = 1 + 2 ≤ v2,2,2 = 3. (11)

To determine the possible arrangements of faces around a node, we must consider all
the permutations of the different face signatures for each of their possible configurations.
For example, if a trivalent node of type 1 is surrounded by one (1, 2) face and two (2, 4)
faces, the possible arrangements are as follows: (We order the faces in the anticlockwise
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order around the node, and the nodes are also ordered in the anticlockwise order around a
face. The first node on the face signature is the node considered).

• (1,2,2), (1,1,2,2,2,2), (1,1,2,2,2,2)
• (1,2,2), (1,2,2,2,2,1), (1,1,2,2,2,2)
• (1,2,2), (1,2,2,2,2,1), (1,2,2,2,2,1)
• (1,2,2), (1,1,2,2,2,2), (1,2,2,2,2,1)

The first three configurations are illustrated in the same order in Figure 2, where we see
that only the second configuration leads to compatible nodes. Indeed, not all configurations
are compatible, and the neighbouring faces must have matching node types: on the first
arrangement, the second face must have a second node of type 2 to match the (1, 2, 2) face,
and the two hexagons have a node mismatch above the green dot. One sees graphically that
the only compatible configuration is the middle one: (1, 2), (1, 2, 2, 2, 2, 1), (1, 1, 2, 2, 2, 2).

1

1

1

1

1

1

22

2

2

2 2

2

2

2

2
1
11

1 1

1

2 2 2 2

2

2

22

2

2

2

2

2

22

2

2

2 1
1

1
2 2

Figure 2. Fitting of a (1, 2, 2) triangle and two 1, 1, 2, 2, 2, 2 hexagon around a trivalent node. The green
dot corresponds to the node being fitted. Red labels indicate incompatible node types.

If we denote as Cj(i1, i2)[k] the kth index of the configuration Cj(i1, i2), the condition
is that if A and B are two successive configurations in that order around a node with
respective index a and b for the node, we must have

A[(a − 1)mod PA] = B[(b + 1)mod PB] (12)

where PA and PB are the number of edges of, respectively, face A and B.
To construct a graph from a given PGC, we start by selecting a C-signature for each of

the faces making the graph. For both types of node, we order the different faces around the
node, as well as select a reduced index of the node for each face. We then pick a face as the
outside face, as well as a node on that face. We then try to add the different faces around
that node in the preselected order. Once a node is completed, we move to the adjacent
node and keep working our way through all the nodes but stop when the addition of a face
leads to a node type clash. We must then move one step backward and skip the addition of
the previous face. One must also stop and move one step back when all the faces or all the
nodes have been used. This is a recursive algorithm which, in some cases, can take a very
long time. When the graph is completed, one can stop and move on to the next potential
node and face configuration.

To find all the possible graphs for a given PGC, we must consider all the possible
combinations of the face C-signatures, as well as all the possible orders of these faces around
each type of node. This leads to a very large number of possibilities, but most of them can
be easily ruled out using simple matching node incompatibility, as described above.

To understand how to construct a graph, we start by describing how to deconstruct
one. If we start from a full graph and remove a given face, keeping the nodes and the edges
belonging to the other faces, the graph acquires a hole (the graph still looks the same, as we
have not removed any edges yet, but the removed face should be viewed as a hole in the
graph). We then remove a second face by removing the edges common to the holes and
that face. In the process, the hole becomes larger. We keep removing faces adjacent to the
hole until we are left with the outside face with just a hole in it.

To build a graph, we proceed the other way round, thus starting from the outside face
and adding faces inside the hole. We must consider every type of face that the graph is
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made of, as well as every rotation of the nodes. There is a very large number of ways to
do this: many face additions can be ruled out by the constrains described above. When
adding any face at a given location fails to satisfy all the constraints, we must remove the
previous face and try again with another face instead. This is a recursive algorithm. We
output a graph when it is completed.

We have written a computer program, available from Zenodo, (the link is given at the
end of the paper), which builds a planar graph using the algorithm described above, thus
using as input a PGC generated by the program described in the previous section.

It is usually best to take the largest face as the outside face, but sometimes, taking a
different face generates or rejects a graph much faster. For some parameters, the program takes
several weeks to complete, but in most cases, the graphs are rejected within a few minutes.

Some of the graphs have a chiral symmetry and hence correspond to two different
graphs. Most of the time, the characteristics of a potential graph correspond to a single
graph, modulo to the chiral symmetry, but in some instances, they actually correspond to
two or even three totally different graphs.

Some graphs can be excluded easily though. For example, the graph corresponding to
the PGC [3 4; 1 6 0, 2 0 3, 2 3 0, 2 3 1; 1 0, 1 2, 1 3; 1 3, 3 1; 6 2] has
to contain one hexagon made out of valency 3 nodes, as well as a triangle made out
of valency 3 nodes (see Figure 3a). The triangle 3 0 must share an edge with the hexagon
6 0 so that two of the valency 3 nodes are adjacent to a 3 0 and a 6 0 face. The remaining
two edges of the triangle must then be shared with an edge from the 3 1, but as a result,
the third node of the triangle is adjacent to two 3 1, which is not one as requested.

(6,0)

(3,0)

(3,1)

(3,1)

(10,0)

(2,2)
(2,2)

(2,2)

(2,2)

(2,2)
(2,2)

(2,2)

(2,2)

(2,2)

(2,2)

(a) (b)

Figure 3. Examples of impossible PGCs: (a) 34_F9_1-6-0_2-0-3_2-3-0_2-3-1_V6_2;
(b) 34_F122_10-0-8_12-10-0_120-2-2_V120_80.

As another example, the PGC [3 4; 10 0 8, 12 10 0, 120 2 2; 1 2, 2 3; 1 1,
3 3; 120 80] specifies that each face 10 0 must be surrounded by 10 2 2 forming a
compound decagon (see Figure 3b). We must then find a way to form the planar graph of a
uniform polyhedra made out of twelve decagons and ten octagons, but this is known to
not exist, as there is no corresponding regular polyhedron.

We have run our computer program to construct all the biequivalent graphs with
valencies ranging from three to six and made at most 300 faces ranging from triangle to
decagons. In the next section, we describe each of these graphs.

4. Results

Most of the biequivalent graphs can be seen as modifications of the planar graph of
a uniform polyhedron, where extra nodes and edges are added in symmetrically. So, we
will present these graphs as different categories of such modifications, but we will start
with the graphs derived from simple polygons. As shown in Appendix A, there are no
planar graphs made exclusively out of valency 6 nodes. As a result, we can only consider
the following pairs of valency values (L1, L2): (3,3), (3,4), (3,5), (3,6), (4,4), (4,5),
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(4,6), (5,5) and (5,6). The data files describing the PGC, the graph connectivities, and
the vector graphic representations of the graphs are available from Zenodo.

