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A B S T R A C T

Complementary operation has been proven an effective way to handle the increasing levels of
renewable energy sources (RESs) integration into the grid. However, due to the relative higher levels of
forecast uncertainty associated with RESs outputs, when the hybrid power system operates according
to the day-ahead plan in real-time operation, the performance of the system may deviate significantly
from the initial expectation in the day-ahead plan. Few research works gauge the effectiveness of the
day-ahead plan from the perspective of real-time operation, which inadvertently makes this problem
under explored. To handle this problem, in this study, using the wind-hydro hybrid power system
(WHHPS) as an example, a novel tighten-constraint method is proposed to guarantee the effectiveness
of the day-ahead plan in real-time operation. First, the conventional day-ahead planning model and the
real-time operation model are proposed to guide the operation of the WHHPS. Second, considering
the lack of connection between day-ahead planning and real-time operation in current research, a novel
metric, i.e. Reliability, denoted by ℝ, is proposed to evaluate the performance of the day-ahead plan
from the perspective of real-time operation given inherent prediction errors of wind power. Third, a
data-driven tighten-constraint method is proposed by introducing an adjustment parameter, denoted
by 𝜆, to improve the reliability of the day-ahead plan and eventually guarantee the effectiveness of
the day-ahead plan from the perspective of real-time operation. Finally, a bilevel Stackelberg model is
proposed and reformulated to calculate the adjustment parameter and the whole procedure of using the
proposed method is clarified. The effectiveness of the proposed method is tested and verified through
a series of case studies at the end of this paper. The results show that (1) the proposed method can
improve the reliability of the day-ahead plan under different reservoir status; (2) the proposed method
can guarantee a high reliability level of the day-ahead plan without adding any additional computation
burden; (3) improving the prediction precision of the adjustment parameter can enhance the efficiency
of resource utilization for power generation; (4) over time, the increase in available historical data can
enhance prediction accuracy of adjustment parameter and improve the effectiveness of the proposed
method even further.

Nomenclature
Abbreviations and Indices

RESs Renewable Energy Sources.

WHHPS Wind-Hydro Hybrid Power System.

MILP Mixed-Integer Linear Programming.

LP Linear Programming.

MIP Mixed-Integer Programming.

SO System Operator.

KKT Karush-Kuhn-Tucker.

(⋅)𝑑 Variables and parameters corresponding to
day-ahead planning.
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(⋅)𝑟 Variables and parameters corresponding to
real-time operation.

𝑡 Index of time periods.

Sets

𝜏 Set of time.

𝐵(𝑡) Set of periods after period 𝑡.

Parameters

Δ𝑡 Duration of each time period.

𝑒𝑁 Conversion factor for generation.

𝑁𝑚𝑖𝑛
𝑤 , 𝑁𝑚𝑎𝑥

𝑤 Minimum and maximum output limits of
wind power.

𝑁𝑚𝑖𝑛
ℎ , 𝑁𝑚𝑎𝑥

ℎ Minimum and maximum output limits of
hydropower.

𝑄𝑖𝑛,𝑡 Inflow in period 𝑡.

𝑄𝑚𝑖𝑛
𝑜,𝑡 , 𝑄

𝑚𝑎𝑥
𝑜,𝑡 Minimum and maximum outflow limits of
hydropower in period 𝑡.
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𝑍𝑚𝑖𝑛
𝑢,𝑡 , 𝑍

𝑚𝑎𝑥
𝑢,𝑡 Minimum and maximum reservoir water
level limits of hydropower in period 𝑡.

𝑍 𝑖𝑛𝑖
𝑢 , 𝑍𝑓𝑖𝑛

𝑢 Initial and final reservoir water level limits.

𝑄min
𝑔 , 𝑄max

𝑔 Minimum and maximum possible genera-
tion flow.

ℎmin, ℎmax Minimum and maximum possible hydraulic
head.

Variables

𝑁𝑡 Total output of WHHPS in period 𝑡.

�̄� Average output of WHHPS.

𝑁ℎ,𝑡 Hydropower output in period 𝑡.

𝑁𝑤,𝑡 Wind power output in period 𝑡.

𝑄𝑔,𝑡 Hydropower generation flow in period 𝑡.

ℎ𝑡 Hydropower hydraulic head in period 𝑡.

𝑍𝑢,𝑡 Reservoir water level at time 𝑡.

𝑍𝑑,𝑡 Tailwater level in period 𝑡.

ℎ𝑙,𝑡 Head loss in period 𝑡.

𝑄𝑜,𝑡 Hydropower outflow in period 𝑡.

𝑉𝑡 Reservoir volume in period 𝑡.

𝜆𝑡 Proposed adjustment parameter in period 𝑡.

𝑦𝑟,𝑡 Unfulfilled status of the plan in period 𝑡.

1. Introduction
1.1. Background

Maximising integration of RESs is an effective way for
decarbonising energy systems in an effort to mitigate the
negative impacts of green gas emissions and to stem the
global energy crisis around the world [1][2]. However, the
inherent variability of RESs introduces new challenges for
the System Operator (SO) in real-time operation. To miti-
gate the intermittent and fluctuating nature of wind power,
complementary management using reliable and dispatchable
energy sources has been proven effective, and the opera-
tion optimization of such hybrid power systems has been
discussed widely. Depending on the planning time scale,
the operation planning of the hybrid power systems can
be sorted as long-term operation and short-term operation
planning problems. Within the remit of short-term operation
planning problems, the day-ahead planning of hybrid power
systems has been widely discussed for its practical value in
guiding the real-time operation. Within a hybrid power sys-
tem, the day-ahead plan is usually made in the day before the

realisation of the actual real-time operation, and therefore, it
is determined based on the forecast results of the resources
used in the hybrid power system. Depending on the mix of
energy resources used, there can be different types of hybrid
power systems. Hydropower[3], thermal[4], hydrogen[5],
biomass[6], etc are normally mostly chosen complementary
power sources in this context. Considering the advantages of
hydropower in terms of flexibility, strong regulation prop-
erties [7][8] and its ability in stabilizing price volatility
caused by wind power in electricity power markets[9][10],
in this paper, we choose wind-hydro hybrid power system
(WHHPS) as an example to showcase our method. However,
it should be noted that the wind power represents RES whose
output contains inherent variability, whereas the hydropower
represents the complementary power source[11] whose out-
put can be adjusted according to the RES output fluctuation.
Therefore, the method proposed in this paper can be applied
to any hybrid power system which consists of a variable RES
complemented by a complementary power source.

