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1 Introduction

It is by now a classic result that fluxed IIB orientifolds, or more generally F-Theory com-
pactifications with G4 flux, lead to vast numbers of vacua [1, 2], see [3] for a review. Models
of this type, see [4] for early examples, constitute the largest fraction of known solutions
to string theory with four non-compact dimensions that can be studied with some level of
technical control, as the geometry stays Calabi-Yau up to warping [5, 6].

F-Theory models with flux can be described as a limit of M-Theory compactifications
on Calabi-Yau fourfolds, where the effect of a four-form flux G on the geometry is captured
by the superpotentials [7, §]

W:/ ONG
X

) (1.1)
W:/ JAJAG
X

in the effective 3D A/ = 2 theory. Here, Q is the holomorphic (4,0)-form and J is the Kéahler
form of the Calabi-Yau fourfold X.

Minima of the scalar potential are characterized by D;W = 0 and W = 0, where
D; = (01 + (01Kes)) with I = 1,...,h%}(X) indexing complex structure moduli, and
k=1,...,h%(X) indexing Kihler moduli. Furthermore

Kcs:—ln/ QAQ (1.2)
X

is the Kéahler potential associated with complex structure moduli of X. It follows from this that

*G =G

5 1.3
GANJ=0 (13)

where * is the Hodge star operator, which in turn implies that G € H?2(X) @ H*%(X). For
a given choice of G such that the second condition is satisfied (i.e. the flux is a primitive
cohomology class), the first conditions can be read as h*! constraints on the h%! complex
structure moduli of X. Hence a ‘generic’ choice of flux will be such that no complex structure
moduli remain flat directions. This can also be expressed as the matrix

pry = DiD;W (1.4)

having maximal rank at typical minima. Supersymmetric Minkowski minima are found for
minima such that furthermore W = 0, which implies that

G € H**(X)
) (1.5)
GANJ =0
i.e. such fluxes are given by primitive Hodge classes.

What makes the study of flux vacua in F/M-theory subtle is the fact that fluxes need
to obey the quantization condition [9]

G+ 62(2X) e HYX,7), (1.6)



and are furthermore constrained by cancellation of M2-brane charge to satisfy the tadpole

xX(X) 1/
X o =N 1.
o1 5 GNG M2 5 (1.7)

where x(X) is the Euler characteristic of X and N9 is the number of M2 branes filling

constraint

the non-compact directions. As shown in [10], the condition (1.6) guarantees that Npso
is always an integer.

As the inclusion of anti M2-branes is expected to lead to instabilities triggering brane/flux
annihilation, we are hence led to demanding that

X(;f)z;/XGAG' (1.8)

For G primitive and self-dual, the right hand side is positive definite, so that the ‘length’ of
the flux vector is bounded by the Euler characteristic of X. For a given fourfold, this can
be used to argue for the finiteness of flux vacua [11, 12].

The main motivation for the present work is to study the interplay between the number
of stabilized complex structure moduli, i.e. the rank of p;s, (1.4), the tadpole constraint (1.7),
and the quantization condition (1.6). The classic counts of flux vacua estimates the number
of flux solutions by approximating the number of lattice points by the volume of the ellipsoid
defined by (1.8), which is sensible if the distance of lattice points is small compared to the radii.

What is more severely affected is the argument that pr; is generically of full rank as
the word ‘generic’ looses its meaning for quantized fluxes. Although we can always rescale
G to come arbitrarily close to a properly quantized flux, the required rescaling can become
very large, so that the tadpole constraint (1.8) is violated.

It is not a priori clear how restrictive the tadpole constraint really is, and what may
characterize points in moduli space where all complex structure moduli may be stabilized
within this bound. It was observed in [13-15] that stabilizing complex structure moduli
by the superpotential (1.1) in F-Theory can be surprisingly expensive with regards to the
contribution of fluxes to the tadpole. This observation was called the ‘tadpole problem’ in [16],
where it was conjectured that there is, at least asymptotically, a linear relationship between
the number of stabilized moduli and the tadpole contribution. The tadpole conjecture has
been subsequently investigated in [17-28] and a sizable amount of evidence for its validity
has been collected.

There are concrete examples of F-Theory models where all complex structure moduli are
stabilized within the tadpole bound [29-31], but these examples all have in common that
they only have few complex structure moduli, and furthermore carry elliptic fibrations that
have Weierstrass models with singularities at complex codimension 1 in the base. From the
perspective of F-Theory, this implies the exciting possibility that the points in moduli space
selected by fluxes may be distinguished by the appearance of extra massless gauge bosons.

Such a relationship was recently demonstrated for a specific class of flux solutions on
K3 x K3 in [32]. There exists a class of fluxes [33] that stabilize all of the complex structure
moduli resulting in pairs of ‘attractive’ [34] K3 surfaces. Using the tadpole bound then
leads to a finite number of solutions which have been classified in [33, 35]. All these can be
lifted to F-Theory solutions by specifying an elliptic fibration as described in [35, 36]. While



there are attractive K3 surfaces with elliptic fibrations that do not have reducible fibres, [32]
showed that the complete list of solutions within the tadpole bound is not of this type, so
that the tadpole bound enforces non-abelian gauge symmetry. This result is particularly
interesting in that it shows the opposite of what genericity arguments would support: as
enhanced non-abelian gauge symmetries appear at loci of often considerable codimension
in complex structure moduli space in F-Theory, one might conclude that they are greatly
disfavoured when using the continuum approximation of the flux [37].

The present work continues the investigation of flux vacua on the Fermat sextic fourfold
initiated in [15]. While this fourfold does not carry an elliptic fibration and so cannot be used
for F-Theory compactification, it’s geometry is comparably simple, and enough is known
about its middle cohomology to give a precise description of the questions we are interested
in. It hence serves as an interesting arena to investigate the relationship between the number
of stabilized moduli and the associated tadpole cost. Fermat varieties and the associated
Landau-Ginzburg models have been used for a detailed study of flux vacua in [38-40] based
on the construction of [41].

We are focusing on supersymmetric Minkowski minima, where fluxes are characterised
by primitive Hodge classes obeying (1.6), i.e. the set of fluxes is given by

Apngs = {G € H?2(X)prim |G + CQ(QX) € H4(X,Z)} . (1.9)
Fluxes for which the rank of p;r; is maximal, so that all complex structure moduli are
stabilized, are known as ‘general Hodge cycles’ in the mathematics literature and we shall
adopt this terminology here as well. Note that whenever co(X) is odd, as for the sextic
fourfold, Apnys is not a lattice.

In the work [15] general Hodge cycles constructed from linear algebraic cycles were studied.
These form a rather special class of Hodge cycles, and we extend the scope of this work in
two ways. We consider two different types of non-linear algebraic cycles in addition to linear
algebraic cycles, and show how to use them to construct general Hodge cycles in section 4.

Using algebraic cycles in our construction of fluxes tacitly assumes the integral Hodge
conjecture. Although the set of algebraic cycles we consider are known to generate H*2(X) N
H*(X,Q), we show that they do not generate H>2(X) N H*(X,Z) in section 3. We can
however find a basis of H?%(X)N H*(X,Z) using appropriately quantized Griffith residues,
and show how to use this approach in section 5. As it is computationally too expensive
to write down general Hodge cycles using this approach, we restrict ourselves to models
with specific symmetries. For the examples we consider, we show how to completely answer
the question about the shortest general Hodge cycle. This setting also naturally leads to a
consideration of quotients, and we comment on this possibility as well.

Finally in section 6 we showcase an alternative approach for investigating fluxes below
the tadpole bound by using techniques from number theory to examine the quadratic form
given by [y G A G on Appys.

To give some background and to fix notation we review those properties of the Fermat
sextic that are needed in this work in section 2. We have included tables of some of our
results in an appendix.



2 The Fermat sextic fourfold
The Fermat sextic fourfold X is the hypersurface
Qx)=al+ 28+ a8+ a8 +af +28 =0 (2.1)

in P> with homogeneous coordinates [0 : 1 : 2 1 x3 1 x4 @ x5]. It is well known that its
group of automorphisms of X is

Aut(X) = &g x Zg

where Gg is the group of permutations of six elements, which acts on X by permutation
of coordinates, and we identify

73 ~ 178/ D
where D is the diagonal
D =1Im(a € Z¢ — (a,a,a,a,a,a) € Z).
The group Z3/D acts on X as
Ol a3 @y xs) — [CPxg: CBay : Py Bag: Py s (Bas),

with ( = % the primitive sixth root of unity.
The total Chern class of X is by adjunction

ce(X)=(1+H)/(1+6H)=1+15H* — 7T0H> + 435H* (2.2)

where H € HY'(X) N H%(X,Z) is the hyperplane class. This implies that x(X) = 2610
and so the tadpole bound corresponds to

/ GAG <2175, (2.3)
X
The second Chern class of X is odd and so the quantization condition for Appys is

G+ %Hz € HY(X,7Z). (2.4)

2.1 Cohomology of the Fermat sextic

For any two elements of H*(X) we abbreviate
A-B::/A/\B. (2.5)
X
The primitive part of the middle cohomology group of X corresponds to
H*(X)prim = {A € HY(X)|A - H? = 0},
and can be described by means of the residue map

Res : H*(P°\ X) — H*(X).



The residue mapping is surjective onto the primitive middle cohomology and, after the work
of Griffiths [42, 43], a basis of H*(X)pm is given by the forms

50
wg = Res <Q:€m)ko+1>

5
Qo = Z(—l)ixidxo A-eodxy--- Ndxs
=0

where

is the standard degree 6 top form of P°, 27 is the monomial

P = acgomflxg%%xf“mg‘r’

with [8] == ¢ 38 =k €Z,0< 3; <4, and 0 < k < 4 determines the Hodge type:
ws € HY7RF(X).

Together with the Lefschetz hyperplane theorem, evaluating the number of 8s for different
values of k shows that the non-trivial Hodge numbers of X are

APUX) =1, RPYX)=0, h¥(X)=426, h*

prim

(X)=1751. (2.6)

It follows from the numbers given for h%!, h%1 A3 that h%2(X) = 1752. One can take H>
S . 2,2
as the extra generator of H%?(X) which is not in H, (X))
The inner form between any two residues is found from the following statement taken
from [44, Proposition 8.4]: For any two monomials P(z) and R(x) of degrees 6p and 6q

such that p + ¢ = 4 we have

2mi)?
wp - WR = / wp Awg = ¢ (—=1)PT1 m566 (2.7)
X plq!

for ¢ € C the unique number such that

PR = cdet(Hess(Q)) (mod Jac(Q)), (2.8)
where Jac(Q) := (g—g), el g—i) is the Jacobian ideal of Q(z), and Hess(Q) is its Hessian

matrix.
For the Fermat sextic the Hessian determinant is simply

det(Hess(Q)) = 30° HSL‘?, (2.9)
i
and so for our monomial basis
wg - wg =0 (2.10)
except when ; =4 — 3} for all i = 0,1,2,3,4,5. We hence define

Bi=4—0; (2.11)



which implies that

5
Bl=1>Y (4—p8;)=4—|8] (2.12)
=0
Since zfzf = ;. it follows that ¢ = 307 and
1\6 (2mi)? 2mi)t 1
wp - wg = (_1)|5|+1 (> @56 .6 = (_1)\5|+1ﬂ75‘ (2.13)
307 |B1A]! |515]' 6

2.2 Hodge and algebraic cycles

We will call classes in H>2(X) N H*(X,Q) Hodge cycles, and classes in H??(X)N H*(X,7Z)
integral Hodge cycles. After the work of Shioda [45] we know that the residue forms generate
the space of complexified primitive Hodge cycles

H2’2(X)prim = (H2’2(X)prim N H4(X, 7)) ® C,

this can also be expressed as X has maximal Hodge rank.
For |B| = 2, we have that ws € H*2(X)prim. Such a form wg will be called:

e 3-decomposable if 5 = (a,4 —a,b,4 — b,c,4 — ¢)
e 1-decomposable if 8 = (a,4 — a,0,2,3,3)
« indecomposable if 5 = (0,0, 3, 3,3, 3)

up to permutations and for 0 < a, b, c < 4. The 1751 classes in H>?(X )prim are thus organized
into 1001 3-decomposable, 720 1-decomposable and 30 indecomposable cycles.