The drawing of a graph depends on the choice of the outside face, and most of the
time, we have chosen the largest polygon for it. The connectivity between the different
nodes, on the other hand, remains the same, regardless of the chosen outside face, and a
description of each graph as a set of pair of nodes linked together can be found as plain
text files available from Zenodo.

Most graphs can be seen as a member of a family of similarly obtained graphs, such
as, for example, the addition of a pyramid on the bases of prisms. As we have identified
over 400 different graphs, we only include one example of each family in the main text,
but the supplementary file contains a graphic representation of every graph that we have
found. On the figures, the nodes of type 2 are indicated with a red dot.

The names of the graphs are derived from their PGC and are of the type d1d2_Fn_n1 −
i1,1 − i1,2_n2 − i2,1 − i2,2_ . . . _nk − ik,1 − ik,2_Vv1_v2, where d1 and d2, with d1 ≤ d2, are the
valencies of the nodes, n is the total number of faces of the graph, nj is the number of
faces of type ik,1, ik,2, and vk is the number of nodes of type k. For example, |45_F15_5-
4-0_10-2-1_V10_2| is a graph made out of ten valency 4 nodes and two valency 5 nodes,
with a total of fifteen faces: five squares (4, 0) and ten triangles (2, 1). When more than one
graph correspond to a given PGC, we add the suffix _a, _b, or _c at the end of the name to
differentiate them. We also add a * after the p-cage name when the graph is chiral.

To describe the families of graphs, we sometimes use some parameters, say P, and in-
clude an arithmetic expression inside curly brackets. For example, {2P+1} should be
thought of as the value of 2P + 1.

We now proceed by describing each graph and how they can be described as modifi-
cations of known structures. As an abuse of language, we use the names of regular solids
to refer to their planar graphs.

In what follows, we will be using some graph components to describe the biequivalent
graphs. They are presented in Figure 4, where the blue dots represent the nodes that will
be linked to the rest of the graph. We will also use the following abbreviations: P-gone for a
polygon with P edges, P-star for a polygonal star with P branches, P-fan for polygonal fan
with P blades, split P-fan for a split polygonal fan with P blades, inverted P-fan for inverted
polygonal fans with P blades, and P-mosaic for mosaic with a P-gon at its centre. We also
refer to pyramids, prisms, and antiprisms with a P-gonal base as, respectively, P-pyramids,
P-prisms, and P-antiprisms.

(a) (b) (c) (d)

(e) (f)

(g) (h) (i)

Figure 4. (a) 2D diamond, (b) 2D bubble diamond, (c) linked P-gon. (d) polygonal stars, (e) polygonal
fans, (f) polygonal split fans, (g) polygonal inverted fans, (h) linked P-gon face, (i) mosaic polygon.
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4.1. Special Graphs

Some graphs do not fall in any special category and should be considered as special:

• Two alternating diamonds: 34_F8_4-1-3_4-2-1_V4_4, (see Figure 5a).
• One 2D diamond and one 2D bubble diamond: 36_F8_4-1-2_4-2-1_V4_2, (see Figure 5b)
• Three 2D diamonds: 36_F9_3-2-2_6-2-1_V6_2, (see Figure 5c)
• Multitriangles: 45_F12_4-2-1_8-1-2_V4_4 (see Figure 5d).

(a) (b) (c) (d)

Figure 5. Special graphs: (a) 34_F8_4-1-3_4-2-1_V4_4, (b) 36_F8_4-1-2_4-2-1_V4_2, (c) 36_F9_3-2-2_6-
2-1_V6_2, (d) 45_F12_4-2-1_8-1-2_V4_4.

4.2. Polygonal Dressing Graphs

• Replacing every second edge of a 2P-gone by a 2D diamond yields the following:
33_F2P+2_2-P-2P_2P-2-1_VP_P, P = 4, 6, 8, (see Figure 6a,b)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Dressed polygons: (a) 33_F4_2-1-2_2-2-1_V2_2, (b) 33_F6_2-2-4_4-2-1_V4_4, (c) 35_F14_2-0-
6_6-1-2_6-2-1_V6_6, (d) 34_F8_2-3-3_6-2-1_V6_3, (e) 44_F18_2-0-4_8-2-1_8-2-2_V8_8, (f) 46_F18_2-4-
0_8-1-2_8-2-1_V8_4. (g) 44_F17_2-5-0_5-2-2_10-2-1_V10_9, (h) 55_F32_2-0-5_10-1-2_20-2-1_V10_10.

• Replacing every second edge of a 2P-gon by a 2D bubble diamond yields the following:
35_F{4P+2}_2-0-{2P}_{2P}-1-2_{2P}-2-1_V{2P}_{2P}, P = 2, 3, 4, 5 (see Figure 6c).

• P joined up 2D diamonds yield the following: 34_F{2P+2}_2-{P}-{P}_{2P}-2-1_V4_2,
P = 2, 3, 4, 5, (see Figure 6d)

• Inverted P-fans on both sides of a P-gon: 44_F{4P+2}_2-0-P_{2P}-2-1_{2P}-2-2_V{2P}_{2P},
P ≥ 3. (see Figure 6e).

• Two back-to-back P-stars on a polygon: 46_F{4P+2}_2-0-P_{2P}-1-2_{2P}-2-1_V{2P}_{P},
P ≥ 3. (see Figure 6f).

• Two back-to-back P-stars: 44_F{3P+2}_2-P-0_P-2-2_2P}-2-1_V{2P}_{P}, P ≥ 3.
(see Figure 6g).

• Two P-mosaics back to back: 55_F{6P+2}_2-0-P_{2P}-1-2_{4P}-2-1_V{2P}_{2P}, P ≥ 3.
When P = 3, this is an icosahedron. (see Figure 6h).
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4.3. Pyramid Derived Graphs

• P-pyramids with graphs of the following type: 3P_F{P+1}_1-P-0_0-P-2-1_VP_1, P =
3 − 6. (see Figure 7a).

• Two P-pyramids joined at the base: 4P_F{2P}_{2P}-1-2_V2_P, P = 3, 4, 5, 6. P = 4 is
the octahedron. (see Figure 7b).