1.2. Literature review
Any day-ahead planning framework for a WHHPS is

predicated on the forecast of the wind power prediction. A
lot of research has been devoted to improving the forecast ac-
curacy of wind power especially for short-term wind power
prediction[12][13]. Even though more precise methods are
proposed, the prediction error is still systemic and inherent in
these methods[14] and some researchers try to learn from the
historical prediction errors and make necessary modifica-
tions on the prediction results to improve the prediction[15].
Even though the deterministic prediction is still the main
topic in wind power forecast, the inherent uncertainty of
wind power prediction makes it extremely difficult to predict
the wind power output precisely, which can potentially im-
pact the day-ahead planning of the WHHPS[16]. Recently,
the quantification of wind power forecast uncertainty has
been attracting more attention[17]. Unlike the deterministic
prediction, when considering the uncertainty, the probabilis-
tic nature of wind power output is usually modelled by a
probability distribution[18]. In probabilistic forecasting, the
parametric density functions like Weibull probability den-
sity function[19], or non-parametric density functions using
kernel density estimation[20] are the two main techniques to
construct the predictive distributions.

As the probabilistic forecast is usually generated inde-
pendently for every look-ahead time and does not take into
account the spatial-temporal dependency, [21] makes efforts
in considering spatial-temporal dependency prediction for
electricity prices. However, a more widely adopted method
for day-ahead planning is the scenario-based method[14].
Combining with stochastic optimization, an expected best
day-ahead plan can be obtained given the representative
scenarios of the wind power output.

Using the stochastic optimization is predicated on know-
ing these representative scenarios in advance[22]. Different
researchers use different ways to generate the representa-
tive scenarios. One of the most common ways is to fit a
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probability distribution, usually the Gaussian distribution, to
the prediction error[23][24] and extract the representative
scenarios through different sampling methods like Monte
Carlo sampling and Latin hypercube sampling[11]. Then by
adding the errors to the point forecast results, the represen-
tative scenarios of the wind power output can be obtained.
Apart from this, [25] statistically analyses the fluctuation
characteristics of adjacent time intervals of wind power
and acquires representative scenarios of wind power output
under a certain probability with the intervals to obtain the
optimum generation schedule of hydropower with minimum
water consumption. Ref. [26] uses machine learning-based
methods to find the uncertainty rule inherent in the historical
data to generate high quality wind power output representa-
tive scenarios for purposes of operations planning.

As shown above, there are many ways to handle the wind
power for purposes of day-ahead planning, however, each
method has its own limits. Using the deterministic prediction
results to make the day-ahead plan directly fails to consider
the possible prediction errors caused by forecast uncertainty,
while the stochastic model aims to calculate an expected
best plan across the space of all possible representative
scenarios, however, to better depict the uncertainty, many
representative scenarios are needed which may increase the
computation burden[27].

There has already been a vast amount of research into
the development and implementation of day-ahead planning
in the context of short-term operational planning in wind-
integrated hybrid power systems. However, there has been
relatively little research conducted with the aim of properly
gauge the performance of the day-ahead plans especially
from the perspective of real-time operation (i.e., investigate
the effectiveness of the day-ahead plan in real-time operation
given any uncertainty).

Discussion of the day-ahead plan performance in real-
time operation has been a commonly adopted way to prove
the effectiveness of the plan in other research fields. In the
context of short-term operational planning for power sys-
tems with high levels of wind power integration, the uncer-
tainty inherent in the wind power forecast is also widely con-
sidered in the day-ahead planning framework. Comparing
with the day-ahead plan for WHHPS, these plans made for
power system operation are usually evaluated by comparing
them to the the realised real-time operation profile of the
power system. For example, to mitigate the impacts of pre-
diction errors of regulation reserve requirements caused by
the inherent uncertainty associated with wind power output
forecasts, [17] proposes a day-ahead planning framework for
the regulation reserve requirement under uncertainty with a
given confidence level, and the results are compared with the
actual regulation reserve realised in real-time operation.

Despite the need for evaluating the performance and
effectiveness of day-ahead plans in real-time realization,
most studies limit their methodologies to only studying the
development of day-ahead planning profiles. For example,
[11] discusses the comprehensive risk of the hydro-wind-
photovoltaic complementary system with the day-ahead

plans obtained from wind power representative scenarios set,
whereas [27] proposes a hybrid robust-interval optimization
approach for integrated energy system planning considering
the uncertainty of RESs and demand, and the effectiveness of
the proposed method is discussed under various probability
levels. Ref. [28] proposes a stochastic optimization model to
decrease the output shortage, power curtailment and spilled
water risks in wind-solar-hydro complementary operation,
and the ability of the proposed method in decreasing these
risks is discussed in the generated representative scenarios
for wind and PV power output. These studies neglect any
comparison of the day-ahead profiles with realised real-time
operation profiles.

To extend the discussion from day-ahead level into ac-
tual operation level, [29] proposes a robust optimization
model that accounts for uncertain PV power generation to
maximize the hydro-PV output while minimizing the water
consumption. To this end, a representative day is selected to
conduct the proposed model and the results are compared
with historical actual operation data to show the efficiency
of the proposed model. Ref. [30] proposes a multi-time scale
optimal dispatch strategy combining robust optimization and
rolling optimization for the combined cooling, heating and
power microgrid containing renewable energy sources, and
the effectiveness of the proposed model is showcased by
comparing the operation cost in day-ahead plan and actual
historical operation data. Even though the effectiveness of
these proposed models is verified in actual operation level,
these methods cannot be used to evaluate the day-ahead
plan for the WHHPS that is going to be used in the coming
real-time operation, in other words, these historical actual
operation data comes from the plan made in advance and
there is no way to gauge the performance of the day-ahead
plan until it is executed in real-time operation. A proper
method to evaluate the performance of the day-ahead plan
for real-time operation is therefore still not available.

Consequently, there is still room to further investigate
the methods to properly gauge the performance of a given
day-ahead plan under real-time operation. Most research
does not extend their studies into actual operation level nor
these methods presented in existing literature is feasible for
evaluating day-ahead plans from the perspective of real-time
operation. The main reason for these shortcomings is that
the criteria for day-ahead plan evaluation from perspective
of real-time operation is not clear.

Some research has made some efforts to evaluate the day-
ahead plan from the perspective of real-time operation. Ref.
[26] demonstrates the effectiveness of a proposed scenario
generation method by exploring its impact on hydropower
start-stop times compared to the Gaussian copula method
under the same objective. This might be a way to evaluate the
day-ahead plan from the perspective of real-time operation,
however, it is not practically valuable to ascertain a result
that the plan leads to lower start-stop times is certainly better.
Ref. [31] proposes three benefit indices and five risk indices
to evaluate the day-head plan of the wind-PV-hydropower
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hybrid power system from the perspective of real-time oper-
ation. This work contributes to the gap, however, no method
is proposed to improve the performance of the day-head plan
in these indices and the large evaluation index system is not
convenient in practice.

To address all the problems mentioned above, we pro-
posed a novel data-driven tighten-constraint method to im-
prove the day-ahead plan and a metric to evaluate the day-
ahead plan from the perspective of real-time operation. The
effectiveness of the proposed method is verified by compar-
ing it with alternative day-ahead planning frameworks and
the suggestion in using the proposed method is given.