On the other hand it was shown by Shioda [45] that X satisfies the Hodge conjecture over
Q. In fact, we will provide 1751 linearly independent primitive algebraic cycles inside X which
can be divided into 3 different types corresponding to the three types of residues defined above.

o Linear cycles: which can be obtained as the orbit of Aut(X) = &g x Zg on
C:={xg— pr1 =29 — prs = x4 — pxs = 0} C X (2.14)

where p = % is the primitive 12th root of unity (and so u? = ¢). Given o € &g and
¢ € 78D ~ 73 we denote by

which is explicitly given by the equations

To(0) — 2O T g () = 2y () — pE BT g ) = gy — p2 BT ) = 0. (2.15)

o Aoki-Shioda cycles: which are obtained as the orbit of Aut(X) on

S = {23 — V2120 = 2} 4 23 4+ izh = 24 — prs =0} C X. (2.16)



Similarly we denote S% := o= 1(¢=1(9)) for o € Gg and £ € Z&/D. Tt is given by the
equations
¢*ox2 ) = V2 2, 0)20(2) = 0,
(1) ) + (=122 o) +i(=1)%ad ) =0, (2.17)

1+2€5x
ag

(g — (5) = 0.

o Type 3 cycles: which are in the orbit of Aut(X) on
T = {x3 — V2x120 = 22 — V2x425 = 2 + 25 + iz + ixd = 0} C X. (2.18)
We denote T := =1 (¢~1(T)), where o € &g and £ € Z$/D. The explicit equations of
TY are
¢P0a? ) = V2,0 ) = 0,
C%’:U?;(s) — V20" 51, 4yz0(5) = 0, (2.19)
(=123 ) + (=1)2a3 ) +i(—1)ad ) +i(=1)%ad 5 = 0.
After [46, Theorem 1.2] it is possible to compute all periods of residue forms over such

algebraic cycles. For the particular case of linear cycles, an explicit formula was obtained
in [47] and is the following:

2
(27m~)2% Mzezo(ﬂg<ze>+1)(2(£ze+1—eze)ﬂ) if By(ae—2) + Bo(ze—1) = 4
/C = (2.20)

0 otherwise.

2.3 Hodge loci

Given a Hodge cycle G, the Hodge locus of G is the germ of the analytic subvariety of the
parameter space of sextic fourfolds T = H%(Ops(6)) given by

Vo = {t € (T,t)|G; € H**(X;) N H (X1, 2)}, (2.21)

where X, is the hypersurface defined by the sextic t € T, tg = Q(z) is the defining equation
of the Fermat sextic, Gy, = G and G; € H*(X;,Z) is the class obtained by monodromy in
a small analytic neighbourhood ¢ € (T,tp).

Using the infinitesimal variation of Hodge structure

V : T, T — hom(H*!(X), H**(X))
composed with the multiplication by G map

va: H*?(X) = C
n—G-n

we can describe the Zariski tangent space of Vg as

Ty Vo = ker(gg oV : Ty, T — (H(X)Y). (2.22)



Since U is a linear space, every tangent vector v € Ty, T = T is a degree 6 polynomial in the
variables x = (xq,...,z5). Under this identification we can express

(960 V)(v) : H¥(X) - C

v(z)2PQq '
wg — Res (Q(m)?’ ) G

where 3] = 1.
For a Hodge cycle G we define
p1s(G) :=wg, 45, - G (2.23)

for |Br| = |Bs] = 1. As discussed in [15] this expression agrees with (1.4) for the Fermat
sextic fourfold. Denoting the associated 426 x 426 square matrix by p(G) := ({p17(G)}1.7),
it follows that

rank p(G) = Codim(T3, Ve C T3, T) . (2.24)
We say that G is a general Hodge cycle if
Codim(Vg C T) = h*1(X) = 426. (2.25)

In particular this happens if p(G) is of full rank (i.e. if p(G) is invertible) and in such a
case the corresponding Hodge locus Vi is smooth and reduced as an analytic scheme. We
remark that this is not a characterization of general Hodge cycles, since there might be
some singular or non-reduced Hodge locus Vi for some general Hodge cycle, in those cases
p(G) fails to be invertible.

In general, given a Hodge cycle G € H??(X) N H*(X,Q) we can use the information
given by the periods of residue forms over it to study its Hodge locus.

2.4 Vanishing cycles

Let us turn now to the middle homology group of the Fermat sextic. The affine Fermat
sextic is given by

U() = {(xl,xg,x3,334,x5) € C5| 1 —|—3§‘? +l’g +$g +.712 —1—33‘2 = O}.

A basis for Hy(Up,Z) is given by the so called vanishing cycles, which can be defined as
follows: for every 3 € {0,1,2,3,4}° consider the homological cycle

= Y (COShma,,
ae{0,1}°

where A5+a : A4 = {(tl,tg,tg,t4,t5) S R5 : ti > 0, Z?:l ti = 1} — U() is given by

2(Br+a1)—1,5 2(Ba+az)—1,5 ~2(Bs+as)—1,5 ~2(Batas)—1,5 -2(Bs+as)—1,%
Bsalt) = (G T PN G T G i g ).

The set {dp}gecq0,1,2,3,45 18 a basis of Hy(Uo,Z).



Using the Leray-Thom-Gysin sequence in homology [48, §4.6] is easy to see that
H4(X, Q) = H4(X> Q)prim ®Q- H? (2-26)
where
H4(Xa Q)prim = Im(H4(U0a Q) — H4(X7 @)) )

and H? is the class of the square of the hyperplane section of P° intersected with X. Hence
every w € H*(X) is determined by its periods over the vanishing cycles and H?. Since this
last period is zero when w € H4(X )prim, We see that every primitive class is determined by
its periods over all vanishing cycles. These periods can be explicitly computed [49] as follows:

(—nke 1 H5 <B¢ + 1) BADBit1) _ (B (Bit1)
_ 7/ F - '3 7 — (3 Q3 22
/55, T B Ly L6 (¢ ‘ ) (220

where () := 0.
Similarly one can produce another basis of vanishing cycles for the affine Fermat sextic

Up=Xn{z; =1}

and get the same formula where g} := 0. Hence in general a vanishing cycle is represented
by a tuple

5,3 = [60, 617 ﬁQ? 637 ﬁ47 55]

where each of the §; is an integer ranging from 0 to 4, one of the 3; must be 0, and its pairing
with a primitive cohomology class is given by (2.27).

The decomposition (2.26) is not true anymore over Z. In fact, looking at the Leray-
Thom-Gysin sequence in homology [48, §4.6] we get the short exact sequence

0 — Hy(X, Z)prim — Hu(X,Z) L Hy(Xoo, Z) — 0
where Hi(X, Z)prim = Im(H4(Uy,Z) — H4(X,Z)), f is the intersection map and
Xoo = X N{zo =0} = {28 + 2§ + 28 + 25 + 28 = 0}
is the Fermat sextic threefold at infinity. Since
Hy(Xoos7) = 2 1]
for some line L. C X, we get the following decomposition
Hy(X,Z) = Hy(X, Z)prim ® Z - [C] (2.28)

for any linear algebraic cycle C C X. We remark that the decomposition (2.28) is not
orthogonal with respect to the intersection pairing, while (2.26) is. Thus it is not true in
general that the primitive part (i.e. its orthogonal projection to the primitive subspace) of
an integral cycle is integral, but this will be the case if it has degree divisible by 6, as for
the Aoki-Shioda and type 3 cycles.

We remark that since there are no torsion cycles in the Fermat sextic, we have duality
between integral homology and cohomology

HY(X,Z) = (Hy(X,Z))".

,10,



3 The hodge conjecture

Before treating the tadpole conjecture, in this section we will discuss an explicit approach to
the Hodge conjecture for the Fermat sextic fourfold. Our objective is to exhibit a basis of
algebraic cycles which generate the space of Hodge cycles and then use it to look for possible
representatives of the G-flux in the next section. In spite that the Hodge conjecture over Q for
the Fermat sextic holds by the work of Shioda [45], the integral Hodge conjecture is still open
and so it might happen that the G-flux is an algebraic cycle divided by a natural number.

As explained in section 2.2, the space of primitive algebraic cycles has dimension 1751.

Moreover, any primitive Hodge cycle

P(CL‘)QQ
Q(x)?

is linear combination of residue forms wg which can be 3-decomposable (generating a space of

wp:Res< ) €H2’2(X)primmH4(X7Q)

dimension 1001), 1-decomposable (generating a space of dimension 720) or indecomposable
(generating a space of dimension 30). Using the main theorem of [46, Theorem 1.1] we
can write this linear combination for the primitive part of all the algebraic cycles described
in section 2.2 as follows:

o For the linear cycle C' given by (2.14) we have [C]prim = wp for
P==72i | Y ap(pw)* | | Do ad(pas)* ™ | (D wi(pas) . (3.1)
j=0 j=0 j=0
This polynomial is a linear combination of 3-decomposable residue forms.

o For the Aoki-Shioda cycle S given by (2.16) we have [S]pim = wp for
b b 4 . .
P = 6% V2ulzoxd(ad + V2r120) (23 — 23) Z o) (pas)t | (3.2)
=0

which is a linear combination of 1-decomposable residue forms.

o For the type 3 cycle T given by (2.18) we have [T]prim = wp for
P = —63 - Vdizgrs(xd + V2x120) (23 + V2w4m5) (23 — 23) (23 — 23), (3.3)
which is a combination of 3-decomposable and indecomposable residue forms.

Since the action of Aut(X) = Gg x Z on the space of residue forms preserves the spaces of
3-decomposable, 1-decomposable and indecomposable forms respectively, the primitive part of
all linear cycles Cf. in the orbit of C' are explicit linear combinations of 3-decomposable residue
forms. Similarly Aoki-Shioda cycles S% are linear combinations of 1-decomposable forms,
while type 3 cycles T(f are linear combinations of 3-decomposable and indecomposable forms.

Using these explicit combinations it is possible to compute (using (2.7)) the intersection
matrix of all linear cycles, and extract a subset of maximal rank 1001. Therefore, these

— 11 —



linear cycles generate the space of all 3-decomposable residue forms. Similarly for Aoki-
Shioda cycles we can find 720 of them whose intersection matrix is of full rank, and so
they generate all 1-decomposable residue forms. For type 3 cycles, since they also have a
3-decomposable part, we have to look for 30 cycles whose intersection matrix together with
the 1001 linear cycles has full rank 1031. We implemented these algorithms in the SINGULAR
library "HodgeProject.lib", as the procedures Periods, IntersecMatrix, LinAlgCycles,
ASAlgCycles and T3AlgCycles.! We summarize the obtained basis in the following statement.

Theorem 1. The Fermat sextic fourfold X satisfies the Hodge conjecture. In fact, a basis for
H*2(X) N HYX, Q) prim is given by the primitive part of 1001 linear cycles, 720 Aoki-Shioda
cycles and 30 type 3 cycles. This set of algebraic cycles can be computed explicitly and we
denote 1t Alg == {Al, ceey A1751} == {Cl, ceey 01001, Sl, ey S720,T1, e ,Tgo}.

In what follows we will list the 1751 algebraic cycles according to the action of the
corresponding pair (0,/) € &g x Z = Aut(X).

3.1 Linear cycles

In view of the explicit equation of the linear cycle C% given by (2.15), we can avoid some
repeated terms if we set {9 = fo = £4 = 0. After obtaining the part of the set Alg given by
the first 1001 linear cycles, it turns out that the permutations of {0, 1,2,3,4,5} associated
with them are all contained in the following list of 15 permutations:

¥ =(0,1,2,3,4,5),(0,2,1,3,4,5),(0,3,1,2,4,5), (0,1,2,4,3,5), (0,2,1,4,3,5),
(07 47 17 27 3’ 5)7 (07 37 1747 27 5)7 (07 47 17 37 27 5)’ (07 17 27 57 3? 4)’ (07 27 17 5? 37 4)7 (3'4)
(0,5,1,2,3,4),(0,3,1,5,2,4),(0,5,1,3,2,4),(0,4,1,5,2,3),(0,5,1,4,2,3).

The full list of linearly independent linear cycles C; = A; for ¢ = 1,...,1001 is presented
in table 5 in appendix A.

3.2 Aoki-Shioda cycles

For Aoki-Shioda cycles, the explicit equation of S is (2.17). In order to avoid repetitions
we set {1 = ¢4 = 0, and restrict the set of permutations of {0,1,2,3,4,5} to the set ¥’
consisting of those satisfying o(1) < o(2). The list of linearly independent Aoki-Shioda cycles
S; = Ajy1001 for i = 1,...,720 is presented in table 6 in appendix A.

3.3 Type 3 cycles

The explicit equation of type 3 cycles Tﬁ is given by (2.17). In order to avoid repetitions we
set o = 0, and restrict the set of permutations of {0,1,2,3,4,5} to the set X" consisting of
those satisfying that o(1) < 0(2) and o(4) < o(5). The list of linearly independent type 3
cycles T; = Ajq1701 for ¢ = 1,...,30 is presented in table 7 in appendix A.