• P squares joined at a vertex, with two of them joined together: 3P_F{2P}_2P-1-
3_V{2P}_2. (see Figure 7c).

• Two truncated P-pyramids joined at the base: 34_F{2P+2}_2-P-0_{2P}-2-2_V{2P}_P,
P ≥ 3, (see Figure 7d).

(a) (b) (c) (d)

Figure 7. Dressed polygons: (a) 35_F6_1-5-0_5-2-1_V5_1, (b) 45_F10_10-1-2_V5_2, (c) 35_F10_10-3-
1_V10_2, (d) 34_F12_2-5-0_10-2-2_V10_5.

4.4. Prism Derived Graphs

• The nodes of the prisms can be split in two symmetric subsets in two different ways:
top base and bottom base nodes, F{P+2}_1-0-P_1-P-0_P-2-2_VP_P (see Figure 8a), or,
for even P values, alternating nodes on top and bottom base F{2P}_{2P}-2-{P/2}-{P/2}_P-
2-2_V6_6_a * (see Figure 8b), as well as F{2P}_{2P}-2-{P/2}-{P/2}_P-2-2_V6_6_b (see
Figure 8c).

• P-prisms with a P-pyramid on each base: 3P_F{3P}_P-0-4_{2P}-1-2_V2_{2P} P ≥ 3 (see
Figure 8d).

• P-risms with 4-pyramids on the square faces: 44_F{4P+2}_2-0-P_{4P}-1-2_V{P}_{2P}
P ≥ 3, (see Figure 8e).

• P-prism with a truncated 4-pyramid on each side face: 35_F{5P+2}_2-0-P_P-4-0_{4P}_2-
2_V{2P}_{2P} *, P ≤ 3 (see Figure 8f).

• P-prisms with a truncated P-pyramid on each base: 34_F{3P+2}_2-P-0_P-0-4_{2P}-2-
2_V{2P}_{2P}, P ≤ 3 (see Figure 8g).

• P-prisms where the base is replaced by a linked P-gon: 33_F14_2-0-P_{2P}-3-2_V{2P}_{2P},
P ≥ 3 (see Figure 8h).

• A P-prism where every other side is split in two triangles: 34_F{3P+2}_2-P-P_P-2-
2_{2P}-1-2_V{2P}_{2P} *, P = 2p, p ≥ 1 (see Figure 9a–c).

• P-prisms where every side edge becomes a 2D diamond: 34_F{3P+2}_2-0-P_P-2-4_{2P}-
2-1_V{2P}_{2P}, P ≥ 3, (see Figure 9d)

• P-prisms where the links between the two bases become a 2D bubble diamond:
36_F{5P+2}_2-0-P_P-0-4_{2P}-1-2_{2P}-2-1_V{2P}_{2P}, P ≥ 3, (see Figure 9e)

• P-prisms where the edges joining the bases are split into a square, and the two new
nodes are merged with the adjacent one, hence tiling the sides of the prism with
squares: 34_F{3P+2}_2-0-P_{3P}-2-2_V{2P}_{2P}, P ≥ 3, (see Figure 9f).

• P-prims with P-star bases, where P ≥ 3: 34_F{3P+2}_2-0-P_P-4-2_{2P}-1-2_V{2P}_{2P}
(see Figure 9g).

• A 2P-prism where the squares are split asymmetrically into two triangles: 35_F{4P+2}_2-
P-P_{4P}-1-2_V{2P}_{2P}, P ≥ 2 (see Figure 9h).

• P-prisms where the squares are split into four triangles and one square: 36_F{5P+2}_2-
0-P_P-2-2_{4P}-1-2_V{2P}_{2P} *, P ≥ 3, (see Figure 9i).

• P-prisms where every other vertex between the two bases becomes a 2D diamond:
35_F{4P+2}_2-0-P_{2P}-1-3_{2P}_2-1_V{2P}_{2P} *, P ≥ 3, (see Figure 9j).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Prism-derived graphs: (a) 33_F8_1-0-6_1-6-0_6-2-2_V6_6, (b) 33_F8_2-3-3_6-2-2_V6_6_a *,
(c) 33_F8_2-3-3_6-2-2_V6_6_b, (d) 46_F18_6-4-0_12-2-1_V12_2, (e) 45_F26_2-0-6_24-1-2_V6_12, (f)
35_F32_2-0-6_6-4-0_24-2-2_V24_12, (g) 34_F20_2-6-0_6-0-4_12-2-2_V12_12, (h) 33_F14_2-0-6_12-3-
2_V12_12.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Prism-derived graphs: (a) 34_F8_4-1-2_4-2-2_V4_4_a (parallel cut), (b) 34_F8_4-1-
2_4-2-2_V4_4_b *, (c) 34_F11_2-3-3_3-2-2_6-1-2_V6_6 *, (d) 34_F20_2-0-6_6-2-4_12-2-1_V12_12,
(e) 36_F32_2-0-6_6-0-4_12-1-2_12-2-1_V12_12, (f) 34_F20_2-0-6_18-2-2_V12_12, (g) 34_F20_2-0-6_6-4-
2_12-1-2_V12_12 (h) 35_F18_2-4-4_16-1-2_V8_8, (i) 36_F32_2-0-6_6-2-2_24-1-2_V12_12 *, (j) 35_F26_2-
0-6_12-1-3_12-2-1_V12_12 *.

• P-prisms where the faces are split into two squares and two triangles: 35_F{4P+2}_2-0-
P_{2P}-1-2_{2P}_2-2_V{2P}_{2P}, P ≥ 3. This can be done in three different ways (see
Figure 10a–c).

• P-prism with a P-star on each base: 45_F{5P+2}_2-P-0_P-0-4_{2P}-1-2_{2P}-2-1_V{2P}_{2P},
P ≥ 3, (see Figure 10d).

• P-prisms where the squares are split into three triangles and a square: 45_F{5P+2}_2-0-
P_P-2-2_{2P}-1-2_{2P}-2-1_V{2P}_{2P} *, P ≥ 3, (see Figure 10e).

• P-prisms where the squares are split into six triangles: 46_F{6P+2}_2-0-P_{2P}-2-1_{4P}-
1-2_V{2P}_{2P} *, P ≥ 3, (see Figure 10f).