1.3. Contribution
The contributions of this paper are summarized as fol-

lows:

(1) A new data-driven tighten-constraint method to improve
the performance of the day-ahead plan in real-time op-
eration for WHHPS is proposed;

(2) A metric to evaluate the day-ahead plan from the per-
spective of real-time operation is proposed;

(3) A bilevel game theory based model is proposed to pro-
vide the data-driven base for the proposed adjustment
parameter;

(4) Numerical results are provided to test the new method
and give suggestions to improve the effectiveness of the
proposed method.

2. WHHPS operation model
This section proposes the operation models of the WHHPS

for both day-ahead planning and real-time operation. First,
the procedure of short-term complementary operation of
the WHHPS is briefly described and any underlying as-
sumptions are explained in Section 2.1. Then the day-ahead
planning model, real-time operation model and reliability
metric are introduced in Sections 2.2 and 2.3, respectively.
Furthermore, the models are reformulated in Section 2.4.

2.1. Problem description
Essentially the short-term complementary operation of

the WHHPS is realised by two processes: 1) the day-ahead
planning and 2) real-time operation. The detailed description
of the relationship between these two processes can be found
in [11] but a summary is given in this section. The WHHPS
first considers its own operation objectives and determines a
generation schedule for the following day based on its own
resource forecast. This schedule is called the day-ahead plan.
This plan will then be submitted to the SO and the confirmed
plan will be returned to the WHHPS. On the day of the real-
time operation, the WHHPS will schedule its resources to
generate power according to the confirmed generation plan.
To complete these two processes, two operation models are
needed for both day-ahead planning and real-time operation,
respectively. Before looking at the models, two assumptions
are made as below:

(1) The day-ahead plan made by the WHHPS gets no revi-
sion from the SO;

(2) Only the wind power output forecast contains uncer-
tainty, and the uncertainty in hydro inflow prediction is
ignored[28].

2.2. The Day-ahead Planning Model
Given the fluctuating of wind resources, the output of

the wind power fluctuates frequently and largely which
prevents the wind power from easy utilisation by the SO.
In the WHHPS, the hydropower can help to mitigate the
risks of relying solely on the fluctuating wind power by
compensating for its variations thereby creating an overall
smooth output profile which in effect helps to maximise the
integration of wind power [32]. Mathematically, considering
a scheduling time horizon 𝜏 = {1,⋯ , 𝑇 }, the day-ahead
planning model for a WHHPS is formulated as follows:

Maximize
∑

𝑡∈𝜏∖{𝑇 }
𝑁𝑑

𝑡 ⋅ Δ𝑡 (1a)

Minimize
∑

𝑡∈𝜏∖{𝑇 }(𝑁
𝑑
𝑡 − �̄�𝑑)2

𝑇 − 1
(1b)

Subject to:

𝑁𝑑
𝑡 = 𝑁𝑑

ℎ,𝑡 +𝑁𝑑
𝑤,𝑡 ∶ 𝛾2,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (1c)

�̄�𝑑 =
∑

𝑡∈𝜏∖{𝑇 }𝑁
𝑑
𝑡

𝑇 − 1
∶ 𝛾3 (1d)

𝑁𝑚𝑖𝑛,𝑑
𝑤,𝑡 ≤ 𝑁𝑑

𝑤,𝑡 ≤ 𝑁𝑚𝑎𝑥,𝑑
𝑤,𝑡 ∶ 𝜇1,𝑡, 𝜇1,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (1e)

𝑁𝑑
ℎ,𝑡 =

𝑘𝑄𝑑
𝑔,𝑡ℎ

𝑑
𝑡

𝑒𝑁
,∀𝑡 ∈ 𝜏∖{𝑇 } (1f)

𝑁𝑚𝑖𝑛
ℎ,𝑡 ≤ 𝑁𝑑

ℎ,𝑡 ≤ 𝑁𝑚𝑎𝑥
ℎ,𝑡 ,∀𝑡 ∈ 𝜏∖{𝑇 } (1g)

ℎ𝑑𝑡 =
𝑍𝑑

𝑢,𝑡 +𝑍𝑑
𝑢,𝑡+1

2
−𝑍𝑑

𝑑,𝑡 − ℎ𝑑𝑙,𝑡 ∶ 𝛾5,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (1h)

𝑍𝑑
𝑑,𝑡 = 𝑓𝑄𝑍 (𝑄𝑑

𝑜,𝑡),∀𝑡 ∈ 𝜏∖{𝑇 } (1i)

𝑄𝑑
𝑜,𝑡 =

(𝑉 𝑑
𝑡 − 𝑉 𝑑

𝑡+1)
3600Δ𝑡

+𝑄𝑖𝑛,𝑡 ∶ 𝛾7,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (1j)

𝑄𝑚𝑖𝑛
𝑜,𝑡 ≤ 𝑄𝑑

𝑜,𝑡 ≤ 𝑄𝑚𝑎𝑥
𝑜,𝑡 ∶ 𝜇7,𝑡, 𝜇7,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (1k)

𝑄𝑑
𝑔,𝑡 ≤ 𝑄𝑑

𝑜,𝑡 ∶ 𝜇8,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (1l)

𝑉 𝑑
𝑡 = 𝑓𝑍𝑉 (𝑍𝑑

𝑢,𝑡) ∶ ∀𝑡 ∈ 𝜏 (1m)

𝑍𝑚𝑖𝑛
𝑢,𝑡 ≤ 𝑍𝑑

𝑢,𝑡 ≤ 𝑍𝑚𝑎𝑥
𝑢,𝑡 ∶ 𝜇9,𝑡, 𝜇9,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (1n)

𝑍𝑑
𝑢,1 = 𝑍 𝑖𝑛𝑖

𝑢 ∶ 𝛾10 (1o)

𝑍𝑑
𝑢,𝑇 = 𝑍𝑓𝑖𝑛

𝑢 ∶ 𝛾11 (1p)

The WHHPS initiates with the aim to maximise the use of
the renewable resources for power production and smoothing
the output profile. These are shown with the objective func-
tions (1a) and (1b), which denote the total generation and
output fluctuation of the WHHPS over the whole scheduling
periods, respectively. Eqs. (1c) and (1d) guarantee the output
balance of the WHHPS. Eq. (1e) ensures the wind power out-
put is within the predicted available power and its nominal
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capacity. Eq. (1f) is the generation function for hydropower.
There are many forms of hydropower generation function
in the real world applications[33], and we follow [34] to
choose the head independent constant energy conversion
efficiency factors as the generation function. Eq. (1g) ensures
the hydropower output is within its capacity and (1h) stands
for the generation head for hydropower in each time period.
Eqs. (1i) and (1m) are the reservoir characteristic curves
for outflow and tailwater level, reservoir water level and
reservoir volume, respectively. Eq. (1j) guarantees the hy-
dropower water balance in each time period. Eq. (1k) ensures
the outflow is within the allowed level and (1l) ensures the
generation flow is no larger than the outflow in the same time
period. Eq. (1n) ensures the reservoir works in its allowed
water level all the time. Finally, (1o) and (1p) ensure the
initial water level and final water level follow the operational
instructions.