"https://github.com/danfelmath01/Sixtic-Fourfold.
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Index

Divisors

6,3,6,6,3,6,3,6,3,3
6,3,6,3,3,6,3,6,6,3,
3,3,6,6,3,3,3,6,6,3,
3,3,6,3,3,3,3,3,3,3

3,6,3,3,6,3,3,3,3,3,
1,6,1,6,3,3,6,6,6,3,
6,6,6,3,6,3,6,6,6,3,
6,3,3,6,6,3,6,6,6,6,
6,6,3,6,6,3,6,6,6,6,
3,3,6,3,6,6,3,6,3,3,
6,6,3,6,3,3,6,3,3,3

3,3,6,3,6,6,3,6,6,3

3,3,3,6,3,6,6,3,6,6

3,3,3,3,3,3,3,6,3,3,
6,3,6,3,6,6,3,6,6,6,
6,3,3,3,3,3,3,3,3,3,
6,6,1,6,3,1,3,3,1,1,

6,6,6,3,6,3,3,3,6,3,
6,6,6,3,6,6,6,3,3,6,
3,3,6,6,6,6,6,6,6,6,
6,6,6,6,3,3,3,6,6,3

3,6,3,6,3,3,6,6,6,6,
6,6,6,3,6,3,6,3,3,6,
6,6,3,3,3,6,3,6,3,6

3,3,3,6,6,6,6,6,3,6

3,3,3,3,3,3,3,6,6,3

3,3,3,6,6,6,6,3,6,6

3,3,3,6,6,6,6,1,1,3,
6,6,6,3,3,3,6,3,6,3,
3,3,3,3,3,3,6,3,6,3,
6,6,6,1,3,3,6,6,6,6,
3,3,6,6,6,6,6,6,3,6,
6,3,6,3,3,6,3,6,6,6,
6,3,6,1,1,1,1,6,6,6,

6,3,6,6,3,6,3,3,3,3

3,3,6,6,3,6,6,3,3,6

3,3,3,3,3,6,6,3,3,3,
6,6,6,6,3,6,3,3,6,3,
3,3,6,6,3,3,3,3,3,6

6,6,6,6,3,6,6,3,3,6

3,3,6,3,3,6,3,3,6,6,
3,6,6,6,3,6,6,3,6,6,
3,3,3,3,6,6,6,3,3,6,
3,6,6,3,3,3,3,3,3,6,
1,3,3,3,3,3,3,6,6,3,
6,6,6,3,3,6,6,3,6,6,
6,3,6,3,6,6,6,3,6,6,
3,6,6,3,6,6,3,3,3,3,
6,3,6,6,3,3,3,3,3,3,
3,3,3,6,3,6,3,1,1,3,
6,3,1,1,3,6,3,6,3,6,

3,3,3,6,3,6,6,3,6,3
6,6,6,6,6,6,3,3,3,3

6,6,3,6,6,6,3,3,3,3,
3,6,6,6,6,6,6,6,6,3,
3,6,6,3,6,6,3,3,3,3

6,6,3,3,6,6,3,6,3,3,
6,6,3,6,3,3,6,3,6,6,
3,6,3,3,3,6,6,3,6,3,
6,6,3,3,3,3,3,3,6,6,
3,6,6,3,6,6,3,6,3,3,
3,3,3,3,3,6,3,6,6,3,
3,3,6,6,6,3,6,6,3,3,
3,3,6,6,6,3,6,3,3,6,
6,6,6,6,3,6,3,3,6,3,
3,6,3,6,6,3,6,6,6,3,
1,6,6,3,3,1,3,1,3,3,
3,6,3,3,1,1,1,1,1,6,

6,6,6,6,6,6,3,3,3,3,
3,6,3,3,6,3,3,6,3,3,
3,6,3,3,6,3,6,6,3,6,
6,6,3,3,6,3,6,3,6,6,
6,6,3,6,3,3,6,3,3,6,
6,3,3,6,6,6,6,3,3,3,
3,3,3,3,3,3,3,6,6,6,
6,6,3,3,3,6,3,6,3,6,
3,1,1,3,3,3,3,3,6,6,
3,3,3,3,3,3,3,3,6,3,
6,6,6,3,3,3,6,3,6,3,
6,6,3,3,6,3,6,3,3,3,
3,3,3,3,3,3,3,6,3,6,
6,6,3,3,3,6,3,6,6,6,
3,3,6,6,6,6,3,6,3,3,
1,6,3,6,1,6,1,6,6,6,
6

3,6,6,6,3,6,6,3,6,3
3,6,3,3,3,6,6,3,6,3
3,6,3,3,3,6,6,6,3,6
6,3,6,6,3,3,3,3,6,3
6,6,3,3,3,3,3,6,6,1
3,3,3,3,3,3,3,3,6,6
6,6,6,6,6,3,3,3,6,3
3,6,6,3,6,6,6,3,3,6
3,6,6,6,6,3,3,3,3,3
3,6,3,6,6,3,3,3,6,6
6,3,3,3,3,3,3,3,6,3
3,3,3,6,6,3,3,6,6,6
3,6,3,3,6,3,3,3,3,3
3,6,6,3,3,3,3,3,6,3
6,3,3,3,3,3,3,3,6,3
6,6,3,3,1,3,6,6,3,6

3,6,6,3,3,3,3,6,6,6,
3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,1,3,3,
1,1,3,1,3,3,3,3,3,3,
3,6,6,3,6,6,3,6,6,6,
6,6,6,3,3,3,3,3,3,3,
3,3,1,1,1,1,1,1,6,6,
1,1,3,1,3,1,1,3,6,6,
3,3,3,3,3,1,3,3,3,3,
3,3,1,3,3,3,3,3,3,3,

6,6,3,6,6,3,3,3,3,6,
3,3,6,6,6,3,3,3,6,3,
3,3,6,6,6,3,3,3,6,3,
3,3,6,6,6,6,1,3,6,3,
3,6,6,6,3,3,3,3,3,2,
3,3,1,1,3,3,1,1,3,1,
6,6,3,6,6,3,6,6,3,3,
3,3,6,6,3,3,3,3,3,3,
3,3,3,3,1,1,1,1,1,3,
1,6,2,1,1,6,2,2,2,6,
1,1,3,3,3,3,3,3,3,3,
3,3,1,3,3,3,1,3,3,3,

6,6,6,6,3,6,6,3,6,6,
3,6,6,3,6,6,6,6,3,3,
3,6,6,3,6,6,6,6,3,3,
3,6,6,3,6,6,6,6,3,3,
6,3,6,6,6,6,3,3,1,1,
1,1,1,1,1,3,1,3,1,1,
3,6,2,6,3,3,3,3,3,3,
3,3,1,3,1,3,3,3,3,3,
1,1,3,1,1,1,1,3,6,6,
1,3,1,1,3,2,2,1,2,2,
3,3,1,3,3,3,3,1,3,3,
3,3,1,3,3,3,3,3,3,3,

3,6,2,6,6,2,3,6,6,3,
6,3,1,6,6,1,3,6,6,6,
2,1,1,2,1,1,6,2,2,6,
2,1,2,1,6,2,2,6,1,1,
2,1,6,1,6,1,2,1,2,6,
1,1,3,3,1,1,3,6,6,3,
3,3,3,1,1,3,3,6,6,3,
3,3,3,1,3,3,6,6,3,3,
3,6,6,3,2,2,6,2,2,6,
3,3,1,1,3,1,1,1,1,1,
3,3,1,1,3,1,3,1,1,3,
3,3,3,3,3,3,3,3,3,3,

6,6,3,3,3,6,6,2,3,3,
3,3,3,3,3,6,6,1,2,6,
1,1,1,1,1,2,1,1,6,2,
2,1,1,2,1,1,6,2,2,3,
2,2,3,1,1,1,1,1,1,1,
3,3,3,6,6,6,6,6,3,6,
3,3,3,6,6,6,6,6,6,6,
3,3,6,6,6,6,6,6,6,6,
6,6,3,3,1,3,1,3,6,6,
1,1,1,1,1,1,1,1,1,1,
3,1,1,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,3,1,1,3
6,3,3,3,3,3,3,1,1,3
2,3,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,3,3
1,3,3,3,3,3,3,3,3,3
6,3,3,3,3,6,6,6,6,6
6,3,3,3,3,3,3,3,3,3
3,3,3,3,3,3,6,6,6,3
6,3,1,6,2,3,1,1,1,1
1,1,3,3,3,3,3,3,3,3
3,3,3,3,3,3,3,1,3,3
3,3,3,3,3,3,3,3,3,3

1,...,60
61, ..., 120
121,..., 180
181,..., 240
241,..., 300
301,..., 360
361, ..., 420
421,..., 480
481,..., 540
541,..., 600
601,..., 660
661,..., 720
721,..., 780
781,..., 840
841,..., 900
901,..., 960
961,..., 1001
1002,..., 10061
1062,. .., 1121
1122,..., 1181
1182,..., 1241
1242,..., 1301
1302,..., 1361
1362,..., 1421
1422,..., 1481
1482,..., 1541
1542,..., 1601
1602,. .., 1661
1662,..., 1721
1722,..., 1751

1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1

Table 1. List of divisor for each algebraic cycle.

3.4 The integral Hodge conjecture

Given our basis of algebraic cycles Alg, one can wonder how far are we from the lattice of

primitive integral Hodge cycles. Using the period equations (2.27), it is possible implement
and find a dual basis for H?2(X)prim N H*(X,Z) in terms of vanishing cycles. On the other
hand, using (2.7) it is possible to compute the period matrix of Alg and compare it to the

period matrix of the basis of primitive integral Hodge cycles obtaining the following result.

Theorem 2. The Fermat sextic fourfold X satisfies the Z[%]—Hodge conjecture, this means

More precisely, if Alg = {A,..

H(X) N BY(X,ZI67']) = H' (X, Z[6™ ")) .

1721
1
HQ’Q(X) N H4(X7 Z)pm‘m - @ Z - E[Az]przm
i=1 !

where each d; € {1,2,3,6}. We have listed the d; appearing in table 1.

4 Constructing fluxes from algebraic cycles

., Ay721} is the basis of algebraic cycles of Theorem 1, then

Let us recall that in the Fermat sextic fourfold, the G-flux must be a primitive class

GeH 2’2(X )prim satisfying the quantization condition

2

H
G+« HY(X,7),

,13,

(4.1)




the tadpole bound
G -G <2175, (4.2)

and has to be a general Hodge cycle (2.25). In order to search for candidates for the G-flux
we will do some approximations.

In view of the fact that %H 2 has a small norm with respect to the intersection product,
we will first look for a general Hodge cycle GeH (X, Z)prim With norm as small as possible
and then we will try to define the G-flux G by a slight modification of G. Since we want to
approach this using algebraic cycles, we will look for such cycles in the sub-lattice

T := (Alg) N H*(X,Z)prim- (4.3)

As explained in section 2.3 in order to check that a given Hodge cycle G is general, it is
enough to verify that the matrix p(G) defined in (2.23) has maximal rank, 426. As pyy is
only sensitive to the primitive part of G, this implies that p(G) has rank 426 as well. With

these considerations the problem boils down to the following optimization problem:

1751

min{@ﬂézzm-(&—di-&)), nieZ} (4.4)
i=1

subject to: rank p(G) = 426 (4.5)

where Alg = {4;}175!, Cp is any linear cycle not contained in Alg and d; = deg(A4;) (which
is 1 for a linear cycle, 6 for an Aoki-Shioda cycle and 12 for a type 3 cycle).

4.1 General primitive algebraic cycles with small norm

The problem (4.4) is hard both theoretical and computationally. If one does a brute force

searching trying to maximize the rank of p(G), the experiments frequently give combinations
of the form

1001 720 30
G = Z £i1,i2 (Ci1 - Ciz) + Z Mgy ,jo (Sjl - SjQ) + Z k1 ko (Tk1 - TkQ)' (4'6)
i1,02=1 Ji,j2=1 k1,k2=1

Theoretically this reduction has the advantage of preserving the orthogonality of algebraic
cycles of different type, which is not preserved if we consider instead the translated algebraic
cycles A; —d; - Cy. Moreover, if we restrict our attention to algebraic cycles A; — A; where A;
and A; are cycles of the same type, then the values of smallest norm for linear, Aoki-Shioda
and type 3 cycles are 40 = 2 (% — %), 60 = 2(60 — 30), and 96 = 2(96 — 48), respectively,
which are smaller than those of A; — d; - Cy for each type. In general, the values of the
intersection between the primitive parts of cycles of the same type are

—%, —%, %, % A;, A; are linear cycles,
(Aiy Aj)prim = § 0,£3,£6, £12, +£15, £30,60 A;, A; are Aoki-Shioda cycles,
0,46, £12, +24, +48, 96 A;, Aj are type 3 cycles.