Axioms 2024, 13, 437 12 of 22

(a) (b) (c)

(d) (e) (f)

Figure 10. Prism-derived graphs: (a) 35_F26_2-0-6_12-1-2_12-2-2_V12_12_a, (b) 35_F26_2-0-6_12-
1-2_12-2-2_V12_12_b, (c) 35_F26_2-0-6_12-1-2_12-2-2_V12_12_c, (d) 45_F27_2-5-0_5-0-4_10-1-2_10-
2-1_V10_10, (e) F27_2-0-5_5-2-2_10-1-2_10-2-1_V10_10 *, (f) 46_F32_2-0-5_10-2-1_20-1-2_V10_10 *.

4.5. Antiprism-Derived Graphs

• P-antiprisms where the two types of nodes are on each of the bases: 44_F{2P+2}_1-0-
P_1-P-0_P-1-2_P-2-1_VP_P, P ≥ 3 (see Figure 11a).

• P-antiprisms where the two types of nodes alternate between the bases: 44_F{2P+2}_2-
{P/2}-{P/2}_P-1-2_P-2-1_VP_P *, P ≥ 4 even, (see Figure 11b).

• P-antiprisms with a P-pyramid on each base: P5_F{4P}_{2P}-0-3_{2P}-1-2_V{2P}_{2P},
P = 3, 4, 5, 6, (see Figure 11c).

• P-antiprisms with two truncated P-gonal base pyramids: 35_F{4P+2}_2-P-0_{2P}-0-
3_{2P}_2-2_V{2P}_{2P}, P ≥ 3, (see Figure 11d).

• P-antiprism with a P-star base: 44_F{4P+2}_2-P-0_{2P}-1-3_{2P}-2-1_V{2P}_{2P}, P ≥ 3,
(see Figure 11e).

• P-antiprisms with P-fans added to the two bases: 46_F{6P+2}_2-P-0_{2P}-0-3_{2P}-1-
2_{2P}-2-1_V{2P}_{2P} *, P ≥ 3, (see Figure 11f).

(a) (b) (c)

(d) (e) (f)

Figure 11. Antiprism-derived graphs: (a) 44_F12_1-0-5_1-5-0_5-1-2_5-2-1_V5_5, (b) 44_F14_2-3-3_6-1-
2_6-2-1_V6_6 *, (c) 45_F16_8-0-3_8-1-2_V2_8, (d) 35_F22_2-5-0_10-0-3_10-2-2_V10_10, (e) 44_F22_2-5-
0_10-1-3_10-2-1_V10_10, (f) 46_F32_2-5-0_10-0-3_10-1-2_10-2-1_V10_10.
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4.6. Platonic Solids-Derived Graphs

The nodes of the Platonic solids can be split into two symmetric families, but these
graphs will also be characterised as part of other categories further done.

• Tetrahedron: 33_F4_2-1-2_2-2-1_V2_2.
• Cube: 33_F6_6-3-1_V6_2.
• Octahedron: 44_F8_8-2-1_V4_2.
• Dodecahedron: 33_F12_2-5-0_10-2-3_V10_10.
• Icosahedron: selecting two nodes on the poles of the solid 55_F20_10-2-1_10-3-0_V10_2.
• Icosahedron: selecting six nodes on the equator: 55_F20_2-3-0_6-2-1_12-1-2_V6_6.
• Platonic solids where the vertices become polygons, and the edges become two squares

so that the faces of the solids end up with twice as many edges:

– Tetrahedron: 34_F20_4-0-3_4-3-3_12-2-2_V12_12.
– Cube: 34_F38_6-4-4_8-0-3_24-2-2_V24_24.
– Octahedron: 34_F38_6-0-4_8-3-3_24-2-2_V24_24 (see Figure 12a).
– Dodecahedron: 34_F92_12-5-5_20-0-3_60-2-2_V60_60.
– Icosahedron: 34_F92_12-0-5_20-3-3_60-2-2_V60_60.

• Platonic solids where a pyramid is placed on four faces:

– Octhedron: 36_F16_4-0-3_12-1-2_V4_6 (see Figure 12b).
– Icosahedron: 36_F28_12-1-2_16-0-3_V4_12.

• Platonic solids where some faces become truncated pyramids:

– Tetrahedron: 36_F16_4-3-0_12-2-2_V12_4.
– Octahedron: 36_F20_4-0-3_4-3-0_12-2-2_V12_6 (see Figure 12c).
– Icosahedron: 36_F32_4-3-0_12-2-2_16-0-3_V12_12.

• Platonic solids where some P-gonal faces become P-stars. Doing this, the tetrahedron
becomes an octahedron, the cube becomes an the octahedron, and both become a
cuboctahedron, while the dodecahedron and icosahedron both become an icosidodec-
ahedron.

• Platonic solid where a face becomes a linked P-gon:

– Tetrahedron: 33_F10_4-3-0_6-4-2_V12_4.
– Cube: 33_F18_6-4-0_12-4-2_V24_8 (see Figure 12d).
– Octahedron: 34_F20_8-3-0_12-4-2_V24_6.
– Dodecahedron: 33_F42_12-5-0_30-4-2_V60_20.
– Icosahedron: 35_F50_20-3-0_30-4-2_V60_12.

• Platonic solids where every edge becomes a 2D diamond. The octahedron and icosa-
hedron lead to graphs with valency exceeding 6:

– Tetrahedron: 36_F16_4-3-3_12-2-1_V12_4,
– Cube: 36_F30_6-4-4_24-2-1_V24_8 (see Figure 12e),
– Dodecahedron: 36_F72_12-5-5_60-2-1_V60_20.

• Platonic solids where some edges become a 2D bubble diamond:

– Tetrahedron: 36_F12_4-0-3_4-1-2_4-2-1_V4_4.
– Dodecahedron: 36_F52_12-0-5_20-1-2_20-2-1_V20_20 (see Figure 12f).

• Octahedrom where every other face is a P-star: 44_F20_4-3-0_4-3-3_12-2-1_V12_6 (see
Figure 12g).

• Platonic solids with inverted P-fans replacing the faces. The octahedron and the
icosahedron have, respectively, valency 4 and 5 nodes, and this leads to graphs with a
valency exceeding six:

– Tetrahedron: 46_F22_4-3-0_6-2-2_12-2-1_V12_4.
– Cube: 46_F42_6-4-0_12-2-2_24-2-1_V24_8.
– Dodecahedron: 46_F102_12-5-0_30-2-2_60-2-1_V60_20.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Platonic solids-derived graphs: (a) 34_F38_6-0-4_8-3-3_24-2-2_V24_24, (b) 36_F16_4-0-
3_12-1-2_V4_6, (c) 36_F20_4-0-3_4-3-0_12-2-2_V12_6, (d) 33_F18_6-4-0_12-4-2_V24_8, (e) 36_F30_6-
4-4_24-2-1_V24_8, (f) 36_F52_12-0-5_20-1-2_20-2-1_V20_20. (g) 44_F20_4-3-0_4-3-3_12-2-1_V12_6,
(h) 46_F42_6-4-0_12-2-2_24-2-1_V24_8.

