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Abstract. Poro-mechanics is a branch of mechanics considering the hydro-mechanical behaviour of
a porous solid medium whose pores are saturated by a fluid. The presence of both these constituents
significantly influences the overall macro-response of the material.

Regardless of the application, Terzaghi’s effective stress decomposition is a well-established hypothesis
regarding how the total stress tensor is decomposed into a part directly related to strain (effective stress)
and a part borne by the fluid phase (interstitial pressure). The assumption of an incompressible solid
medium physically justifies Terzaghi’s effective decomposition. However, under the further assumption
of finite strain mechanics, a more restrictive constraint on the volume change arises, which the vast
majority of formulations neglect.

This work details how disregarding this constraint on the volume change can lead to the violation of
solid mass balance, which can be counted among the fundamental principles of continuum mechanics.
Furthermore, to address this issue practically, an ad hoc stress-strain relationship is designed to respect
Terzaghi stress decomposition and solid mass balance in the context of finite-strain hyper-elasticity.

Key words: Poro-mechanics; Finite strain-mechanics; Mass conservation; Hyper-elasticity

1 Introduction

A plethora of materials with a wide range of applications see their mechanical behaviour as severely
influenced by the presence of an interstitial fluid. The subject that aims to study this type of material is
poromechanics, which Biot first described in [1], and it has been later expanded to finite strain.

If focusing on the hydro-mechanical behaviour of porous media, three mechanisms govern the volume
change: the compressibility of the two constituents (i.e., the solid and the fluid phases) and the allowed
drainage. In particular, this last phenomenon deals with the conditions applied on the boundary of the
sample, which, in turn, are a function of the considered problem. On the other hand, modelling the con-
stituents as compressible (or not) depends on the specific material. In geomechanics, it is often assumed
that both these constituents, i.e., the soil grains and the water, are incompressible since the drainage
conditions drive the main volume change. In particular, this work investigates how the assumption of
incompressible solid phase and the definition of the Eulerian porosity n constraint the values of the Jac-
obian J1. When violated, the solid mass is not conserved, and the considered equations lose physical
meaning. The following developments heavily draw on Pretti et al. [2].

1A rigorous definition of the Eulerian porosity n and the Jacobian J are given below in Section 2.
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2 Main assumptions and framework

When considering a material composed of two phases, there exist multiple assumptions regarding each
constituent and the way they interact. This work adopts the following assumptions:

A.1 thermal effects are not considered;

A.2 one fluid fully saturates the solid porous skel-
eton. These are juxtaposed continua;

A.3 the phases do not exchange mass;

A.4 the solid phase is incompressible;

A.5 the fluid is non-viscous;

A.6 the material undergoes finite strain deforma-
tions and rotations;

A.7 the considered continuum is isotropic;

Owing to hypothesis A.6, the considered material’s configuration varies with time. Hence, xxx denotes the
position shared by the two constituents in the current configuration (assumption A.2). XXX indicates the
original position of the solid phase, while the original position of the fluid is unnecessary for this work.
A mixed particle2 occupies an initial volume dΩ = dΩsk ∪ dΩ f and a current one dω = dωsk ∪ dω f .
Since the solid phase is described in a Lagrangian way, the same particle is considered for the volumes
dΩsk, dωsk, while fluid phase volumes dΩ f and dω f are not occupied by the same fluid. The motion
of the mixed particle is therefore tracked by following its solid constituent, i.e., xxx = ϕϕϕ

(
XXX sk, t

)
, with ϕϕϕ

being the mapping between the original and current configurations. This mapping allows to define the
deformation gradient FFF := ∂ϕϕϕ(XXX sk,t)

∂XXX sk , whose determinant, named Jacobian, describes the volume change of
the mixed particle, i.e., dΩ = J dω. For mathematical (invertibility of the mapping) and physical reasons
(volumes cannot be negative), the Jacobian must satisfy the condition J > 0. To describe which portion
of the current volume is occupied by the fluid phase, the Eulerian porosity is defined as n := dω

dω f , with n0
being its initial value. The definition of the Eulerian porosity entails that its values are always bounded
between zero and one, i.e.,

0 < n < 1. (1)

As demonstrated by Borja and Alarcón [3] for assumption A.6, the simultaneous adoption of the above
assumptions A.1-A.5 leads to the Terzaghi effective decompositions, i.e., the total stress tensor can be
additively decomposed into an effective part (related to a strain measure) and a fluid interstitial pressure.

3 Constraint on the Jacobian

Owing to hypothesis A.3, the equations of mass conservation can be written separately for the two
constituents. If the solid mass conservation is considered, this is expressed by

d
dt

∣∣∣
X sk

(∫

ω
ρsk (1−n)dv

)
= 0, (2)

where d
dt

∣∣
X sk (•) = (•̇) indicates the material derivative tracking the solid phase, and ρsk the current solid

density. After a few manipulations and owing to assumption A.4, the above equation can be rewritten as

n = 1− 1
J
(1−n0) . (3)

2A mixed particle is a particle in which, according to hypothesis A.2, both consistents coexist.
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If the inequalities presented in (1) are substituted in the above equation, it follows that




J > (1−n0); (4a)
1
J
(1−n0)> 0. (4b)

While (4b) is trivially satisfy by J > 0 and 0 < n0 < 1, it can be seen that (4a) places a more restrictive
constraint on the Jacobian. Inequality (4a) suggests that the progressive expulsion of the fluid makes the
material gradually evolve only into its solid constituent, incompressible as assumed by A.4.