Note that the self-intersection for linear, Aoki-Shioda and type 3 cycles are 1%5,60, 96,

respectively.
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Using the reduction (4.6) we can always consider the integers 4;, ;,, m;j, j, and ng, , to
be non-negative. Furthermore, noting that the intersection of two algebraic cycles of the
same type is smaller than their norms, one can suppose that the size of the norm of G is
correlated with the sum of the norms of each difference. Hence a coarse linear approximation
of G2 is the function

w(l,m,n) := 40 4+ 60m + 96n

where ¢ is the amount (counted with multiplicities) of differences of linear cycles in the
expression (4.6) of G, m is the amount of differences of Aoki-Shioda cycles and n is the
amount of differences of type 3 cycles.

In order to linearize the restriction in the optimization problem (4.4), we can first
approximate naively

rank(p(G)) ~ Z rank(p(4;)),

for G = > ;mi - A;, where each n; # 0. Depending on the type of algebraic cycle we have
that the rank of the matrix p(A;) is

19 A; is a linear cycle,
rank(p(A4;)) = { 62 A, is a Aoki-Shioda cycle,
106 A; is a type 3 cycle.

With all these considerations in mind we pose our first linear approximation to (4.4) as follows

min {p(¢, m,n) =400 + 60m + 96n | £,m,n € Z>o} (4.7)
subject to: 2(19¢ + 62m + 106n) > 426.

The solution of this problem is min(y¢) = 216 and is attained for (¢,m,n) = (0,2, 1), which is
quite close to the tadpole bound (4.2). This suggests one has to search for combinations given
as a sum of two differences of Aoki-Shioda cycles and one difference of type 3 cycles. However,

after computational research one gets combinations of small norm but with rank(p(G)) < 426.

Hence, a better linear approximation to the rank of p(G) is needed. After several computations
we summarize the behavior of the ranks we found for differences of two Aoki-Shioda cycles
and two type 3 cycles in the following table:

With these restrictions, we can pose the following linear optimization problem

min{cp = 400 4+ 60mq + 90mo + 96mg + 9611 + 144n9 + 168ng ’ l,n;, m; € ZZO} (49)
subject to: R = 380 4 62mq + 80mgy + 106ms + 10611 + 178ny + 210n3 > 426. (4.10)

Below is the solution to this optimization problem, and also the next smallest possible
values attained

e (¢,m1,mg,m3,n1,n2,n3) = (1,0,0,0,0,1,1) with ¢ = 352, and R = 426,

o (¢, my1,ma,m3z,n1,n2,n3) = (2,0,0,0,0,2,0) with ¢ = 368, and R = 432,

,15,



Type Hodge cycle ‘ Intersection values ‘ Rank ‘
Linear G=Ci— C; | (Ci, Cj)prim = 5/6 rank(p(é)) <38
Aoki-Shioda | G = 8; —S; | (Si,S;)prim =30 | rank(p(Q)) < 62
Aoki-Shioda | G = 8; — S; | (Si,S;)prim =15 | rank(p(G)) < 80
Aoki-Shioda | G = S; —8; | (Si,S;)prim =12 | rank(p(G)) < 106
Type 3 G=T,—T; | (T, Tj)prim =48 | rank(p(G)) < 106
Type 3 G=T —T; | (T;,T})prim =24 | rank(p(G)) < 178
Type 3 G=T,—T; | (Ti,T})prim =12 | rank(p(G)) < 210

Table 2. Constraints on the ranks of p(G) for differences of algebraic cycles.

e (¢,m1,ma,m3,n1,n2,n3) = (0,1,0,0,0,1,1) with ¢ = 372, and R = 450.

To every algebraic cycle of the form

4

G = Z(CPM—Q -

i=1

m

Jj=

Cp2¢—1) + 2(5%1'_2 - Sll2j—1) + Z(TT%—2

n

- TTQk—1)
k=1

we associate an intersection matrix corresponding to the intersection matrix of the tuple of

primitive algebraic cycles supporting C:‘, i.e. the intersection matrix of the tuple

([Cpo]prim e

) [CPQZ—Jprim’ [Sqo]prim7 cee

) [Sq2m—l]prim’ [Tro]prinu s [Tr2n—1]prim)'

These solutions to the linear optimization problem (4.9) would be very close to the desired

solution if the intersection matrices associated to the algebraic cycle in each case were block

diagonal and respectively equal to

125/6 5/6 0 0 0
5/6 125/6 0 0 0

0

o o o

0

0
0
0

96 24 0
24 96 0
0 0 96 12
0 0 12 96

0
0
0
0

125/6 5/6
5/6 125/6

0 0

0 0

’ 0 0

0 0

0 0

0 0

0 0 00 0O

0 0 00 0 O 6030 0 0 0 O
125/6 5/6 0 0 0 O 3060 0 0 0 O
5/6 125/6 0 0 0 O 0 09624 0 O

0 0 96240 0’10 0249 0 0

0 0 249 0 O 0 0 0 0 96 12

0 0 0 0 96 24 0 0 0 0 1296

0 0 0 0 24 96

However this is not true, and so the norm may vary from the estimated values. Based in

the solutions to the linear optimization problem (4.9) we computed the norm and rank of

lots of combinations of algebraic cycles for each solution, and the smallest norms found

for general algebraic cycles are 312, 316 and 336. The following combinations of algebraic

cycles are general and attain these bounds:

o« Gy = (Cogsa — Cag2) + (T4 — T5) + (T3 — Ths), with norm 316, and intersection matrix

125/6 5/6 —4 0 0 0O
5/6 125/6 —2 2 0 0
—4 -2 96 24 —6 6 L1l
0 24 96 0 —6 |’ (4.11)
0 —6 0 96 12
0 0 6 —6 12 96
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. ég = (0599 — 0571) + (T5 — Tl) + (T23 — Tlg), with norm 300, and intersection matrix

125/6 5/6
5/6 125/6
|
2 -1
1
0

intersection matrix

125/6 —1/6 —1/6
~1/6 125/6 —1/6
~1/6 —1/6 125/6
~1/6 —25/6 —1/6
0 4 0
2 2 0
0 0 0
0o -1 0

intersection matrix

60 0 O
0 60 O
0 0 96
0 0 12
0 0 —12
00 O

4.2 Constructing a G-flux

-1
-1
96

2 1 0
-1 0 4
24 0 —6
24 96 —6 6
0 —6 96 12
—6 6 12 96

: (4.12)

G3 = (Cagg — Cagg) + (Cos — Css) + (Ts — Ty) + (Tas — Tog), with norm 310, and

-1/6 0 2 0 0
-25/6 4 2 0 -1
-1/6 0 0 0 0
125/6 —2 —2 0 2 7 (4.13)
—2 96 24 0 12
—2 24 96 12 —12
0 12 96 12
12 —12 12 96

Gy = (C3g — Chgs) + (C381 — Coro) + (Th2 — Too) + (Tha — T51), with norm 304, and

125/6 —1/6 —1/6 5/6 0 0 2
~1/6 125/6 —1/6 —1/6 0 0 0
~1/6 —1/6 125/6 5/6 0 0 2
5/6 —1/6 5/6 125/6 0 -2 0 —2 7 (4.14)
0 0 0 0 96 24 —24 0
0 0 0 -2 24 96 —12 —12
0 0 0 0 -24-12 96 24
2 0 2 -2 0 —12 24 9

Gs = (Ser1 — Ss05) + (Toy — T3) + (T5 — T%), with norm 336 and intersection matrix

0 0 O

0O 0 O

12 =12 0 (4‘15)
96 0 —48

0 96 12
—48 12 96

Now we want to construct a candidate for the G-flux from each primitive algebraic cycle

with small norm found in the previous section. The only issue here is the quantization

condition (4.1) which corresponds to belonging to

Aphys = {G € H**(X)prim|G +

H2
— eH?

" )
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which is not a lattice. In spite of this, if we pick any Gg € Appys then the translation
Aphys — Go = H**(X)prim N H*(X, Z)

is the lattice of primitive integral Hodge cycles. Hence our candidate for G-flux will be of
the form G + Gy, where G=@G, fori= 1,2,3,4,5 are the primitive algebraic cycles found in
the previous section. Since we want the translation not to change the norm of G too much,
we ask first which elements of Appys have the smallest norm. Since

H?
Go = <G0 + 2)
prim

H2
Go+ 4 € H*?(X)nHYX,7),

in view of the integral Hodge conjecture we can suppose Gq is the primitive part of an

and

algebraic cycle

H2
L:Go-i-?

whose class in P? is HTZ -6H = 3H?3, i.e. a cycle of degree 3. In view of the three types of
algebraic cycles we have at our disposal in the Fermat variety, the minimal way to produce
such a degree 3 cycle is by taking

L=C;+ Cj + Cy,
for three linear cycles. Hence, our candidate for the G-flux will be of the form
G= é + (Cz + Cj + Ck:)prim-

For each of the cycles G e {6'1, ég, ég, 64, C~¥5} of the previous section, we find experimentally
that the G with lowest norm is obtained when one of the three linear cycles appears with a
negative sign in the expression of G. More precisely, for G = G1, we get

G? = (G1 + (Cas1 + Cas + Csg2)prim)” = 293.5. (4.16)
For G = G, we get

G? = (G + (C571 + Cs19 + Csar)prim)? = 295.5. (4.17)
For G = ég, we get

G? = (G3 + (Caso + Chs + C310)prim) > = 283.5. (4.18)
For G = C~}4, we get

G? = (G4 + (Chos + C36 + Cro2)prim)? = 291.5. (4.19)

For G = ég), we perform the calculation for various sums of three linear cycles, and the
combination with the lowest norm that we obtain is

G? = (G5 + (Coo1 + Cora + Cs71)prim)> = 353.5. (4.20)

These candidates for the G-flux (4.16), (4.17), (4.18), (4.19) and (4.20) are such that p(G)
is of full rank.
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4.3 Discussion

The problem (4.4) from the computational point of view is a problem that may not converge
since the combinations with integers of a base of 1001 is infinite. In the reduced problem (4.6),
the numerical complexity is reduced but still the problem is not convergent, since the
coefficients are any possible combination of positive integers. It is for this reason that we
pose the optimization problems of the linearized problem (4.9), which already takes into
account the experimental constraints presented in the table 2.

The solutions obtained in the problem (4.9), allow us to place our search in finite
combinations of cycles. However, these numbers are too large. Thus we have,

e One difference of linear cycles, Two differences of type 3 cycles: 1001 - 1000 - 30 - 29 - 28 -
27 = 6.5837772 x 10! possible combinations.

o Two differences of linear cycles, Two differences of type 3 cycles: 1001 - 1000 - 999 - 998 -
30-29 - 28 - 27 = 6.564039 x 10'7 possible combinations.

¢ One difference of Aoki-Shioda cycles, Two differences of type 3 cycles: 720719 - 30 -
29 - 28 - 27 = 3.4048848 x 10! possible combinations.

Our strategy was hence to perform a random search on these possible combinations. For
each of the three possible cases we searched 1 million trials. The average time for each of
these searches is 2 — 7 hours on a standard PC. It is worth noting that this process was
performed by using the pool library of the Python multiprocessing package, so each search
was split into 4 parallel searches. It should also be noted that before performing each of
these searches we performed a data preprocessing, in which we used a bracketing method
strategy. This consists in performing a first search to find a cycle that satisfies the condition
of being generic and with small norm. Next, the searches are performed by first comparing
the norm with the previously found one, and then verifying the genericity condition. This is
in order to speed up the verification process, since verifying the genericity condition requires
much more time than verifying the norm. The norm to be compared is then updated and
the search process is repeated.

In addition to the search time of the generic algebraic cycle with small norm, it is
necessary to add the computation time to build the flow. For each combination of algebraic
cycles found, we must add three linear cycles and determine the new norm. This process
implies that for each combination there are 1001 -1000-999 = 9.99999 x 10® new combinations.
For the cases where the algebraic cycle has combinations of linear cycles, by brute force
experiments we determine that one of the linear cycles to be added should be one of those
that appeared in the algebraic cycle with negative sign. Thus, the flux search for these
algebraic cycles was on the order of 1001 - 1000, which took about 20 minutes.