4.7. Archimedean Solids-Derived Graphs

• Truncated Platonic solids (the nodes of the other Archimedean solids cannot be split
into two equivalent families):

– Truncated octahedron: 33_F14_6-2-2_8-3-3_V12_12.
– Truncated cube: 33_F14_4-0-3_4-3-0_6-4-4_V12_12.
– Truncated cuboctahedron: 33_F26_6-4-4_8-3-3_12-2-2_V24_24 (see Figure 13a).
– Truncated icosidodecahedron: 33_F62_12-5-5_20-3-3_30-2-2_V60_60.

• Solids where a pyramid is placed on some of the faces of the truncated Platonic solids.
Only the face that does not touch similar faces can be tiled like this, as otherwise, the
equivalence is broken:

– Truncated tetrahedron (triangles): 34_F16_4-0-6_12-1-2_V4_12 (see Figure 13b).
– Truncated tetrahedron (hexagons): 56_F28_4-3-0_24-2-1_V12_4.
– Truncated cube (triangles): 34_F30_6-0-8_24-1-2_V8_24.
– Truncated octahedron (squares): 44_F32_8-6-0_24-2-1_V24_6.
– Truncated octahedron (hexagons): 56_F54_6-4-0_48-2-1_V24_8.
– Truncated dodecahedron (triangles): 34_F72_12-0-10_60-1-2_V20_60.
– Truncated icosahedron (pentagons): 45_F80_20-6-0_60-2-1_V60_12.
– Truncated icosahedron (hexagons): 56_F132_12-5-0_120-2-1_V60_20.

• Solids where a pyramid is placed on some faces of the Archimedean solids:

– Cuboctahedron (every other triangle): 35_F22_4-0-3_6-0-4_12-1-2_V4_12.
– Cuboctahedron (triangles): 36_F30_6-0-4_24-1-2_V8_12.
– Cuboctahedron (squares): 46_F32_8-0-3_24-1-2_V6_12.
– Rhombicuboctahedron (triangles): 35_F42_18-0-4_24-1-2_V8_24 (see Figure 13c).
– Rhombicuboctahedron (6 squares): 45_F44_8-0-3_12-0-4_24-1-2_V6_24.
– Rhombicuboctahedron (8 squares): 46_F62_6-0-4_8-0-3_48-1-2_V12_24.
– Icosidodecahedron (triangles): 36_F72_12-0-5_60-1-2_V20_30.
– Icosidodecahedron (pentagons): 56_F80_20-0-3_60-1-2_V12_30.
– Snub dodecahedron (pentagons): 56_F140_60-1-2_80-0-3_V12_60 *.
– Snub dodecahedron (20 triangles): 36_F132_12-0-5_60-0-3_60-1-2_V20_60 *.
– Rhombicosididecahedron (triangles): 35_F102_12-0-5_30-0-4_60-1-2_V20_60.
– Rhombicosididecahedron (squares): 46_F152_12-0-5_20-0-3_120-1-2_V30_60.
– Rhombicosididecahedron (pentagons): 55_F110_20-3-0_30-4-0_60-2-1_V60_12.
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• Truncated pyramid on truncated Platonic solids:

– Truncated tetrahedron (triangles): 34_F20_4-0-6_4-3-0_12-2-2_V12_12 (see Figure
13d).

– Truncated tetrahedron (hexagons): 35_F32_4-0-3_4-6-0_24-2-2_V24_12.
– Truncated cube (triangles): 34_F38_6-0-8_8-3-0_24-2-2_V24_24.
– Truncated cube (octagons): 35_F62_6-8-0_8-0-3_48-2-2_V48_24.
– Truncated dodecahedron (decagons): 35_F152_12-10-0_20-0-3_120-2-2_V120_60.
– Truncated icosahedron (pentagon): 34_F92_12-5-0_20-0-6_60-2-2_V60_60.
– Truncated icosahedron (hexagon): 35_F152_12-0-5_20-6-0_120-2-2_V120_60.
– Truncated octahedron (squares): 34_F38_6-4-0_8-0-6_24-2-2_V24_24.
– Truncated octahedron (hexagons): 35_F62_6-0-4_8-6-0_48-2-2_V48_24.
– Truncated dodecahedron (triangles): 34_F82_12-0-10_20-3-0_60-2-2_V60_60.

• Truncated pyramid on other Archimedean solids:

– Snub cube (squares): 36_F62_6-4-0_24-2-2_32-0-3_V24_24 *.
– Snub cube (8 triangles): 36_F62_6-0-4_8-3-0_24-0-3_24-2-2_V24_24 *.
– Rhombicuboctahedron (triangles): 35_F50_8-3-0_18-0-4_24-2-2_V24_24.
– Snub dodecahedron (pentagons): 36_F152_12-5-0_60-2-2_80-0-3_V60_60 *.
– Snub dodecahedron (triangles): 36_F152_12-0-5_20-3-0_60-0-3_60-2-2_V60_60 *.
– Cuboctahedron (squares): 36_F38_6-4-0_8-0-3_24-2-2_V24_12.
– Cuboctahedron(triangles): 36_F38_6-0-4_8-3-0_24-2-2_V24_12.
– Cuboctahedron (every other triangles): 35_F26_4-0-3_4-3-0_6-0-4_12-2-2_V12_12.
– Rhombicuboctahedron (6 squares): 35_F50_6-4-0_8-0-3_12-0-4_24-2-2_V24_24.
– Rhombicuboctahedron (8 squares): 36_F74_6-0-4_8-0-3_12-4-0_48-2-2_V48_24.
– Icosidodecahedron (pentagons): 36_F92_12-5-0_20-0-3_60-2-2_V60_30.
– Icosidodecahedron (triangles): 36_F92_12-0-5_20-3-0_60-2-2_V60_30.
– Rhombicosidodecahedron (triangles): 35_F122_12-0-5_20-3-0_30-0-4_60-2-2_V60_60.
– Rhombicosidodecahedron (pentagons): 35_F122_12-5-0_20-0-3_30-0-4_60-2-2_V60_60.