2.3. Real-time Operation Model and Reliability
Metric

2.3.1. Real-time operation model
When the day-ahead plan is submitted to and accepted by

the SO, the WHHPS is expected to operate according to the
plan in real-time operation. However, as the actual available
wind power may be different from that of the forecast wind
power when making the day-ahead plan and the actual avail-
able output of wind power cannot be obtained in advance, in
real-time operation, the WHHPS needs to redispatch period
by period to follow the generation schedule.

Mathematically, this real-time operation process can be
formulated as the following model:

Minimize
∑

𝑡∈𝜏∖{𝑇 }
𝑦𝑟,𝑡 ⋅ 𝑅𝑡 (2a)

Subject to:

𝑦𝑟,𝑡 ∈ {0, 1},∀𝑡 ∈ 𝜏∖{𝑇 } (2b)

1 −
𝑁𝑟

𝑡

𝑁𝑑
𝑡
≤ 𝑦𝑟,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (2c)

𝑁𝑟
𝑡 = 𝑁𝑟

ℎ,𝑡 +𝑁𝑚𝑎𝑥,𝑟
𝑤,𝑡 ,∀𝑡 ∈ 𝜏∖{𝑇 } (2d)

𝑁𝑟
ℎ,𝑡 ≤ 𝑚𝑎𝑥{0, 𝑁𝑑

𝑡 −𝑁𝑚𝑎𝑥,𝑟
𝑤,𝑡 },∀𝑡 ∈ 𝜏∖{𝑇 } (2e)

Constraints(1f) − (1p)
with the ’𝑑’ in the superscript replaced by ’𝑟’.

(2f)

where 𝑦𝑟,𝑡 is a binary variable indicating if the generation
plan in the period 𝑡 is not fulfilled in real-time redispatch,
when 𝑁𝑟

𝑡 < 𝑁𝑑
𝑡 , 𝑦𝑟,𝑡 = 1. 𝑅𝑡 is a predefined parameter

for the period 𝑡. The later the period 𝑡 is, the smaller the 𝑅𝑡
should be. This can guarantee the preceding period gets the
priority over the latter periods in fulfillment. For example,
𝑅𝑡 ≥

∑

𝑏∈𝐵(𝑡)𝑅𝑏 + 1, where 𝐵(𝑡) is the set for periods later
than period 𝑡.

The objective function (2a) minimizes the number of
unfulfilled preceding periods, which guarantee the WHHPS

operates period by period. Eqs. (2b) and (2c) ensure there
are only two states for each time period, i.e. fulfilled or
unfulfilled, whereas (2d) is the real-time available output of
WHHPS in each time period. Eq. (2e) ensures the WHHPS
will not generate power exceeding that of the scheduled
power in the day-ahead plan. Finally, (2f) achieves the same
effects as in the day-ahead planning model.

2.3.2. Reliability metric
If the wind power output can be obtained with 100%

certainty, the day-ahead plan can be executed perfectly in
real-time operation. However, with the inherent uncertainty
in day-ahead wind power prediction, the actual realised real-
time operation profile may be quite different and therefore
the expected effectiveness of the hybrid power system in
the plan may not necessarily be achieved. Therefore, it is
imperative to evaluate how day-ahead plans actually perform
from the perspective of real-time operation. However, as
mentioned in introduction, most of the research only focuses
on day-ahead planning, and few extend the analysis of the
day-ahead plan of the hybrid power system into real-time
operation which makes this problem still under explored. We
think the main reason is the lack of a viable mathematical
method to evaluate the performance of the day-ahead plan
from the perspective of real-time operation. To handle this
gap, we propose a metric in this paper.

After receiving the confirmed plan, the WHHPS is ex-
pected to operate according to the plan in real-time opera-
tion. With the inherent uncertainty in the wind power pre-
diction, it might be difficult to fulfill the generation schedule
made in the day-ahead plan exactly in real-time operation,
and therefore the reliability is proposed as a metric to show
the completion status of the day-ahead plan:

ℝ =
∑

𝑡∈𝜏∖{𝑇 }(1 − 𝑦𝑟,𝑡)𝑁𝑑
𝑡

∑

𝑡∈𝜏∖{𝑇 }𝑁
𝑑
𝑡

(3)

For a day-ahead plan, ℝ ∈ [0, 1]. When the ℝ = 1, the
day-ahead plan is reliable.

2.4. Reformulation
Even though in the previous sections, the mathematical

models for day-ahead planning and real-time operation have
been proposed, there still remain two problems namely, (1)
the day-ahead planning model is a multi-objective model
which leads to a solution of Pareto front, which is therefore
practically not viable. As stated in Section 2.1, the WHHPS
can only submit one plan to the SO and (2) influenced by the
bilinear terms in (1f), and the expression of the functions
in (1i) and (1m), the day-ahead planning model and real-
time operation model are non-convex and difficult to solve.
Therefore, before going any further, the reformulation of
these two models is detailed below.

2.4.1. 𝜀-constraint method for multi-objective model
As only one plan is needed in day-ahead planing process,

only one function can be set as the objective. There are
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mainly two ways to reformulate the multi-objective model
into single-objective model, i.e. scalarization[35] and 𝜀-
constraint method[36]. As the two objectives in this model
are in different magnitudes, when merging the two objectives
into a single scalar function, it is difficult to pre-define the
weight vector for them. Meanwhile, it is hard to explain
the inherent meaning of the plan made from the scalar
function. On the contrary, the latter method has a clear
and more explainable nature by transforming the objective
into constraint. Thus, the 𝜀-constraint method is chosen to
reformulate (1b) as (4a).
∑

𝑡∈𝜏∖{𝑇 }(𝑁
𝑑
𝑡 − �̄�𝑑)2

𝑇 − 1
≤ 𝜀 (4a)

where 𝜀 is the predefined parameter by the following
optimization problem:

𝜀 = 𝜃 ⋅Maximize
∑

𝑡∈𝜏∖{𝑇 } ( ̀𝑁𝑤,𝑡 − �̄�𝑤)2

𝑇 − 1
(4b)

�̄�𝑤 =
∑

𝑡∈𝜏∖{𝑇 }
̀𝑁𝑤,𝑡

𝑇 − 1
(4c)

𝑁𝑚𝑖𝑛
𝑤,𝑡 ≤ ̀𝑁𝑤,𝑡 ≤ 𝑁𝑐𝑎𝑝

𝑤 ,∀𝑡 ∈ 𝜏∖{𝑇 } (4d)

where ̀𝑁𝑤,𝑡 is the wind power output at period 𝑡. �̄�𝑤
is the average of wind power output profile. 𝜃 is the prede-
termined non-negative parameter which is not larger than 1.
𝑁𝑐𝑎𝑝

𝑤 is nominal capacity of the wind power generator. In
this research we choose a fluctuation averse strategy in hope
of an absolutely smoothed output profile from the WHHPS.
By setting the 𝜃 to be 0, the (4a) can further be replaced by
(4e).