After constructing the G-flux from the cycles él,ég,ég,é4,@5 we found that the
combination with the smallest norm satisfied the equation

G = (Ci, = Cyy) + (Ciy = Ciy) + (Tj, = Tj,) + (Tjy — Tj,) + (Ciy + Ciy + Cis )prim
:Ci1 +Ci3 +Ci5+(TJ'1 _sz)'f_(Tj _Tj4)‘
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Therefore, we performed searches with this combination of algebraic cycles that were generic
and with small norm. The number of combinations is 1001 - 1000 - 999 - 30 - 29 - 28 - 27 =
6.5771934 x 10'. In this case, a test of 1 million samples takes 1.5 — 2 hours. Finally, we
performed 107 random samples and the best combinations found were:

G = Cs99 + Ces + C310 + (T5 — T1) + (Tos — The)
G = Ceaa + Ci73 + Csoz + (Toa — T5) + (T — Tg)
with G2 = 283.5, with intersection matrices

125/6 —1/6 —1/6 0 2
~1/6 125/6 —1/6 0 0
~1/6 —1/6 125/6 —2 4 —1

0 0 -2 96 24 0 12 |,
2 0 4 24 96 12 —12
0 0 -1 0 12 96 12
0 0 0 12 —12 12 96

125/6 —1/6 —1/6 —4 —4 0 4
~1/6 125/6 —1/6 0 0 0 2
~1/6 —1/6 125/6 0 0 -2 1
-4 0 0 96 24 —1212],
-4 0 0 24 96 12 0
0 -2 —12 12 96 12
2 1 12 0 12 9

respectively.

In conclusion, the computational complexity and computing time makes the verification
of all the combinations associated with the solutions of the problem (4.9) unpractical. For
this reason a random search within the parameter space may seem to be the best search
strategy at this time.

5 Constructing fluxes from residues

In this section we will approach the problem of finding a Hodge cycle of maximal condimension
and minimal length by working with the residues wg. For any primitive Hodge cycle G we

can write

G = Z agwg . (5.1)
B,18|=2

The components of pr; can be worked out using (2.13):

—(2mi)* —(2mi)*
PIJ = Bz|: ag 2265 Wor+By "W = 2735 a51+ﬁJ (5'2)
=2
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For ease of computation, we rescale pr; by the global prefactor and instead work with
23
pPrj = WpIJ:am (53)

Given that H*(X,Z) is a self-dual lattice and that we know a basis of H*(X,Z) in
terms of vanishing cycles and linear algebraic cycles, as well as the intersection between the
residues and any vanishing cycle or algebraic cycle using (2.13) and (2.27), we have that
G + c2(X)/2 € HYX,Z) if and only if

G-65€ZVB (5.4)

and

15H? 1
(G—i— 52 )-C’g—G-C’g—i—;EZforsomeCﬁ. (5.5)

By imposing these conditions on the Ansatz (5.1), which is primitive and of Hodge type
(2,2) by construction, we can hence find the set Aphys of all properly quantized Hodge
cycles expressed in terms of residues. For any G € Anys we can then straightforwardly
work out pr; and G - G.

In principle, this then allows us to use the following strategy: for any bound 7', we can
list all G € Apphys with G -G < T, and then check what is the maximal rank of p found within
this set. If we can perform this task for choices of T" that are big enough, this in turn allows
us to determine the minimal value of G - G for which p has maximal rank. As Appys has rank
1751 this is a formidable problem that is computationally beyond our present capabilities.

We will hence content ourselves with addressing a somewhat simplified problem in this
section and study this problem for Fermat sextics with specific symmetries. In other words,
we will select a finite abelian groups of symmetries I' of X and only consider fluxes G and
deformations invariant under the action of I'. In practice, this achieved by restricting the
wg appearing in G and those appearing in p;; to monomials invariant under I'. Besides
giving us tractable versions of the question we are interested in for the Fermat sextic X, we
also get flux solutions for the quotients X/I'" (almost) for free. Such an approach has been
investigated more generally in the context of the tadpole conjecture in [26].

Before discussing several examples of I' in detail, let us collect a few useful facts and
establish some notation.

5.1 Complex conjugation

As we want G in particular to be real, G € H*(X), we need to study the action of complex
conjugation. As wg is primitive and a basis of the primitive middle cohomology is given by
vanishing cycles tensored with R, it follows from (2.27) that wg is proportional to wg. We set

wg = CRWS - (5.6)

We can now fix cg by integrating both wg and wgj over the same vanishing cycle. As this

J

cycle is real

Gp = /5%. (5.7)

8’ 8
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Using 8 = (0°) we find for |3| = 2 that

fa , WB (ﬁzﬂ)ng 5 F(BZH)
€8 = féz, _z]‘_[o]:‘(56ﬁz) C% B _ 4 H}F(f) ,31) (5.8)

This has the structure as found above and is furthermore real in all cases. In particular, we

have the following depending on decomposability of 3:

o Whenever f is 3-decomposable we have that (choosing an appropriate permutation)
Boi = 4 — Bai+1, so that cg = —1.

e When S is 1-decomposable we have 5 = (Sy,4 — 5o, 0,2, 3,3) and hence

TETErE) o r@rE)  verer@rE) o,

SO e T v

(5.9)

e When f is indecomposable we can set 8 = (4,4,1,1,1,1) and hence

_F(%)QF (%)4 ) _F (%)2 (21_2/3ﬁ)22r (é)Q ) _22/3 _ o2 (5.10)

g = T (%)QP (%>4 T (%)2 (21—2/6ﬁ)22f (%)2 24/3

Here we have used the following relations repeatedly

F(Z)F(l B Z) - sin(ﬂz) (511)

D()T(z+3) =27 (22).
5.2 The period formula, integrality, and G?

In order to efficiently impose (5.4) we introduce some suitable notation. We can write (2.27)
for |B| = 2 as

11 Bi + 1\ [ BB+ . (B)(Bi+D)
/aﬂ,w6_6547rilzlr( 5 )(% — (g )

_ L1 Bi A1\ [ (Bit1) _ (B:41) (5.12)
=g 1L (75 (@ -l
= ZUZBZ(,B,B/)

with

L

65 471

zﬂ_Hr(BZH) (¢ =1). (5.13)

Z(B,6) = CGZZ' Ay

Here, z, is a universal normalization factor and the factors zz are a normalization which

Zy =

only depends on S, i.e. on the residue in question. The only non-trivial data about the
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lattice determined by (5.4) is contained in Z(3, ') which are always some sixth root of
unity for all 8 or #’. Note that

2(B,B') = ¢ O 2 (2 POTP) _ 2P _ gy (5.14)

We now make the following manifestly real Ansatz for G:
VB Vg -
G = g wg + ——wg. 5.15
o7 Futs A ZuZs A (5.15)

Here, Z a subset of 3s with |3| = 2 which contains 8 = (2°) and exactly one member from each
pair §, 3. This set has 876 elements. Note that W(g6) = —w(26), Z(26) = Z(26) and z, = —2zy
which implies that v(os) is real. This implies that

a5:£ if BeT\ (25
u?p
V5% :
=27 fB¢T
ap 273 if 3¢ (5.16)
o) = 21/(26)
(2°) ZUZ(QG)

Using this Ansatz, condition (5.4) becomes

G653 =Y v3Z(8,8) +3Z(8,8) € LS (5.17)
BeT

Defining the inner form
(a,b) = ab+ ab (5.18)

on C, the above relations can now be understood as the condition that the vz are contained
in the lattice Z* dual to the lattice Z spanned by the Z(8,5').

Note that with the inner form just defined, the lattice generated by sixth roots of unity
is isometric to the root lattice As, and the lattice generated by 1 becomes isometric to
the root lattice A;.

We can make a few general statements about the lattice Z by examining the behavior of
the Z(B,5'). It B =(2,2,2,2,2,2), Z(B, ') is always £1. For all other f3, there is always
a (' such that Z(3, ") becomes a non-trivial third or sixth root of unity. Furthermore, as
B =(0,0,0,0,0,0) appears as a condition in (5.17), Z(3, ") = 1 also appears for every [.
This means that using the inner form above for each fixed 3, Z (3, 5’) is contained in A; if
B =1(2,2,2,2,2,2), and is contained in Ay for all others. We hence have that?

Z = Spanz({©sezZ(B,8)}) C A3 @ A . (5.19)

Note that 75 € Z* alone does not yet imply that G € Appys, as we also need to satisfy (5.5).

?We shall see in examples below that Z # AS8™ @ A;, so we have in fact a proper inclusion.
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Having determined Appys by appropriately chosing the vg we can work out

4, 2vgv3
GG = —g—wes Do+ Y Thlnws 0
|zu|?2 (26) BeET\(26) |22 ‘25|
A (5.20)
2mi)* 1 g, 2| 4V(es)2 2vp08
=(-1) 52 —56 [4mi|* | — o + P ’2 c
(25) BET\(26)
This can be simplified using
HF Fit 1\ (55 _1F Bi+1 _Q‘Ci'i‘l_l’_Q
|zﬁ|2 B 6 6 6 6
1 (5.21)
- 2127655
with ;
+ 1
Sp =[] sin (BZ i ) (5.22)
i=0 6
Finally, Sg can be easily worked out using
B;|sin (’31;1)
of 3
1 i3
) 2\1[ (5.23)
30 V3
4 3
Putting it all together, we find that
5 1 <Vﬁa Vﬂ>
G-G=3 <l/(26), V(26)> + 5 Z S . (524)
per\(29) 7P
5.3 Groups of symmetries
We will consider symmetries that act on the homogeneous coordinates z; as
g: (x07x1,$2,$3,$4,$5) — (Cgox07CglxlaCg2x27cggx37<g4x47<gsx5)7 (525)

with ¢ a primitive 6th root of unity and g; € [0,1,2,3,4,5] , i.e. we do not consider group
actions which permute the homogeneous coordinates x;. We can specify any such group
action by giving the weights g; of each generator of the group. Note that the homogeneous
coordinates are only defined modulo the C* action of P°, so that we can identify

(90,91,92:93,94,95) ~ (go+ 1,91+ L, g2+ 1,93+ 1,94+ 1,95+ 1). (5.26)
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The action of some g € I' on wg is
wg — wBCZi 9:(Bi+1) (5.27)

so that the invariant subspace in the middle cohomology is spanned by H? together with
those residues for which

> gi(Bi+1)=0mod6 VgeTl (5.28)

We will only consider groups I which preserve the holomorphic top-form €2, so that we need

> gi=0mod6 VgeT. (5.29)

We can classify all groups of such symmetries as follows. The subgroup of the automor-
phism group of X preserving Q and acting as (5.25) is Ag = (Z/6Z)* with generators

go 91 92 93 94 gs go g1 g2 g3 ga 9gs
1 -1 1 -1

—
\
[
12
—_
\
[

(5.30)

1 -1 1 -1

Note that this group action does not single out any homogeneous coordinate despite its
presentation. Any subgroup I' < .44 hence gives us an instance of a faithful representation I
that acts diagonally as (5.25) and preserves the Calabi-Yau property. Conversely, consider
the image of an element g € I" under a representation r that acts on X as (5.25) and preserves
the Calabi-Yau property. It follows that r(g) € Ag, so that r(I') must be a subgroup of Ay.
If r is furthermore faithful we have that r(I') = T.

We can hence classify all finite abelian groups which faithfully act in a representation of
the form (5.25) on X and which preserve the Calabi-Yau property by finding all sungroups of
Ag. There are 14204 subgroups of A4, however many of these are identified when permuting
the coordinates ;. In such cases, the dimensions of the invariant subspaces of HP'¢ are equal.
We have listed all possible orders of I' together with the dimension of the invariant subspaces
of H3'(X) and H*?(X) in table 8. Note that a single entry potentially corresponds to
genuinely different subgroups of (Z/6Z)*, i.e. subgroups which are not identified by simply
permuting the x;.

5.4 Symmetric under T' = (Z/6Z)*

In this example, we define the action of the group I' by

go 91 92 93 94 gs
1 -10 0 0 O

01 -10 00 (5.31)
00 1-100
00 0 110
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For a form wg to be invariant we need that 3; = §; for all ¢, j. The only invariant residues

are hence
B El
w(esy (0,0,0,0,0,0) 0O
waey (1,1,1,1,1,1) 1 (5.32)
weey (2,2,2,2,2,2) 2
wesy (3,3,3,3,3,3) 3
46y (4,4,4,4,4,4) 4

In particular, there is now only a single term in G that is non-zero and the matrix p is
just a number.

Imposing that G - 0g € Z now results in Vp6) € A7 which implies that vy = § for
n € Z so that

w(26) 2.3%

G = = 5.33
nZuZ(QG) " 2 W(QG) ( )
Next we impose that
1
which for Cp o reads
2-3% o 1 3% +2n 32 1
/Clt')o,lo,o G= nT (27”) mflz ! = _nj €7+ 5 (5.35)

so that n must be odd, n = 2m + 1 for m € Z.
We hence find that Appys is described as

2. 3%
Aphys = Gm = (2m + 1) 2 W(26)|m €7, . (536)

For any element of Apnys we have

C 95\ 2 2 210 4
G%—<(2m+1)2 :31) w(ge)-w(2a):—(2m+1)22 f ( (2m)>

T 97.95
(2m +1)%23°

2

The matrix p is just a number in this case and it is non-zero, i.e. has full rank, whenever
G # 0, which is true for any m. The shortest choices of G are m = 0 and m = —1 for which

35
G =G*, = 5 (5.38)
Note that
X) 1
9‘(24) —5Gi =48>0, (5.39)
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so that this flux is a perfectly viable solution. However, choosing the next to shortest flux

for m = 1 results in

X 1
XX _ 5Gl =138 <0 (5.40)
and does hence not give a consistent solution.