• Archimedean solids where some P-gonal faces become P-stars. This is only possible
when there is a P-fold rotation symmetry around the center of the P-gonal face:

– Truncated tetrahedron (triangles): 34_F20_4-0-3_4-6-3_12-1-2_V12_12.
– Truncated octahedron (squares): 34_F38_6-0-4_8-6-3_24-1-2_V24_24.
– Truncated icosahedron (pentagons): 34_F92_12-0-5_20-6-3_60-1-2_V60_60.
– Cuboctahedron (triangles): 44_F38_6-4-4_8-3-0_24-2-1_V24_12.
– Cuboctahedron (every other triangle): 44_F26_4-0-3_4-3-0_6-2-4_12-2-1_V12_12.
– Cuboctahedron (squares): 44_F38_6-4-0_8-3-3_24-2-1_V24_12.
– Rhombicuboctahedron (triangles): 44_F50_6-0-4_8-3-0_12-2-4_24-2-1_V24_24.
– Rhombicuboctahedron (squares): 44_F50_6-0-4_8-3-0_12-4-2_24-1-2_V24_24.
– Icosidodecahedron(triangles): 44_F92_12-5-5_20-3-0_60-2-1_V60_30.
– Icosidodecahedron (pentagons): 44_F92_12-0-5_20-3-3_60-2-1_V60_30.
– Snub cube (squares): 45_F62_6-4-0_8-0-3_24-1-3_24-2-1_V24_24 *.
– Snub cube (eight triangles): 45_F62_6-0-4_8-3-0_24-1-3_24-2-1_V24_24 *.
– Snub dodecahedron (pentagons): 45_F152_12-5-0_20-0-3_60-1-3_60-2-1_V60_60 *.
– Snub dodecahedron (20 triangles): 45_F152_12-0-5_20-3-0_60-1-3_60-2-1_V60_60

*.
– Rhombicosidodecahedron (triangles): 44_F122_12-0-5_20-3-0_30-2-4_60-2-1_V60_60.
– Rhombicosidodecahedron (pentagons): 44_F122_12-0-5_20-3-0_30-4-2_60-1-2_V60_60.

• Archimedean solids with some P-faces filled with a P-stars.
A P-star-filled cuboactahedron and icosidodecahedron have valency 8 nodes. The
following solids have nodes with valencies that are too large: truncated cubes (oc-
tagons), truncated octagons (hexagons), snub cubes, snub dodecahedrons, truncated
dodecahedrons (decagons), and truncated icosahedron (hexagons).

– Truncated tetrahedron (triangles): 45_F32_4-0-6_4-3-0_12-1-2_12-2-1_V12_12 (see
Figure 13f).
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– Truncated tetrahedron (hexagons): 45_F32_4-0-3_4-3-0_12-1-3_12-2-1_V12_12 *.
– Truncated cube (triangles): 45_F62_6-0-8_8-3-0_24-1-2_24-2-1_V24_24.
– Truncated octahedron (squares): 45_F62_6-4-0_8-0-6_24-1-2_24-2-1_V24_24.
– Truncated dodecahedron (triangles): 45_F152_12-0-10_20-3-0_60-1-2_60-2-1_V60_60.
– Truncated icosahedron (pentagons): 45_F152_12-5-0_20-0-6_60-1-2_60-2-1_V60_60.
– Cuboctahedron (four triangles): 34_F20_4-0-3_4-6-3_12-1-2_V12_12.
– Rhomicuboctahedron (six squares): 46_F74_6-4-0_8-0-3_12-0-4_24-1-2_24-2-1_V24_24.
– Rhomicuboctahedron (triangles): 46_F74_8-3-0_18-0-4_24-1-2_24-2-1_V24_24.
– Rhomicosidodecahedron (pentagon): 46_F182_12-5-0_20-0-3_30-0-4_60-1-2_60-2-1.
– Rhomicosidodecahedron (triangles): 46_F182_12-0-5_20-3-0_30-0-4_60-1-2_60-2-1.

• Linked P-gon-filled truncated Platonic solids:

– Truncated tetrahedron: 34_F20_4-0-3_4-3-0_12-2-3_V12_12 *.
– Truncated cube: 34_F38_6-4-0_8-0-3_24-2-3_V24_24 * (see Figure 13g).
– Truncated octahedron: 34_F38_6-0-4_8-3-0_24-2-3_V24_24 *.
– Truncated dodecahedron: 34_F92_12-5-0_20-0-3_60-2-3_V60_60 *.
– Truncated icosahedron: 34_F92_12-0-5_20-3-0_60-2-3_V60_60 *.

• Archimedean solids where a face becomes a linked P-gon. When applying this to the
cuboctahedron, one obtains the truncated cube and the truncated octahedron. When
applying this to the icosidodecahedron, one obtains the truncated dodecahedron and
the truncated icosahedron. This cannot be applied to the truncated Platonic solids, as
this gives the same solid (truncation face) of an nonequivalent graph (adjacent faces):

– The snub cube (eight triangles) gives 34_F38_6-0-4_8-3-0_24-2-3_V24_24 (a linked
P-gon-filled truncated octahedron).

– The snub cube (squares) gives 34_F38_6-4-0_8-0-3_24-2-3_V24_24 (a linked P-gon-
filled truncated cube).

– The snub dodecahedron (20 triangles) gives 34_F92_12-0-5_20-3-0_60-2-3_V60_60
(a linked P-gon-filled truncated icosahedron).

– The snub dodecahedron (pentagons) gives 34_F92_12-5-0_20-0-3_60-2-3_V60_60
(a linked P-gon-filled truncated dodecahedron).

– Rhombicuboctahedron: 35_F26_6-0-4_8-3-0_12-4-4_V24_24 (see Figure 13h),.
– Rhombicosidodecahedron: 33_F62_12-0-5_20-3-0_30-4-4_V60_60.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Archimedean solids-derived graphs: (a) 33_F26_6-4-4_8-3-3_12-2-2_V24_24, (b) 34_F16_4-0-
6_12-1-2_V4_12, (c) 35_F42_18-0-4_24-1-2_V8_24, (d) 34_F20_4-0-6_4-3-0_12-2-2_V12_12, (e) 34_F38_6-
0-4_8-6-3_24-1-2_V24_24, (f) 45_F32_4-0-6_4-3-0_12-1-2_12-2-1_V12_12 (g) 34_F38_6-4-0_8-0-3_24-2-
3_V24_24 *, (h) 35_F26_6-0-4_8-3-0_12-4-4_V24_24.
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• Truncated Platonic solids where some the 2P faces are filled with P-fans (P > 2). This
can be done in two different ways:

– Truncated tetrahedron: 45_F32_4-0-3_4-3-0_12-1-2_12-2-2_V12_12_a.
– Truncated tetrahedron: 45_F32_4-0-3_4-3-0_12-1-2_12-2-2_V12_12_b.
– Truncated cube 1: 45_F62_6-4-0_8-0-3_24-1-2_24-2-2_V24_24_a (see Figure 14a).
– Truncated cube 2: 45_F62_6-4-0_8-0-3_24-1-2_24-2-2_V24_24_b (see Figure 14b).
– Truncated cctahedron 1: 45_F62_6-0-4_8-3-0_24-1-2_24-2-2_V24_24_a.
– Truncated octahedron 2: 45_F62_6-0-4_8-3-0_24-1-2_24-2-2_V24_24_b.
– Truncated dodecahedron 1: 45_F152_12-5-0_20-0-3_60-1-2_60-2-2_V60_60_a.
– Truncated dodecahedron 2: 45_F152_12-5-0_20-0-3_60-1-2_60-2-2_V60_60_b.
– Truncated icosahedron 1: 45_F152_12-0-5_20-3-0_60-1-2_60-2-2_V60_60_a.
– Truncated icosahedron 2: 45_F152_12-0-5_20-3-0_60-1-2_60-2-2_V60_60_b.

• Archimedean solids where squares are split into two squares and two triangles. This
can be done in two different ways:

– Rhombicubotcahedron: 36_F62_6-0-4_8-0-3_24-1-2_24-2-2_V24_24_a (see Figure 14c).
– Rhombicubotcahedron: 36_F62_6-0-4_8-0-3_24-1-2_24-2-2_V24_24_b (see Figure 14d).
– Rhombicosidodecahedron: 36_F152_12-0-5_20-0-3_60-1-2_60-2-2_V60_60_a.
– Rhombicosidodecahedron: 36_F152_12-0-5_20-0-3_60-1-2_60-2-2_V60_60_b.

• Truncated Platonic solids with 2P-gon faces split into P squares:

– Truncated tetrahedron: 34_F16_4-0-3_12-1-3_V4_12 *.
– Truncated cube: 44_F32_8-3-0_24-3-1_V24_6 *.
– Truncated octahedron: 34_F30_6-0-4_24-1-3_V8_24 * (see Figure 14e).
– Truncated icosahedron: 34_F72_12-0-5_60-1-3_V20_60 *.
– Truncated dodecahedron: 45_F80_20-3-0_60-3-1_V60_12 *.

• As truncated Platonic solids have a 2-fold symmetry around the centre of the edges
shared by two identical faces, one can replace the edge with a 2D diamond. For the
truncated cube and truncated dodecahedron, this leads to faces with more than
10 edges:

– Truncated tetrahedron: 34_F20_4-0-3_4-3-6_12-2-1_V12_12.
– Truncated octahedron: 34_F38_6-0-4_8-3-6_24-2-1_V24_24 (see Figure 14f).
– Truncated icosahedron: 34_F92_12-0-5_20-3-6_60-2-1_V48_60.

• Archimedean solids with squares linking triangles are split into two triangles and a
square. This requires a 2-fold rotation symmetry of the solid around the split square:

– Split cuboctahedron: 35_F26_4-0-3_4-3-3_6-2-2_12-1-2_V12_12 * (see Figure 14g).
– Rhombicuboctahedron: 35_F50_6-4-4_8-0-3_12-2-2_24-1-2_V24_24 *.
– Rhombicuboctahedron: 35_F50_6-0-4_8-3-3_12-2-2_24-1-2_V24_24 *.
– Rhombicosidodecahedron: 35_F122_12-0-5_20-3-3_30-2-2_60-1-2_V60_60 *.
– Rhombicosidodecahedron: 35_F122_12-5-5_20-0-3_30-2-2_60-1-2_V60_60 *.

• Archimedean solids where some edges become a 2D bubble diamonds:

– Truncated tetrahedron: 36_F32_4-0-3_4-0-6_12-1-2_12-2-1_V12_12 (see Figure 14h).
– Truncated cube: 36_F62_6-0-8_8-0-3_24-1-2_24-2-1_V24_24.
– Truncated octahedron: 36_F62_6-0-4_8-0-6_24-1-2_24-2-1_V24_24.
– Truncated dodecahedron: 36_F152_12-0-10_20-0-3_60-1-2_60-2-1_V60_60.
– Truncated icosahedron: 36_F152_12-0-5_20-0-6_60-1-2_60-2-1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Archimedean solids-derived graphs: (a) 45_F62_6-4-0_8-0-3_24-1-2_24-2-2_V24_24_a,
(b) 45_F62_6-4-0_8-0-3_24-1-2_24-2-2_V24_24_b, (c) 36_F62_6-0-4_8-0-3_24-1-2_24-2-2_V24_24_a,
(d) 36_F62_6-0-4_8-0-3_24-1-2_24-2-2_V24_24_b, (e) 34_F30_6-0-4_24-1-3_V8_24 *, (f) 34_F38_6-0-4_8-
3-6_24-2-1_V24_24, (g) 35_F26_4-0-3_4-3-3_6-2-2_12-1-2_V12_12 *, (h) 36_F32_4-0-3_4-0-6_12-1-2_12-
2-1_V12_12.

• Archimedean solids where some squares are split intro four triangles:

– Cuboctahedron: 36_F32_4-0-3_4-3-3_24-1-2_V12_12 * (see Figure 15a).
– Rhombicuboctahedron: 36_F32_4-0-3_4-3-3_24-1-2_V12_12 *.
– Rhombicuboctahedron: 36_F62_6-4-4_8-0-3_48-1-2_V24_24 *.
– Rhombicosidodecahedron: 36_F152_12-0-5_20-3-3_120-1-2_V60_60 *.
– Rhombicosidodecahedron: 36_F152_12-5-5_20-0-3_120-1-2_V60_60 *.

• Truncated Platonic solids where the faces are replaced by P-fans. This can only be done
with valency 3 graphs without exceeding the maximum valency, which we consider
as follows:

– Truncated tetrahedron: 44_F26_4-0-3_4-3-0_18-2-2_V12_12.
– Truncated cube and truncated octahedron:

44_F26_4-0-3_4-3-0_6-2-4_12-2-1_V12_12 (see Figure 14b).
– Truncated dodecahedron and truncated icosahedron:

44_F122_12-0-5_20-3-0_90-2-2_V60_60.