𝑁𝑑
𝑡 − �̄�𝑑 = 0 ∶ 𝛾1,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (4e)

2.4.2. Linearization of constraints
To further simplify the model, first, we follow [37]

to set the function expressions in (1i) and (1m) as (4h)
and (4f)-(4g), respectively. Further, the McCormick convex
relaxation[38] is used to relax the the product of terms in (1f)
as (4i)-(4m).

𝑉 𝑑
𝑡 = 𝜁𝑍𝑉 ⋅𝑍𝑑

𝑢,𝑡 + 𝜉𝑍𝑉 ∶ 𝛾8,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (4f)

𝑉 𝑑
𝑇 = 𝜁𝑍𝑉 ⋅𝑍𝑑

𝑢,𝑇 + 𝜉𝑍𝑉 ∶ 𝛾9 (4g)

𝑍𝑑
𝑑,𝑡 = 𝜁𝑄𝑍 ⋅𝑄𝑑

𝑜,𝑡 + 𝜉𝑄𝑍 ∶ 𝛾6,∀𝑡 ∈ 𝜏∖{𝑇 } (4h)

𝑁𝑑
ℎ,𝑡 =

𝑘𝑊 𝑑
𝑡

𝑒𝑁
∶ 𝛾4,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (4i)

𝑊 𝑑
𝑡 ≥ 𝑄min

𝑔 ℎ𝑑𝑡 + ℎmin𝑄𝑑
𝑔,𝑡 −𝑄min

𝑔 ℎmin ∶ 𝜇2,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 }
(4j)

𝑊 𝑑
𝑡 ≥ 𝑄max

𝑔 ℎ𝑑𝑡 + ℎmax𝑄𝑑
𝑔,𝑡 −𝑄max

𝑔 ℎmax ∶ 𝜇3,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 }
(4k)

𝑊 𝑑
𝑡 ≤ 𝑄max

𝑔 ℎ𝑑𝑡 + ℎmin𝑄𝑑
𝑔,𝑡 −𝑄max

𝑔 ℎmin ∶ 𝜇4,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 }
(4l)

𝑊 𝑑
𝑡 ≤ 𝑄min

𝑔 ℎ𝑑𝑡 + ℎmax𝑄𝑑
𝑔,𝑡 −𝑄min

𝑔 ℎmax ∶ 𝜇5,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 }
(4m)

After these treatments, the day-ahead planning model
and real-time operation model are reformulated as LP prob-
lem and MIP problem, respectively.

3. Tighten-constraint method
This section proposes the tighten-constraint method for

reliability improvement of the day-ahead plan. Specifically,
the tightened constraint with adjustment parameter is pre-
sented in Section 3.1. Then, a bilevel optimization problem
is proposed to obtain the adjustment parameter in Section
3.2. Further, in Section 3.3, we detail the treatment of the
bilevel optimization problem, which is reformulated as a
MILP problem.

3.1. Tightened constraint with adjustment
parameter

In the WHHPS, hydropower plant is the main regulation
tool to handle the fluctuation of wind power while achieving
the operation objective. However, with the forecast uncer-
tainty in wind power, high expectations in the day-ahead plan
can lead to failure during the implementation in the next day.
This is primarily caused by two main reasons namely, 1) the
forecast wind power is higher than real-time available wind
power, which results in a relative shortfall of energy, and 2)
the hydropower plant utilized its entire dispatching capacity
when making the day-ahead plan in pursuit of higher smooth
output of the WHHPS. To overcome these two issues, we
introduce the adjustment parameter 𝜆𝑡 into (1g) as follows:

𝑁𝑚𝑖𝑛
ℎ,𝑡 ≤ 𝑁𝑑

ℎ,𝑡 ≤ 𝜆𝑡𝑁
𝑚𝑎𝑥
ℎ,𝑡 ∶ 𝜇6,𝑡, 𝜇6,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 } (5)

3.2. Bilevel Stackelberg model
By introducing the adjustment parameter, a day-ahead

plan with high reliability and high smooth output profile is
expected. This can be interpreted as a single leader single
follower bilevel Stackelberg model where real-time opera-
tion acts as the leader and day-ahead planning model is the
follower[39]. In particular, the leader operates according to
the day-ahead plan and decides the adjustment parameter
at the upper level. Subsequently, the follower reacts to the
adjustment parameter to make the day-ahead plan consid-
ering their own objective at the lower level. Specifically,
the real-time operation maximizes the fulfilled generation
by setting the adjustment parameter. And the day-ahead
planning model tries to make a high smooth generation plan
after receiving the adjustment parameter and return the plan
for real-time operation. As a result, the optimum adjustment
parameter for a high reliability and high smooth output
profile in day-ahead plan can be obtained. The presentation
of the bilevel model is inspired by [40].

3.2.1. Leader’s problem
The first aim of the leader is to maximize the reliability of

the day-ahead plan. However, to improve the reliability of the
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day-ahead plan, the leader tends to minimize the adjustment
parameter, which means that it forces the follower to make
a smaller generation plan. Under the specified initial and
final reservoir water levels, high water curtailment may
occur which will result in energy loss. Consequently, the
second aim is to maximize the output in real-time operation.
Mathematically, the leader’s objectives can be modeled as
follows:

Maximize
Ξleader

∑

𝑡∈𝜏∖{𝑇 }(1 − 𝑦𝑟,𝑡)𝑁𝑑
𝑡

∑

𝑡∈𝜏∖{𝑇 }𝑁
𝑑
𝑡

(6a)

Maximize
Ξleader

∑

𝑡∈𝜏∖{𝑇 }
(1 − 𝑦𝑟,𝑡)𝑁𝑑

𝑡 Δ𝑡 (6b)

Again, with the help of 𝜀-constraint method, the ob-
jective (6a) is transformed into constraint and the leader’s
problem is fully illustrated as:

Maximize
Ξleader

∑

𝑡∈𝜏∖{𝑇 }
𝑁𝑑

𝑡 Δ𝑡 (6c)

Subject to:

0 ≤ 𝜆𝑡 ≤ 1,∀𝑡 ∈ 𝜏∖{𝑇 } (6d)
𝑁𝑟

𝑡 ≥ 𝑁𝑑
𝑡 ,∀𝑡 ∈ 𝜏∖{𝑇 } (6e)

Constraints (2d), (4i) − (4m), (1g), (1h), (4h),
(1j) − (1l), (4f), (4g), (1n) − (1p)
with the ’𝑑’ in the superscript replaced by ’𝑟’.