5.5 Symmetric under ' = (Z/67Z)* x (Z/3Z)

Here, I' is defined by its generators acting as

go 91 92 93 94 gs
1 -10 0 0 O

01 -1000 (5.41)
00 1-100
000 0 2 -2

so that the relevant invariant residue forms are

B 8]
) (1,1,1,1,1,1) 1
w(0432 (0,0,0,0,3,3) 1 (5.42)
) (2,2,2,2,2,2) 2 '
U.)(1442 (1,1,1,1,4,4) 2
wzie2) (3,3,3,3,0,0) 2
In this case we have
Zgy = Spanz { Z((1'4%), 8') @ 2((2°), ) | (5.43)

By working these out for all 3, one finds that the generators of Z4s5 are (1,0), (¢2,0), (0, 1),
so that Zgz = A @ Ay and Zisq = A5 & A7

In order to determine Appys, we now impose (5.5) using Cp 0. As Cooo - w142y = 0
this only constrains the A] summand such thar

2U(96 1
_ 2 o
/C«Qé(),o G = Zuz(zg) /CQ(;O’O CU(QG) = -3 V(QG) & 7 =+ 5 (544)

As for the first example, we hence find

V(26) = (2711 + 1)/2 (545)
together with vjay2)y € A3, ie
C*l
V1ag2) = ng + ng% : (5.46)
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The matrix prjgss is:

__ a a
PII633 = ( ) (3402)) (5.47)

01(3402) 0

The shortest G € Apnys for which p has rank one is found for n; = ng = nz = 0 in
which case we have

X
X(24) - fGO — 48>0, (5.48)

The shortest G with p of full rank is found for n; = no = 0 and n3 = 1, so that

X(X) 1 _, 2610 1(35

_ S alg T 3226> =240 <0 (5.49)

24 2707 94 9

where we have used S(j142) = g—z There are hence no solutions with p of maximal rank
within the tadpole bound here.
5.6 Symmetric under T’ = (Z/67)? x (Z/3Z) x (Z/27Z)
Here the action of the group I' is given by
go 91 92 93 94 G5
1-10 0 0 O
01 -100 0 (5.50)
00 0 2-20
00 00 3 -3

and the invariant residue forms are:

B i
wez2y (0,0,0,0,3,3) 1
wes2sy (0,0,0,2,2,2) 1
W(03412) (0,0,0,4,1,1) 1
wasy (1,1,1,1,1,1) 1
wasse?y (1,1,1,3,0,0) 1
wesesy (2,2,2,0,0,0) 1
wesas) (0,0,0,4,4,4) 2 (5.51)
wasazy (1,1,1,1,4,4) 2
wasssy (1,1,1,3,3,3) 2
wsos2) (2,2,2,0,3,3) 2
wesy (2,2,2,2,2,2) 2
wesai2y (2,2,2,4,1,1) 2
wessy (3,3,3,1,1,1) 2
wess2y (3,3,3,3,0,0) 2
wses) (4,4,4,0,0,0) 2
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The fundamental difference compared to previous examples is that (5.19) is not an
equality (when restricted to invariant forms) here, i.e.

26223 = SPCWZ {Z(w(0343)7 6/)7 Z(w(1442)7 /B/)a Z(w(1333)7 6/)7 Z(w(23032)7 5,)7 Z<w(26)7 B/)}

is not equal to A; @ A3. A basis of the dual lattice Za9 18 given in matrix form by:

65 it 0 0 0 0 0 0 0
0 0 ~5+55 5ta5 0 0 0 0 0
0 0 0 0 0 0 2 —S4520
3 i 0 0 0 0 0 o i
and we can write a general element of Zg,,, as
(V(0343), V(1442), V(1333), V(23032) V(QG)) = P93 - 1t (5.52)
with p € Z°. The Gram matrix of the lattice Ziags is given by
987/2 555 0 0 240 672 0 O 81/2
555 1686 0 0 336 912 0 0O 81
0 0O 576 1440 0 0 0 O 0
0 0 14404032 0 0 0 O 0
Geo3 = | 240 336 0 0 192 480 0 0 0 (5.53)
672 912 0 0 4801344 0 0 0
0 0 0O 0 0 0 216 540 0
0 0 0O 0 O 0 5401512 0
81/2 88 0O 0 O O 0 0 243/2

This is not an integral matrix as Z* is not an integral lattice.

Finally, we have to impose G to lie in Appys, We need to take care of the intersection
of G with respect to a linear cycle. An appropriate choice here is again C?do’o, as before.
While we have in total three 3-decomposable residues, namely wgs43), w(1333), w(26), we have
fixed the permutation to be the identity, and thus only w(,s) has a non-zero period with
respect to this linear cycle since it is the only cycle which is 3-decomposable with respect
to the identity permutation in this list.

Thus, to impose G' € Appys, we are reduced to make sure that the period of the rescaled

w(z6) is half integral with respect to C’EJO’O. For any given p, this condition becomes:

2-(%4-%4-%) o (N1 n9 Nng 1
=3 |—=—4+—=—4+—=)€Z+ = 5.04
ZuZ(26) /Clpd,o,o W(26) < 6 + 3 + 9 ) + 5 ( )

Note that no has no impact on this condition, so we can freely choose it. The resulting
constraint on n; and ng implies that n; + 3ng is an odd integer, so that we can write

ny =2k +1— 3ng (5.55)
for k € Z.
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Length | Number of solutions
243/2 2

411/2 |4

603/2 4

627/2 | 12

675/2 12

843/2 24

987/2 8

Table 3. Lengths in Apyys below 500.

We are now ready to find all flux solutions for this model by generating all vectors in
2293
in Appys. All lengths below 500 appearing in Appys and the associated numbers of solutions

up to some given length by computer, and then checking for each one if it is contained

are We can now work out

0 0 0 04(3402) 0 ()[(23412)
0 a(4303) a(23032) 05(3313) 0 04(26)
. 0 Q93032 0 0 0 0
P1Jg223 = (21039 (5.56)
04(3402) 04(3313) 0 0 (1(23032) OZ(1333)
0 0 0 a(23032) 0 a(1442)
0

04(23412) 04(26) 06(1333) 06(1442) 06(0343)

for any of these solutions, and examine the relationship between its rank and G2.

A first observation is that generically the same length can be associated to different
ranks. Of course this can happen trivially if we rescale GG, but also happens in a different
manner here. For example, the length G- G = % can correspond to prjg203 having rank

4 or rank 6, via for example the following solutions:

p=(-1,-1,-1,0,0,1,0,0,0)
p=(0,-1,0,0 1,1, -1,1, ~1)

We have performed a scan over all lengths up to 1500 and computed the associated
rank of p for all these solutions. This allows us to find the minimal length of G for each
rank of p. The result is shown in table 4 and figure 1. This is similar to the previous
example, where the solutions found were only below the tadpole if the rank of the matrix
was not full. The plot in figure 1 shows the minimum lengths associated to every rank,
as well as some further lattice points corresponding to rank four with non-minimal length.
Interpolating the growth of G? with the rank of p shows that the tadpole bound is crossed
well before a maximal rank of p is reached.

For all lengths shown in figure 1 except %, there exists a solution such that u; €
{=1,0,1}Vi. This is quite remarkable and indicates that constructing a basis of integral
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350 A
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200 A

150 1

100 : : : ; ;
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Figure 1. A plot of the minimal lengths found for each rank of p. The horizontal axis shows the
rank of p and the vertical axis the tadpole contribution of the solutions. The red vertical line shows
the tadpole bound.

Rank | Minimum
2 243/2
4 411/2
6 843/2

Table 4. Minimum for each rank.

Hodge cycles using residues appears to be very efficient, at least when choosing appropriate
linear combinations such as the ones in (5.52).

5.7 Quotients

The approach we have taken in this section naturally lends itself to study flux solutions on
quotients of the Fermat sextic by the groups I' considered. This appears to be a promising
avenue to generate general Hodge cycles within the tadpole bound. On the one hand, the
tadpole contribution is should be significantly smaller, as we expect the self-intersection
number of a symmetric flux to be divided by the order of the group for the quotient. On
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the other hand, the tadpole contribution of the geometry should be equal to the Euler
characteristic of a crepant resolution of the quotient, which is typically of a similar magnitude
than the original fourfold.

Let us exemplify this for the simple case of the Fermat sextic and T'gs = (Z/6Z)*, where
we can give a description using toric geometry. We first work out the Euler characteristic of
a resolution. The family of sextic Calabi-Yau fourfolds is described as toric hypersurfaces
by a pair of reflexive polytopes A, A* with vertices

10000 —1 —1-1-1-1-1 5

01000 —1 -1-1-1-1 5-1
A*=[00100-1{, A=|-1-1-1 5-1-1]. (5.57)

00010 —1 —1-1 5-1-1-1

00001 —1 -1 5-1-1-1-1

Here A* is the N-lattice polytope and A is the M-lattice polytope of the sextic fourfold
X, and the mirror XV is found by reversing the roles of the two polytopes. Crucially, X"
can also be found along the lines of [54] by taking (as resolution of) the quotient of X/I'g4,
and this is reflected in the face fan of A giving rise to the toric variety P°/T¢s. It can
be shown that A admits a fine and regular triangulation resulting in a projective crepant
resolution )/(1?6/4 of X/T'ga with

h(Xr,,) = 426 W (Xr,,) =1 W2 (Xr,,) =0 (5.58)

so that X()/(l:;) = 2610 = x(X) as expected for a mirror pair of Calabi-Yau fourfolds.

We now work out the fate of the tadpole contribution of the flux. As w(gs) is invariant
under I'ga we will use the same notation to denote the image of this residue on the quotient.
Following [55], we have that

fX (U(QS) A UJ(QG) B VOI(A) _ 64

— 5.59
fX/r64 w(26) A\ W(26) Vol(A*) ( )

where Vol() is the lattice volume of the respective polytopes. The ratio here follows from
the simple fact that the vertices of A* span N, whereas the vertices of A span N’ ¢ N
with N/N’ = T'qa. The result above fits with the naive expectation that integrating an
invariant form over a quotient is equal to the integral over the covering space divided by
the order of the group.

Similar results can be obtained for other groups I' as well. Here, the N-lattice polytope
describing the quotient is given by a polytope which is a simplex with vertices v; satisfying
> v; = 0 such that N/N’ =T, where N’ is again the sublattice of the N lattice spanned
by the v;. It hence follows from the same argument as above that the tadpole contribution
of the flux is reduced by |T|.

Given a flux symmetric under a finite group of symmetries, taking the quotient hence
leads to a significant reduction of the tadpole contribution of the flux. This comes with
another feature, however: the fourfolds X/I" are singular and the flux we have constructed is
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in general only defined on the singular fourfold X/T', i.e. these fluxes do not exist as properly
quantized fluxes on a resolution of X /T". This is already indicated by the tadpole contribution
of the flux being fractional in a way that does not originate from co/2. We expect this to be
offset in the singular model by fractional M2 branes located at the orbifold singularities.

5.8 Discussion

There are several numerical bottlenecks when performing explicit computations for the
sextic, all of them coming from the high dimensionality. The examples we have presented
could easily be worked out on a conventional PC, but already going up in dimension to
h??2 ~ 100 is not feasible without significant improvements in our methods of computation.
Of course, the same issues arise when investgating other models with sufficiently large h?2.
The challenges are in particular:

a) Generating a basis for the lattice, which requires to put a matrix in row echelon form.
b) The computation of the rank of p.
¢) The enumeration of elements of the lattice within a certain bound.

The bottleneck associated with item a) comes from the computational cost associated with
exact or symbolic (respectively) artihmetic to compute the row echelon form. One can hope
that using an appropriate language/software instead of the one used here (SAGEMATH [50])
can accelerate the calcultion. In particular, JULIA [51] can be an alternative since it is much
faster than an interpreted language such as SAGEMATH and possess the same algorithms
already built-in. Furthermore, a possible solution would be to use a modified floating point
algorithm that would still recover the exact result, eg similar to [52].

Concerning b), although one can check if p has maximal rank by working out its
determinant, this computation is unstable using float variables. In particular, it depends on
the condition number of the matrix involved, and is stable only if the matrix involved has no
eigenvalues close to 0. This is not guaranteed here, and in fact experimentally was not the
case. Alternatively, one may use symbolic methods which is comparable in terms of speed to
computing the rank via methods similar to a), and with the same shortcomings.