• Archimedean solids where the squares are split into four triangles to form braided links:

– Cuboctahedron: 45_F32_4-0-3_4-3-3_12-1-2_12-2-1_V12_12 *.
– Rhombicuboctahedron that is parallel braided: 45_F62_6-0-4_8-3-3_24-1-2_24-2-

1_V24_24 *.
– Rhombicuboctahedron that is perpendicular braided: 45_F62_6-4-4_8-0-3_24-1-

2_24-2-1_V24_24 * (see Figure 14c).
– Rhombicosidodecahedron that is parallel braided: 45_F152_12-5-0_20-0-3_60-1-

3_60-2-1_V60_6 *.
– Rhombicosidodecahedron that is perpendicular braided: 45_F152_12-5-5_20-0-

3_60-1-2_60-2-1_V60_60 *.

• Truncated Platonic solids with 2P-gonal faces replaced by split P-fans. For the trun-
cated cube and truncated icosahedron, this leads to nodes with valencies exceeding six:

– Truncated tetrahedron: 55_F38_4-0-3_4-3-0_6-2-2_12-1-2_12-2-1_V12_12 *.
– Truncated octahedron: 55_F74_6-0-4_8-3-0_12-2-2_24-1-2_24-2-1_V24_24 * (see

Figure 14d).
– Truncated dodecahedron: 55_F182_12-0-5_20-3-0_30-2-2_60-1-2_60-2-1_V60_60 *.
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• Truncated Platonic solids where the faces are P-mosaics:

– Truncated tetrahedron: 56_F44_4-0-3_4-3-0_12-2-1_24-1-2_V12_12 *.
– Truncated cube: 56_F86_6-4-0_8-0-3_24-2-1_48-1-2_V24_24 *.
– Truncated octahedron: 56_F86_6-0-4_8-3-0_24-2-1_48-1-2_V24_24 *.
– Truncated icosahedron: 56_F212_12-0-5_20-3-0_60-2-1_120-1-2_V60_60 *.
– Truncated dodecahedron: 56_F212_12-5-0_20-0-3_60-2-1_120-1-2_V60_60 *.

(a) (b) (c)

(d) (e)

Figure 15. Archimedean solids-derived graphs: (a) 36_F32_4-0-3_4-3-3_24-1-2_V12_12 *, (b) 44_F26_4-
0-3_4-3-0_18-2-2_V12_12, (c) 45_F62_6-4-4_8-0-3_24-1-2_24-2-1_V24_24 *, (d) 55_F74_6-0-4_8-3-0_12-
2-2_24-1-2_24-2-1_V24_24 *, (e) 56_F86_6-4-0_8-0-3_24-2-1_48-1-2_V24_24 *.

4.8. Other Solids-Derived Graphs

• For solids with valency 4 nodes and a 2-fold rotational symmetry around each node,
one can replace the node with a 2D diamond:

– Octahedron: 34_F20_8-3-3_12-1-2_V12_12 * (see Figure 16a).
– Cuboctahedron: 34_F38_6-4-4_8-3-3_24-1-2_V24_24 * (see Figure 16b).
– Icosidodecahedron: 34_F92_12-5-5_20-3-3_60-1-2_V60_60 * (see Figure 16c).

(a) (b) (c)

Figure 16. Other solids-derived graphs: (a) 34_F20_8-3-3_12-1-2_V12_12 *, (b) 34_F38_6-4-4_8-3-3_24-
1-2_V24_24 *, (c) 34_F92_12-5-5_20-3-3_60-1-2_V60_60 *.

4.9. Dual of Archimedean Solids Graphs

The planar graphs of the dual of Archimedean solids with two inequivalent type of
faces have nodes that can be split into two families. These are the following:

• Triakis tetrahedron: 36_F12_12-1-2_V4_4 (see Figure 17a).
• Triakis hexahedron: 46_F24_24-1-2_V6_8 (see Figure 17b).
• Pentakis dodecahedron: 56_F60_60-1-2_V12_20 (see Figure 17c).
• Rhomic dodecahedron: 34_F12_12-2-2_V8_6 (see Figure 17d).
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• Rhomic tricontahedron: 35_F30_30-2-2_V20_12 (see Figure 17e).

The planar graphs of the dual of the truncated cube and the truncated dodecahedron
have valencies exceeding six and are hence not presented here.

(a) (b) (c)

(d) (e)

Figure 17. Archimedean solids-derived graphs: (a) Triakis tetrahedron: 36_F12_12-1-2_V4_4. (b) Triakis
hexahedron: 46_F24_24-1-2_V6_8. (c) Pentakis dodecahedron: 56_F60_60-1-2_V12_20. (d) Rhomic
dodecahedron: 34_F12_12-2-2_V8_6. (e) Rhomic tricontahedron: 35_F30_30-2-2_V20_12.

5. Conclusions

In this paper, we have defined biequivalent graphs as graphs made out of two families
of nodes equivalent in modulo to an automorphism of the graph. We have found 430 graphs
made out of up to 300 faces ranging from triangles to decagons and with valencies ranging
between three and six.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/axioms13070437/s1. graphs_full_list.pdf: a graphic representation
of all the graphs that we have identified.
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Appendix A

A maximal planar graph is a graph for which adding one edge would render the
graph nonplanar. Every maximal planar graph is made out of triangles. This means that
using F, E, and V for, respectively, the number of faces, edges, and nodes, we have

E = 3V − 6. (A1)

As the sum of the valencies of each node of the graph is 2E, the average valency of the
graph is

2E
V

= 6 − 12
V

. (A2)

which is then strictly smaller than six. This means that maximal planar graphs must have at
least one node of a valency less than six, and as nonmaximal graphs, they can be obtained
by removing edges from some maximal graphs; this implies that it is impossible to have
planar graphs where all the nodes have a valency of six.
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16. Naskalska, A.; Borzęcka-Solarz, K.; Różycki, J.; Stupka, I.; Bochenek, M.; Pyza, E.; Heddle, J.G. Artificial Protein Cage Delivers
Active Protein Cargos to the Cell Interior. Biomacromolecules 2021, 22, 4146–4154. [CrossRef] [PubMed]

17. Edwardson, T.G.W.; Tetter, S.; Hilvert, D. Two-tier supramolecular encapsulation of small molecules in a protein cage. Nat.
Commun. 2020, 11, 5410. [CrossRef] [PubMed]

18. Stupka, I.; Azuma, Y.; Biela, A.P.; Imamura, M.; Scheuring, S.; Pyza, E.; Woźnicka, O.; Maskell, D.P.; Heddle, J.G. Chemically
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