(6f)

The decision variables of the leader problem areΞleader =
{𝜆𝑡, 𝑁𝑟

𝑡 , 𝑁
𝑟
ℎ,𝑡,𝑊

𝑟
𝑡 , ℎ

𝑟
𝑡 , 𝑄

𝑟
𝑔,𝑡, 𝑍

𝑟
𝑢,𝑡, 𝑍

𝑟
𝑑,𝑡, ℎ

𝑟
𝑙,𝑡, 𝑄

𝑟
𝑜,𝑡, 𝑉

𝑟
𝑡 , 𝑍

𝑟
𝑢,𝑇 , 𝑉

𝑟
𝑇 ,

∀𝑡 ∈ 𝜏∖{𝑇 }}. The leader objective function (6c) denotes
the generation in real-time operation. When setting the 𝜀 for
objective (6a) as 1, the generation in real-time operation is
equal to day-ahead planned generation. Eq. (6d) constrains
the adjustment parameter decision of the leader. Eq. (6e)
guarantees the completion of the day-ahead generation
schedule in real-time operation in each time period. Eq. (6f)
works the same as in previous models.

3.2.2. Follower’s Model
The follower in the bilevel Stackelberg model makes the

day-ahead plan with the tightened constraint after getting
the adjustment parameter from the leader. A high smooth
generation plan is considered as the follower’s problem. The
follower’s problem is modeled as follows:

Maximize
Ξfollower

(1a) (7a)

Subject to:

Constraints (4e), (1c) − (1e), (4i) − (4m), (5), (1h), (4h),
(1j) − (1l), (4f), (4g), (1n) − (1p).

(7b)

Where Ξfollower = {𝑁𝑑
𝑡 , �̄�

𝑑 , 𝑁𝑑
ℎ,𝑡, 𝑁

𝑑
𝑤,𝑡,𝑊

𝑑
𝑡 , ℎ𝑑𝑡 , 𝑄

𝑑
𝑔,𝑡,

𝑍𝑑
𝑢,𝑡, 𝑍

𝑑
𝑑,𝑡, ℎ

𝑑
𝑙,𝑡, 𝑄

𝑑
𝑜,𝑡, 𝑉

𝑑
𝑡 , 𝑉 𝑑

𝑇 , 𝑍𝑑
𝑢,𝑇 ,∀𝑡 ∈ 𝜏∖{𝑇 }} is the deci-

sion variables for the follower. Ξdual
follower = {𝛾1,𝑡, 𝛾2,𝑡, 𝛾3, 𝜇1,𝑡,

𝜇1,𝑡, 𝛾4,𝑡, 𝜇2,𝑡, 𝜇3,𝑡, 𝜇4,𝑡, 𝜇5,𝑡, 𝜇6,𝑡, 𝜇6,𝑡, 𝛾5,𝑡, 𝛾6,𝑡, 𝛾7,𝑡, 𝜇7,𝑡, 𝜇7,𝑡,
𝜇8,𝑡, 𝛾8,𝑡, 𝛾9, 𝜇9,𝑡, 𝜇9,𝑡, 𝛾10, 𝛾11,∀𝑡 ∈ 𝜏∖{𝑇 }} represents the
set of dual variables of the corresponding constraints in the
follower’s problem.

3.2.3. Bilevel model
After formulating both the leader’s and follower’s prob-

lems, the proposed bilevel Stackelberg model for a scenario
day can be summarized as follows.

Ξleader ∈ arg Maximize
Ξleader

(6c) (8a)

Subject to:

Constraints(6d) − (6f) (8b)
Ξfollower, 𝛾1,𝑡, 𝛾2,𝑡, 𝛾3, 𝜇1,𝑡, 𝜇1,𝑡, 𝛾4,𝑡, 𝜇2,𝑡, 𝜇3,𝑡, 𝜇4,𝑡, 𝜇5,𝑡, 𝜇6,𝑡,

𝜇6,𝑡, 𝛾5,𝑡, 𝛾6,𝑡, 𝛾7,𝑡, 𝜇7,𝑡, 𝜇7,𝑡, 𝜇8,𝑡, 𝛾8,𝑡, 𝛾9, 𝜇9,𝑡, 𝜇9,𝑡, 𝛾10, 𝛾11

∈ argMaximize
Ξfollower

{(7a)

Subject to:
Constraint (7b)},∀𝑡 ∈ 𝜏∖{𝑇 }

(8c)

This is a single-leader-single-follower Stacklberg game model.
Eqs. (8a) and (8b) denote the real-time operation in the upper
level while (8c) represents the reaction of the day-ahead
planning given by the upper level decision. The methods to
solve the bilevel Stacklberg game model are discussed in
detail next.

3.3. Solution methods
The proposed bilelve model in Section 3.2.3 is challeng-

ing to solve due to the mutual influence of the upper and
lower levels’ models. In this section, first, the bilevel model
is transferred into a single-level model. Then, the single-
level model is linearized and reformulated as a MILP.

3.3.1. Single-level model transformation
As the lower level problem is a LP problem, the strong

duality can be guaranteed. The KKT optimality conditions
of the lower level problem can be derived to transform the
bilevel model into a single-level model. The single-level
model is shown below:

Maximize
Ξsingle

(6c) (9a)

Subject to:

Constraint(8b) (9b)
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− Δ𝑡 + 𝛾1,𝑡 + 𝛾2,𝑡 −
𝛾3

𝑇 − 1
= 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9c)

𝛾3 −
∑

𝑡∈𝜏∖{𝑇 }
𝛾1,𝑡 = 0 (9d)

− 𝜇6,𝑡 + 𝜇6,𝑡 − 𝛾2,𝑡 + 𝛾4,𝑡 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9e)

− 𝜇1,𝑡 + 𝜇1,𝑡 − 𝛾2,𝑡 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9f)

− 𝜇2,𝑡 − 𝜇3,𝑡 + 𝜇4,𝑡 + 𝜇5,𝑡 −
𝛾4,𝑡𝑘
𝑒𝑁

= 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9g)

𝜇2,𝑡𝑄
min
𝑔 + 𝜇3,𝑡𝑄

max
𝑔 − 𝜇4,𝑡𝑄

max
𝑔 − 𝜇5,𝑡𝑄

min
𝑔 + 𝛾5,𝑡 = 0,

∀𝑡 ∈ 𝜏∖{𝑇 }
(9h)

𝜇2,𝑡ℎ
min + 𝜇3,𝑡ℎ

max − 𝜇4,𝑡ℎ
min − 𝜇5,𝑡ℎ

max + 𝜇8,𝑡 = 0,
∀𝑡 ∈ 𝜏∖{𝑇 }

(9i)

− 𝜇9,𝑡 + 𝜇9,𝑡 −
𝛾5,𝑡
2

− 𝛾8,𝑡𝜁
𝑍𝑉 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9j)

𝛾5,𝑡 + 𝛾6,𝑡 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9k)
𝛾5,𝑡 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9l)
− 𝜇7,𝑡 + 𝜇7,𝑡 − 𝜇8,𝑡 − 𝛾6,𝑡𝜁

𝑄𝑍 + 𝛾7,𝑡 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9m)

−
𝛾7,𝑡

3600Δ𝑡
+ 𝛾8,𝑡 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9n)

𝑁𝑑
𝑡 − �̄�𝑑 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9o)