Item c) is perhaps the biggest difficulty and can be understood intuitively. To each basis
vector of the lattice, or equivalently each variable in the quadratic form, we can associated a
bound n; such that considering all z; < n; we have enumerated all points of interest that are
potentially below the bound. For a diagonal Gram matrix, we would then need to check all
lattice points in a box, i.e. investigate [ [; n; points. However, due to non-diagonal terms in the
Gram matrix, one might need to increase n; as the dimension d increases, i.e. we effectively
have n; = n;(d). We hence end up with a complexity which goes like %, n;(d) ~ n(d)?
assuming that n;(d) can be approximated by a universal n(d) for all i.

Notably the Fincke-Pohst algorithm [53], one of the gold standards for lattice enumeration
problems, which was used to perform the enumeration has 20(d?) complexity. For the case
for the sextic where d = 1751, this is impossible to perform. One potential solution to
these issues is to try to use cleverly the modularity of the sextic and the formalism of the
p-adics to try to reduce the problem to a bunch of simpler problems (for example determining
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the solution to the representation of a number by a quadratic form at a local place p is
considerably faster and only needs finite precision).

6 Arithmetic and obstructions

Given a point in the complex structure moduli space of a Calabi-Yau fourfold X, the
intersection product of primitive Hodge cycles naturally corresponds to an integral quadratic
form G. The set of Hodge cycles below the Tadpole bound is then

S(G,T):={k|3peZ", Gn) =k<T},

with T the associated tadpole bound and n the dimension of H*>? N H 4(Z)pm-m. While
this set finite, performing an enumeration is computationally expensive and conceptually
unsatisfactory, and we wish to find a necessary conditions for S(G,T) to be non-empty.

An integer m is called representable by G if there exists integers p € Z" s.t. G(u) = m.
For an integer m to be representable, we have to have corresponding representations of the
p-adic reductions m, by G, and p, for every prime p:

peEZ, meZ,Gu)=m = I, € Zy | Gppp) = my € Zy (6.1)

This is a simple consequence of the fact that if an integral equation has an integral solution,
then it also has a solution modulo every integer. Since every integer can be written uniquely
as a product of prime powers, it suffices to limit ourselves to the p-adic integers and study
solutions modulo every prime power.

Furthermore, the most relevant observation from the point of the view of the tadpole
conjecture, is that there are typically obstructions for lengths to be represented by a given
quadratic form. While it may only be possible to detect this by an exhaustive scan when
working over Z, it is often possible to quickly show that certain integers are not representable
by studying the reduction modulo p.

A standard example is the A, lattice, which is even, i.e. only even integers can be
represented. Indeed, the associated quadratic form has a common factor of 2 in every term.
The consequence is that no odd numbers can be represented by the As lattice because an odd
number will reduce to 1 modulo 2, while the quadratic form of As is identically 0 modulo
2, and thus there are no non-trivial solutions.

Let us exemplify this point of view for the problem treated in this work. Let us study the
existence of solutions for the gram matrix G(Ig239), (5.53), i.e. the set S(G(Ig239),1500). A
direct observation from the results shown in table 3 is that there are only 7 lengths in Appys
below 500, already well above the tadpole bound, indicating that the majority of integers
below the tadpole bound cannot be represented.

In table 9, we have generated a list of all integers up to 1500 representable by G(I'g235)
which also includes their multiplicity. Note that this does not yet impose the physical
quantization condition related to ca(X)/2.

As we can see right away, there are very few lengths represented by this quadratic form
to begin with. In fact, there are only 108 lengths represented up to 1500. Furthermore, as
the length increases, so does the number of solutions.
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Since it is valued in Z + % in general, we will multiply everything by a factor of 2. This
allows us to recover the case of an integral quadratic form, and if we restrict ourselves to
solutions that are odd, we recover Aphys for G(I'g232). This results in the following matrix:

987 1110 0 0 4801344 O 0 81

1110 3372 0O 0 6721824 O 0 162

0 0 11522880 0 O 0 0 0

0 0 28808064 0 O 0 0 0
G=1]480 672 0 0 384 960 O 0 0
1344 1824 0 0 960 2688 0 0 0

0 0 0 0 0 0 432 1080 O

0 0 0 0 0 0 10803024 0

81 162 0 0 0 O 0 0 243

As an example, let us study whether or not 433 is represented by this matrix. Note
that 433 is odd and thus in principle can lie in Appys. We know that if there is a solution
i € Z, then there must be solutions in the p-adics p, € Z, for every prime p. So we can
first perform a reduction mod 3 of G, which is identically 0. Since 433 = 1 (mod 3), we have
an obstruction: there is no non-trivial solution in the 3-adics.

Let us also work out the obstruction modulo 2 to see that it is indeed prime powers that
matter, and not just the primes. For n = 1, the quadratic form G is:

Go = n} + nl (6.2)

Since 433 = 1(mod 2) there are no obstructions. However, for n = 2, the quadratic
form Gy is:

Goz = 303 4 214 - ng + 3n3 (6.3)

Since 433 = 1 (mod 4) there are in fact obstructions modulo 4, as G2 is always 0 or 3 modulo 4.

While the existence of obstructions to solutions holds for quadratic forms in general,
here it is quite important to note the algebro-geometric origin of the quadratic forms we are
considering. From the geometric and physical context, one can hope to a priori determine
the obstructions, which leaves to determine the representation of integers for which there
are no obstructions, thus severely constraining the set of physical solutions.

Finally, the key question we can ask then is does about the converse of (6.1): if we have
determined that there are no obstructions in the p-adics Zj,, does this imply that we can
lift the solutions in the p-adics Zj, to a solution in Z ? This is known as the local-global, or
Hasse, principle [56]. While it does not hold in general, given the specificity of this problem,
with constraints coming from both geometry and physics, one can hope that studying this
principle in this context might lead to new insights regarding the tadpole conjecture.

It would be interesting to combine the observation about quotients made above with the
number theoretic approach outlined here. Dividing a given quadratic form by prime powers
can be described in this language as removing obstructions to the representation of integers
by this quadratic form. It would be very interesting to systematically investigate this further.
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7 Conclusions and future directions

In this work we have continued the investigation of fluxed M-Theory compactifications on
the Fermat sextic initiated in [14]. We have extended this work in two essential ways, from
which can draw a number of lessons.

First, we have investigated fluxes defined via algebraic cycles that are not just of
linear type, but also included two types of non-linear algebraic cycles: those of ‘Aoki-
Shioda’ type and those of ‘type 3’ This choice was motivated by these cycles spanning
the entire H22(X) N H*(X,Q). Looking for fluxes which stabilize all complex structure
moduli, i.e. general Hodge cycles, we found solutions obeying the physical quantization
condition with a tadpole contribution bounded below by Qo = %G -G = 567/4. This
is significantly less than the physically quantized general Hodge cycle constructed in [15],
for which Q2 = 3G - G = 775/4. We hence find that the tadpole bound 3G - G < 435/4
is again violated by a sizeable margin. The ratio of the tadpole contribution of the flux
and the number of stabilized moduli drops to 0.3327, which comes remarkably close to the
ratio of 1/3 originally conjectured in [16].

The strength of this approach is that it is easy to implement the physical quantization
condition, and straightforward to check the number of stabilized moduli by computing the
resulting rank of p. However, it is far from clear if this approach can, in principle, be extended
to describe any physically quantized flux as this requires the integral Hodge conjecture.
Despite the fact that the set of algebraic cycles we are considering is enough to show the
Hodge conjecture over Q, we have shown that it fails to generate all of H*? N H*(X,Z), i.e.
even if the integral Hodge conjecture is true for the Fermat sextic, the types of algebraic
cycles we are considering are still not enough to generate all integral Hodge cycles.

The second extension of [14] we investigated was to study the physical quantization
condition for Hodge cycles constructed from Griffiths residues. This guarantees to find all
integral Hodge cycles and we can again, in principle, compute the rank of p in a straightforward
fashion. Due to the computational complexity we restricted ourselves to solutions with
symmetries, which allowed us to study in examples how G - G grows with the rank of p. In
all cases except taking the largest possible group of symmetries, I' = (Z/ 6Z)4, it was not
possible to stabilize all (symmetric) moduli within the tadpole bound.

Taking quotients significantly eases the tension between the desire to have a general
Hodge cycle and remain within the tadpole bound. As remarked in section 5.7, this typically
implies that the flux on the quotient is only defined on a singular fourfold. This is an
interesting prospect in that singular fourfolds in M/F theory give rise to non-trivial gauge
theory sectors. Apart from non-Higgsable clusters [57], such sectors are absent at generic
points in the moduli space, and it would be fascinating if the tadpole bound, together with
the condition of having a general Hodge cycle, predicts the presence of gauge theory sectors
in F-Theory. This idea resonates well with the results of [32].

In both approaches we have taken we ultimately were only able to construct fluxes which
might turn out to be rather special. When dealing with algebraic cycles, we were able to find
general Hodge cycles, but due to the computational complexity involved only sampled linear
combinations of few algebraic cycles. Furthermore as remarked above, this only gives us
access to a sublattice of integral Hodge cycles as the algebraic cycles of complete intersection
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type considered here do no span the lattice of all Hodge cycles. Using residues we have access
to the whole of H?>?(X) N H*(X,C), but the Hodge cycles we constructed are only general
after imposing (rather large) groups of symmetries. As remarked at the end of section 5,
finding general Hodge cycles when considering the whole complex structure moduli space of
the sextic seems computationally out of reach with current methods. It is not impossible
that the picture we have painted persists for ‘generic’ Hodge cycles, but the computational
limitations make it difficult to give a definite answer.

The two approaches we have taken rely on results about periods of algebraic cycles, and
the construction of the integral middle cohomology as well as integrals of residues, respectively.
It would be interesting to extend these results, and hence the present work, to other points in
the moduli space of the sextic hypersurface, to hypersurfaces in weighted projective spaces or
even toric varieties, or to complete intersections in products of projective spaces. Although the
same tools used to establish the results we used for the Fermat sextic are in principle available
in these cases, we still expect significant technical difficulties. One may hope, however that
‘typical’ such examples have a lower dimensionality so that definite answers canbe obtained.

The problem we were studying is ultimately arithmetic in nature, and one cannot help but
wonder if the questions we are asking can more naturally be addressed in a number theoretic
setting. As an example, we explained how the question which tadpoles can in principle be
induced by the flux into the questions can be cast into the question of representability of
integers by a quadratic form. The obstructions to numbers being representable can then be
detected by studying this form in its p-adic reduction. It would be very interesting to push
this further and study this approach in more generality. By fully exploiting the fact that the
quadratic form one is studying is of geometric origin and is ultimately tied to the primes
appearing in the defining equation of the fourfold in question, one can hope to make more
far-reaching statements. In particular, it might be interesting to explore the implications of
the existence of the elliptic fibration required to construct an F-Theory background. While
this approach does not yet tell us what is the minimal length of a general Hodge cycle under
appropriate quantization conditions, it nonetheless shows that the set of possible tadpoles
can be restricted in a surprising fashion.

The Fermat sextic studied here is known to be modular [58], and it would be interesting
to investigate the connection of the proposal of [59, 60], see also [61], with the inner form
between Hodge cycles. A recent study of modularity of Calabi-Yau fourfolds in relation to
M-Theory flux vacua has appeared in [62]. The closely related arithmetic underlying solutions
on quotients of K3 x K3 of CM type was studied in [63, 64].
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A Lists of linearly independent algebraic cycles

This appendix contains lists of linearly independent algebraic cycles of linear type, Aoki-Shioda
type, and type 3. The tables list the powers of primitive roots of unity and permutation
of homogeneous coordinates for each cycle.