4 Hyper-elastic constitutive relationship

There are different ways to include the constraint provided by Eq. (4a) into the equations. Well-established
practices to (weakly) include a constraint are the Lagrange multiplier or the penalty method (see to Pretti
et al. [2] for a list of advantages and disavantages of these).

Regardless, this work adopts another technique to enforce the constraint (4a), which consists of modi-
fying the stress-strain relationship. This adaptation is remarkably straightforward for those materials
exhibiting an decomposition into a volumetric and the deviatoric part. If an isotropic (assumption A.7)
Hencky material is considered, its effective free energy function can be adapted to include (4a) as follows

Ψ̂sk
inc (εεε,ααα) =

K
2n

(εe
v)

2 +
3
2

G
(
εe

q
)2
, with εv := lnJ, and εq :=

√
2
3

(
εεε− εv

3
III(2)
)

:::
(

εεε− εv

3
III(2)
)

(5)

where the invariants of εεε := 1
2 ln(FFF FFFT ) have been adopted, III(2) denotes the second-order identity tensor,

and ::: the double contraction. K > 0 and G > 0 indicate the bulk parameter and the shear modulus.

5 Numerical example & Conclusions

Further assumptions: the above constitutive relationship has been implemented into a Material Point
Method (MPM) uuu− p f formulation. Further assumption necessary to run the example are as follows:

A.8 the fluid barotropic and obeys to this constitutive law ρ̇ f = ρ f

K f ṗ f , with ρ f being the current fluid
density, K f the fluid bulk modulus and p f Cauchy fluid pressure;

A.9 the flow exhibits low Reynolds numbers, which permits to consider the Darcy equation for the fluid
flow, i.e., qqq f =−κ

g

(
∂ p f

∂xxx −ρ f fff
)

, with qqq f being the relative fluid flux, κ the hydraulic conductivity,
∂•
∂xxx the gradient with respect to the current position, and fff the self-weight acceleration;

A.10 hydraulic conductivity obeys to the Kozeny-Carman formula, κ= c n3

(1−n)2 , with c constant.

Example scope: the aim of this example is to demonstrate the difference between a standard Hencky
material and one described by Eq. (5). Setup: the column illustrated in Figure 1 is subjected to a
gravitational acceleration b = 1,000 m s−2, which ramps linearly from the start of the simulation until
the 1,000 steps and kept constant for the remaining 2,000 steps of the simulation3. The bulk modulus
for the original Hencky material K̄ is set up to match the initial tangent elastic modulus given by Eq. (5),

3The reason for such a substantial acceleration lies in the opportunity to cut the costs of the simulation. Since the difference
between the two materials lies in the effective stresses, the column must consolidate, and this load accelerate this process.
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Table 1: Parameters considered in the analyses
in Section 5.

Solid phase Fluid phase
G 3 ·105 Pa K f 2.2 ·109 Pa
ρs 2650 kg m−3 ρ f

0 1000 kg m−3

Porous material
κ0 1 ·10−5 m s−1

n0 0.3
Simulation Parameters

H, nels
z 1 m, 20

mmp 4
† mmp is the number of material points
per direction per element.

H

z

b

Figure 1: Illustration of the elastic column under
self-weight. Rollers are applied on the top and bot-
tom sides, while atmospheric pressure is applied at
the right-hand side of the problem. Figure repro-
duced from Pretti et al. [2].

−0.10.00.10.20.30.40.5
n

(a) Eulerian porosity for the original Hencky mater-
ial, t̃ = 157th time-step.

−0.10.00.10.20.30.40.5
n

(b) Eulerian porosity for the improved Hencky ma-
terial, t̃ = 157th time-step.

−0.10.00.10.20.30.40.5
n

(c) Eulerian porosity for the original Hencky mater-
ial, final time-step.

−0.10.00.10.20.30.40.5
n

(d) Eulerian porosity for the improved Hencky ma-
terial, final time-step.

Figure 2: Columns at t̃ = 157th step and the end of each simulation. Figure from Pretti et al. [2].

i.e., K = K̄ n0 = 5 ·105 Pa. Results discussion: as it can appreciated from Figure 2a, the original Hencky
material results in negative porosities quite early in the analysis. From this point, this simulation loses
physical meaning, and the column surprisingly swells before failing (Figure 2c). On the other hand, the
new material does not fail for the quite sustantial time of the simulation (Figures 2d). Conclusions:
Overall, when considering an incompressible solid phase of a porous material, the Jacobian is subjected
to a more severe constraint, inherited from the Eulerian porosity. Disregarding this restriction leads to
the solid mass violation. A material respectful of this law was introduced and its effectiveness tested.
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