𝑁𝑑
𝑡 −𝑁𝑑

ℎ,𝑡 −𝑁𝑑
𝑤,𝑡 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9p)

�̄�𝑑 −
∑

𝑡∈𝜏∖{𝑇 }𝑁
𝑑
𝑡

𝑇 − 1
= 0 (9q)

0 ≤ (𝑁𝑑
𝑤,𝑡 −𝑁𝑚𝑖𝑛,𝑑

𝑤,𝑡 ) ⟂ 𝜇1,𝑡 ≥ 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9r)

0 ≤ (𝑁𝑚𝑎𝑥,𝑑
𝑤,𝑡 −𝑁𝑑

𝑤,𝑡) ⟂ 𝜇1,𝑡 ≥ 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9s)

0 ≤ (𝑊 𝑑
𝑡 −𝑄min

𝑔 ℎ𝑑𝑡 − ℎmin𝑄𝑑
𝑔,𝑡 +𝑄min

𝑔 ℎmin) ⟂ 𝜇2,𝑡 ≥ 0,

∀𝑡 ∈ 𝜏∖{𝑇 }
(9t)

0 ≤ (𝑊 𝑑
𝑡 −𝑄max

𝑔 ℎ𝑑𝑡 − ℎmax𝑄𝑑
𝑔,𝑡 +𝑄max

𝑔 ℎmax) ⟂ 𝜇3,𝑡 ≥ 0,

∀𝑡 ∈ 𝜏∖{𝑇 }
(9u)

0 ≤ (𝑄max
𝑔 ℎ𝑑𝑡 + ℎmin𝑄𝑑

𝑔,𝑡 −𝑄max
𝑔 ℎmin −𝑊 𝑑

𝑡 ) ⟂ 𝜇4,𝑡 ≥ 0,

∀𝑡 ∈ 𝜏∖{𝑇 }
(9v)

0 ≤ (𝑄min
𝑔 ℎ𝑑𝑡 + ℎmax𝑄𝑑

𝑔,𝑡 −𝑄min
𝑔 ℎmax −𝑊 𝑑

𝑡 ) ⟂ 𝜇5,𝑡 ≥ 0,

∀𝑡 ∈ 𝜏∖{𝑇 }
(9w)

0 ≤ (𝑁𝑑
ℎ,𝑡 −𝑁𝑚𝑖𝑛

ℎ,𝑡 ) ⟂ 𝜇6,𝑡 ≥ 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9x)

0 ≤ (𝜆𝑡𝑁𝑚𝑎𝑥
ℎ,𝑡 −𝑁𝑑

ℎ,𝑡) ⟂ 𝜇6,𝑡 ≥ 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9y)

0 ≤ (𝑄𝑑
𝑜,𝑡 −𝑄𝑚𝑖𝑛

𝑜,𝑡 ) ⟂ 𝜇7,𝑡 ≥ 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9z)

0 ≤ (𝑄𝑚𝑎𝑥
𝑜,𝑡 −𝑄𝑑

𝑜,𝑡) ⟂ 𝜇7,𝑡 ≥ 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9aa)

0 ≤ (𝑄𝑑
𝑜,𝑡 −𝑄𝑑

𝑔,𝑡) ⟂ 𝜇8,𝑡 ≥ 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9ab)

0 ≤ (𝑍𝑑
𝑢,𝑡 −𝑍𝑚𝑖𝑛

𝑢,𝑡 ) ⟂ 𝜇9,𝑡 ≥ 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9ac)

0 ≤ (𝑍𝑚𝑎𝑥
𝑢,𝑡 −𝑍𝑑

𝑢,𝑡) ⟂ 𝜇9,𝑡 ≥ 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9ad)

𝑁𝑑
ℎ,𝑡 −

𝑘𝑊 𝑑
𝑡

𝑒𝑁
= 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9ae)

ℎ𝑑𝑡 −
𝑍𝑑

𝑢,𝑡 +𝑍𝑑
𝑢,𝑡+1

2
+𝑍𝑑

𝑑,𝑡 + ℎ𝑑𝑙,𝑡 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9af)

𝑍𝑑
𝑑,𝑡 − 𝜁𝑄𝑍𝑄𝑑

𝑜,𝑡 − 𝜉𝑄𝑍 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9ag)

𝑄𝑑
𝑜,𝑡 −

(𝑉 𝑑
𝑡 − 𝑉 𝑑

𝑡+1)
3600Δ𝑡

−𝑄𝑖𝑛,𝑡 = 0,∀𝑡 ∈ 𝜏∖{𝑇 } (9ah)

𝑉 𝑑
𝑡 − 𝜁𝑍𝑉𝑍𝑑

𝑢,𝑡 − 𝜉𝑍𝑉 = 0,∀𝑡 ∈ 𝜏 (9ai)

𝑍𝑑
𝑢,1 = 𝑍 𝑖𝑛𝑖

𝑢 (9aj)

𝑍𝑑
𝑢,𝑇 = 𝑍𝑓𝑖𝑛

𝑢 (9ak)

Where the decision variables of the single level problem
areΞsingle = {𝜆𝑡, 𝑁𝑟

𝑡 , 𝑁
𝑟
ℎ,𝑡,𝑊

𝑑
𝑡 , ℎ𝑟𝑡 , 𝑄

𝑟
𝑔,𝑡, 𝑍

𝑟
𝑢,𝑡, 𝑍

𝑟
𝑑,𝑡, ℎ

𝑟
𝑙,𝑡, 𝑄

𝑟
𝑜,𝑡, 𝑉

𝑟
𝑡 ,

𝑍𝑟
𝑢,𝑇 , 𝑉

𝑟
𝑇 , 𝑁

𝑑
𝑡 , �̄�

𝑑 , 𝑁𝑑
ℎ,𝑡, 𝑁

𝑑
𝑤,𝑡,𝑊

𝑑
𝑡 , ℎ𝑑𝑡 , 𝑄

𝑑
𝑔,𝑡, 𝑍

𝑑
𝑢,𝑡, 𝑍

𝑑
𝑑,𝑡, ℎ

𝑑
𝑙,𝑡,

𝑄𝑑
𝑜,𝑡, 𝑉

𝑑
𝑡 , 𝑉 𝑑

𝑇 , 𝑍𝑑
𝑢,𝑇 , 𝛾1,𝑡, 𝛾2,𝑡, 𝛾3, 𝜇1,𝑡, 𝜇1,𝑡, 𝛾4,𝑡, 𝜇2,𝑡, 𝜇3,𝑡, 𝜇4,𝑡,

𝜇5,𝑡, 𝜇6,𝑡, 𝜇6,𝑡, 𝛾5,𝑡, 𝛾6,𝑡, 𝛾7,𝑡, 𝜇7,𝑡, 𝜇7,𝑡, 𝜇8,𝑡, 𝛾8,𝑡, 𝛾9, 𝜇9,𝑡, 𝜇9,𝑡,
𝛾10, 𝛾11,∀𝑡 ∈ 𝜏∖{𝑇 }}.