Index 0y, 03, 05) Permutations of linear cycles
1,...14 (0,0,0) Y\(012345)
15,..,209 | (1,0,0),(2,0,0),(3,0,0),(4,0,0),(0,1,0) | &
(1,1,0),(2,1,0),(3,1,0),(4,1,0),(0,2,0)
(1,2,0),(2,2,0),(3,2,0),(4,2,0),(0,3,0)
(1,3,0),(2,3,0),(3,3,0),(4,3,0)
300,...,305 | (0,4,0) (012340),(01243)) (031420),(012534),(031524),(041523)
306,...,308 | (1,4,0) (031425),(031524), (041523)
309,...,311 | (2,4,0) (031425),(031524),(041523)
312,...314 | (3.4,0) (031425),(031524), (041523)
315,...,317 | (4,4,0) (031425),(031524), (041523)
318,... 617 | (0,0,1),(1,0,1),(2,0,1),(3.0,1),(4,0,1) | &
(0,1,1),(1,1,1),(2,1,1),(3.1,1),(4,1,1)
(0,2,1),(1,2,1),(2,2,1),(3,2,1),(4,2,1)
(0,3,1),(1,3,1),(2,3,1),(3,3.1),(4,3,1)
618,...,623 | (0,4,1) (012345)7(012430) (031425),(012534), (031524), (041523)
624,... 626 | (1,4,1) (031425),(031524), (041 >23)
627,...,629 | (2,4,1) (031425),(031524),(041523)
630,...,632 | (3,4,1) (031425), (031524)7 (041523)
633,...,635 | (4,4,1) (031425),(031524),(041523)
636,....800 | (0,0,2),(1,0,2),(2,0,2),(3.0,2),(4.0.2) | &
(0,1,2),(1,1,2),(2,1,2),(3,1,2),(4,1,2)
(0,2.2)
801,...,814 | (1,2,2) \(012534)
815,...,828 | (2,2,2) S\(0 1253 4)
829,...,842 | (3,2,2) S\(012534)
843,... 856 | (4,2.2) N\(012534)
857,... 871 | (0,3.2) 5
872,... 886 | (1,3.2) 5
887,...,901 | (2,3,2) D)
902,...,914 | (3,3,2) S\(012435),(041235)
915,....927 | (4,3.2) Y\(012435), (041235)
928,....933 | (0,4.2) (012345),(012435),(031425),(012534),(031524),(041523)
934 (1,4,2) (031425)
935 (2,4,2) (031425)
936 (3,4,2) (031425)
937 (4,4,2) (031425)
938,...,948 | (0,0,3) (012345),(021345),(031245),(012435), (021435),(041235),
(031425),(012534),(021534),(051234),(041523)
949,...,956 | (1,0,3) (021340),(031245),(021435),(041235)7(031425),(021534),
(051234),(041523)
957,...,964 | (2,0,3) (021340),(03124") (021435),(041235),(031425),(021534),
(051234),(041523)
965,....970 | (3,0,3) (021345),(031245),(021435),(031425), (021534),(051234)
971,....,976 | (4,0,3) (021345),(031245),(021435),(031425),(021534),(051234)
977,...,984 | (0,1,3) (012343)7(021340) (031245),(021435),(041235), (031425),
(021534),(051234)
985,...,989 | (1,1,3) (02134 >)4 (031245),(021435),(041235), (031425)
990,...,994 | (2,1,3) (021345),(031245),(021435),(041235),(031425)
995 (3,1,3) (021345)
996 (4,1,3) (021345)
997,998,999 | (0,2,3) (012345)(021345),(031425)
1000,1001 | (0,3,3) (021345),(031245)

Table 5. List of linearly independent linear cycles. ¥ refers to the set of permutations (3.4).
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Index [ (Lo, L2, 23, ¢5) [ Permutations of Aoki-Shioda cycles

1002,...,1337 | (0,1,0,0) S\ (504132),(514032),(504231), (52403 1),
(403521),(503421),(504321),(435021),
(534021),(514230),(524130),(413520),
(513420),(514320),(435120),(534120),
(324510),(423510),(325410), (52341 0),
(425310),(524310),(435210),(534210)

1338,...,1593 | (1,1,0,0) (012345),(102345),(201345),(013245),(103245),(301 24 5),
(023145),(203145),(302145),(123045),(213045),(312045),
(012435),(102435),(201435),(014235),(104235),(401 235),
(024135),(204135),(402135),(124035),(214035),(412035),
(013425),(103425),(301425),(014325),(104325),(401325),
(034125),(304125),(403125),(134025),(314025),(413025),
(023415),(203415),(302415),(024315),(204315),(40231 5),
(034215),(304215),(403215),(234015),(324015),(42301 5),
(123405),(213405),(312405),(124305),(214305),(4123025),
(134205),(314205),(413205),(234105),(324105),(4231035),
(012354),(102354),(201354),(013254),(103254),(301254),
(023154),(203154),(302154),(123054),(213054),(312054),
(012534),(102534),(201534),(015234),(105234),(501 23 4),
(025134),(205134),(502134),(125034),(215034),(512034),
(013524),(103524),(301524),(015324),(105324),(501 32 4),
(035124),(305124),(503124),(135024),(315024),(513024),
(023514),(203514),(302514),(025314),(205314),(50231 4),
(035214),(305214),(503214),(235014),(325014),(52301 4),
(123504),(213504),(312504),(125304),(215304),(512304),
(135204),(315204),(513204),(235104),(523104),(012453),
(102453),(201453),(014253),(104253),(401253),(024153),
(204153),(402153),(124053),(214053),(412053),(012543),
(102543),(201543),(015243),(105243),(501243),(025143),
(205143),(125043),(014523),(104523),(401523),(015423),
(105423),(501423),(045123),(405123),(504123),(145023),
(415023),(514023),(024513),(204513),(402513),(02541 3),
(205413),(502413),(045213),(405213),(245013),(42501 3),
(524013),(124503),(2145083),(412503),(125403),(512403),
(145203),(415203),(245103),(013452),(103452),(301452),
(014352),(104352),(401352),(034152),(304152),(40315°2),
(134052),(314052),(413052),(013542),(103542),(30154°2),
(015342),(105342),(501342),(035142),(305142),(13504°2),
(014532),(104532),(401532),(015432),(405132),(034512),
(304512),(035412),(305412),(045312),(405312),(34501 2),
(435012),(534012),(134502),(314502),(135402),(14530°2),
(345102),(023451),(203451),(302451),(024351),(204351),
(402351),(034251),(304251),(234051),(324051),(423051),
(023541),(203541),(025341),(205341),(502341),(305241),
(235041),(024531),(204531),(405231),(034521),(304521),
(234501),(235401),(245301),(345201),(123450),(213450),
(312450),(124350),(214350),(412350),(134250),(314250),
(234150),(123540),(125340),(215340),(512340),(315240),
(124530),(415230),(134520),(234510)

1594,...,1645 | (0,0,0,1) (012345),(102345),(013245),(103245),(023145),(203145),
(123045),(213045),(012435),(102435),(014235),(104235),
(024135),(204135),(124035),(013425),(103425),(014325),
(304125),(203415),(012354),(102354),(013254),(103254),
(203154),(012534),(102534),(015234),(105234),(0251 34),
(205134),(125034),(013524),(103524),(015324),(3051 24),
(203514),(012453),(102453),(014253),(104253),(204153),
(014523),(104523),(015423),(405123),(204513),(013452),
(103452),(304152),(304512),(203451)

1646,..., 1687 | (1,0,0,1) (012345),(102345),(013245),(103245),(023145),(203145),
(123045),(213045),(012435),(102435),(014235),(104235),
(024135),(204135),(124035),(013425),(103425),(014325),
(304125),(203415),(012354),(102354),(013254),(012534),
(102534),(015234),(105234),(025134),(205134),(125034),
(013524),(015324),(305124),(012453),(102453),(014253),
(014523),(015423),(405123),(013452),(103452),(203451)

1688,...,1703 | (0,1,0,1) (012345),(013245),(023145),(123045),(012435),(014235),
(013425),(023415),(123405),(012354),(012534),(015234),
(012453),(013452),(023451),(123450)

1704,...,1719 | (1,1,0,1) (012345),(013245),(023145),(123045),(012435),(014235),
(013425),(023415),(123405),(012354),(012534),(015234),
(012453),(013452),(023451),(123450)

1720 (0,1,0,2) (0,1,2,3,4,5)

1721 (1,1,0,2) (0,1,2,3,4,5)

Table 6. List of linearly independent Aoki-Shioda cycles. ¥’ refers to the set of permutations with
o(1) < o(2).
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Index ‘(Zl,€2,€37€4,45) ‘ Permutations of type 3 cycles ‘
1722,...,1730 | (0,0,0,0,0) (012345),(102345),(013245),(012435),(102435),(014235),
(013425),(103425),(203415)

(012345),(102345),(201345),(013245),(012435),(102435),
(201435),(014235),(013425),(103425),(301425),(023415),
(203415),( )
( )i( )
( )
( )

1731,...,1744 | (1,0,0,0,0)

123405

1745,...,1749 | (3,0,0,0,0) 012345),(012435),(013425),(023415),(1234025)
1750 (1,0,0,1,0) 012345

1751 (3,0,0,1,0) 012345

Table 7. List of linearly independent type 3 cycles.

B Subgroups of (Z/6Z)* acting on the Fermat Sextic

Below is a list of the occuring dimensions of invariant subspaces H>!(X);,, € H*1(X) and
H?2(X)iny C H*2(X) for all subgroups of (Z/6Z)*. Note that a single entry potentially
corresponds to genuinely different subgroups of (Z/6Z)%, i.e. subgroups which are not identified
by permuting the x;. As can be seen from the arrangement of the table, there is a matching

between cases with || = k and cases with |T'V| = 6*/k, which is a consequence of mirror
symmetry.

o (X)  hi(X) 0] || A (X)  AGS(X) T
1 426 1751 1296 1 1
2 226 903 648 2 3
3 138 563 432 1 7
3 144 587 432 3 3
3 162 611 432 3 5
4 126 479 324 4 7
6 70 291 216 2 11
6 72 315 216 4 9
6 74 291 216 4 11
6 76 303 216 5
6 84 309 216 6
6 86 315 216 6 9
8 76 267 162 8 15
9 48 191 144 3 23
9 52 191 144 5 17
9 62 215 144 7 17
9 66 215 144 9 11
12 36 155 108 4 19
12 36 179 108 6 19
12 38 155 108 6 21
12 40 155 108 6 23
12 40 167 108 8 17

Continued on next page

— 40 —



Continued from previous page

o (X)  han(X) T || W (X)) hed(X) 1|
12 42 155 108 8 19
12 42 161 108 8 21
12 46 161 108 10 15
12 48 167 108 10 19
12 60 149 108 12 17
16 51 161 81 16 31
18 24 99 72 6 33
18 24 103 72 6 35
18 26 97 72 7 29
18 28 99 72 8 29
18 30 111 72 8 33
18 30 119 72 10 27
18 32 109 72 10 31
18 34 107 72 11 29
18 34 111 72 12 25
18 36 95 72 12 27
18 42 99 72 12 31
18 42 103 72 14 29
24 22 87 54 10 35
24 22 99 54 12 43
24 24 87 54 14 35
24 24 93 54 14 37
24 27 87 54 14 43
24 34 81 54 16 35
24 36 87 54 18 39
27 22 67 48 15 53
27 28 75 48 15 59
27 30 83 48 21 47
36 12 53 36 12 53
36 12 57 36 12 55
36 14 51 36 12 57
36 14 63 36 12 59
36 16 57 36 14 51
36 18 49 36 14 55
36 18 55 36 14 63
36 20 51 36 16 55
36 22 49 36 16 57
36 22 53 36 16 61
36 30 41 36 18 49

Table 8. Orders and dimensions of invariant subspaces for all subgroups of (Z/6Z)*.
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C Short lattice points for I' = (Z/6Z)* x (Z/37Z) x (Z/2Z)

This is a table of shortest lengths appearing in the lattice for the group I' = (Z/ GZ)2 X

(Z/3Z) x (Z/2Z) s discussed in section 5.6.

*
6232

Length | Number of solutions | Length | Number of solutions
0 1 1971/2 | 12
243/2 2 990 24
192 6 1995/2 | 264
411/2 4 1008 36
216 6 2067/2 | 48
246 4 1038 264
603/2 4 1056 64
627/2 12 1062 24
675/2 12 2139/2 | 112
342 4 1080 24
408 40 2187/2 | 146
843/2 24 2211/2 | 548
462 24 1110 88
486 2 2259/2 | 36
987/2 8 1134 156
504 4 2283/2 | 56
1035/2 | 24 1152 64
1059/2 | 76 2331/2 | 112
534 8 2355/2 | 96
558 24 1182 48
576 12 1200 264
1179/2 | 6 2403/2 | 24
624 24 1206 88
1251/2 | 4 1224 72
630 6 2475/2 | 42
648 6 1254 84
678 12 1272 112
696 8 2547/2 | 96
1395/2 | 24 1278 180
702 12 2571/2 | 396
1419/2 | 48 1296 144
720 24 2619/2 | 12
1491/2 | 24 2643/2 264
750 48 1326 456
768 42 1344 116
1539/2 | 12 2691/2 | 144
1563/2 | 44 1350 12
792 78 2715/2 | 248
1611/2 | 36 1368 328
1635/2 | 8 2763/2 | 384
822 44 2787/2 | 88
840 36 1398 200
1683/2 | 24 1416 252
846 36 2835/2 | 144
1707/2 | 28 1422 384
864 6 2859/2 | 308
1755/2 | 24 1440 126
1779/2 | 84 2907/2 | 84
894 96 2931/2 | 168
912 48 1470 768
1827/2 | 150 1488 384
918 24 2979/2 | 520
1899/2 | 28 1494 48

Table 9. Lengths below 1500 and number of lattice points for Zg232.
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