Eq. (9a) denotes the objective function of the single-
level model. Eq. (9b) is the collection of constraints from
the leader’s model. Eqs. (9c)-(9n) are stationary conditions
of the KKT optimality conditions. Eqs. (9o)-(9ak) are the
primal feasible conditions, while (9r)-(9ad) represent the
dual feasible and complementary slackness.

3.3.2. Linearization of the single-level model
Due to the product of variables in complementary slack-

ness, the single-level model is non-convex. The Fortuny-
Amat transformation is used by introducing an additional
binary variable and a relatively large integer constant M[41].
The constraints of (9r)-(9ad) are linearlized as (10a)-(10aa).

0 ≤ 𝑁𝑑
𝑤,𝑡 −𝑁min,𝑑

𝑤,𝑡 ≤ (1 − 𝑦1,𝑡)𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10a)

0 ≤ 𝜇1,𝑡 ≤ 𝑦1,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10b)

0 ≤ 𝑁𝑚𝑎𝑥,𝑑
𝑤,𝑡 −𝑁𝑑

𝑤,𝑡 ≤ (1 − 𝑦1,𝑡)𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10c)

0 ≤ 𝜇1,𝑡 ≤ 𝑦1,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10d)
0 ≤ 𝑊 𝑑

𝑡 −𝑄min
𝑔 ℎ𝑑𝑡 − ℎmin𝑄𝑑

𝑔,𝑡 +𝑄min
𝑔 ℎmin ≤ (1 − 𝑦2,𝑡)𝑀,

∀𝑡 ∈ 𝜏∖{𝑇 }
(10e)

0 ≤ 𝜇2,𝑡 ≤ 𝑦2,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10f)
0 ≤ 𝑊 𝑑

𝑡 −𝑄max
𝑔 ℎ𝑑𝑡 − ℎmax𝑄𝑑

𝑔,𝑡 +𝑄max
𝑔 ℎmax ≤ (1 − 𝑦3,𝑡)𝑀,

∀𝑡 ∈ 𝜏∖{𝑇 }
(10g)

0 ≤ 𝜇3,𝑡 ≤ 𝑦3,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10h)
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0 ≤ 𝑄max
𝑔 ℎ𝑑𝑡 + ℎmin𝑄𝑑

𝑔,𝑡 −𝑄max
𝑔 ℎmin −𝑊 𝑑

𝑡 ≤ (1 − 𝑦4,𝑡)𝑀,

∀𝑡 ∈ 𝜏∖{𝑇 }
(10i)

0 ≤ 𝜇4,𝑡 ≤ 𝑦4,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10j)
0 ≤ 𝑄min

𝑔 ℎ𝑑𝑡 + ℎmax𝑄𝑑
𝑔,𝑡 −𝑄min

𝑔 ℎmax −𝑊 𝑑
𝑡 ≤ (1 − 𝑦5,𝑡)𝑀,

∀𝑡 ∈ 𝜏∖{𝑇 }
(10k)

0 ≤ 𝜇5,𝑡 ≤ 𝑦5,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10l)
0 ≤ 𝑁𝑑

ℎ,𝑡 −𝑁𝑚𝑖𝑛
ℎ,𝑡 ≤ (1 − 𝑦6,𝑡)𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10m)

0 ≤ 𝜇6,𝑡 ≤ 𝑦6,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10n)

0 ≤ 𝜆𝑡𝑁
𝑚𝑎𝑥
ℎ,𝑡 −𝑁𝑑

ℎ,𝑡 ≤ (1 − 𝑦6,𝑡)𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10o)

0 ≤ 𝜇6,𝑡 ≤ 𝑦6,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10p)
0 ≤ 𝑄𝑑

𝑜,𝑡 −𝑄𝑚𝑖𝑛
𝑜,𝑡 ≤ (1 − 𝑦7,𝑡)𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10q)

0 ≤ 𝜇7,𝑡 ≤ 𝑦7,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10r)

0 ≤ 𝑄𝑚𝑎𝑥
𝑜,𝑡 −𝑄𝑑

𝑜,𝑡 ≤ (1 − 𝑦7,𝑡)𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10s)

0 ≤ 𝜇7,𝑡 ≤ 𝑦7,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10t)
0 ≤ 𝑄𝑑

𝑜,𝑡 −𝑄𝑑
𝑔,𝑡 ≤ (1 − 𝑦8,𝑡)𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10u)

0 ≤ 𝜇8,𝑡 ≤ 𝑦8,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10v)
0 ≤ 𝑍𝑑

𝑢,𝑡 −𝑍𝑚𝑖𝑛
𝑢,𝑡 ≤ (1 − 𝑦9,𝑡)𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10w)

0 ≤ 𝜇9,𝑡 ≤ 𝑦9,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10x)

0 ≤ 𝑍𝑚𝑎𝑥
𝑢,𝑡 −𝑍𝑑

𝑢,𝑡 ≤ (1 − 𝑦9,𝑡)𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10y)

0 ≤ 𝜇9,𝑡 ≤ 𝑦9,𝑡𝑀,∀𝑡 ∈ 𝜏∖{𝑇 } (10z)
𝑦1,𝑡, 𝑦1,𝑡, 𝑦2,𝑡, 𝑦3,𝑡, 𝑦4,𝑡, 𝑦5,𝑡, 𝑦6,𝑡, 𝑦6,𝑡, 𝑦7,𝑡, 𝑦7,𝑡, 𝑦8,𝑡, 𝑦9,𝑡,

𝑦9,𝑡 ∈ {0, 1},∀𝑡 ∈ 𝜏∖{𝑇 }
(10aa)

3.3.3. MILP problem and data-driven process
After the linearization, the single-level model is refor-

mulated into a MILP problem that can be solved efficiently
by commercial solvers. The complete MILP model is formu-
lated as follows.

Maximize
ΞMILP

(9a) (11a)

Subject to:

Constraints(9b) − (9q), (10a) − (10aa), (9ae) − (9ak)
(11b)

Where the decision variables for the MILP model are
ΞMILP = {𝜆𝑡, 𝑁𝑟

𝑡 , 𝑁
𝑟
ℎ,𝑡,𝑊

𝑟
𝑡 , ℎ

𝑟
𝑡 , 𝑄

𝑟
𝑔,𝑡, 𝑍

𝑟
𝑢,𝑡, 𝑍

𝑟
𝑑,𝑡, ℎ

𝑟
𝑙,𝑡, 𝑄

𝑟
𝑜,𝑡, 𝑉

𝑟
𝑡 ,

𝑍𝑟
𝑢,𝑇 , 𝑉

𝑟
𝑇 , 𝑁

𝑑
𝑡 , �̄�

𝑑 , 𝑁𝑑
ℎ,𝑡, 𝑁

𝑑
𝑤,𝑡,𝑊

𝑑
𝑡 , ℎ𝑑𝑡 , 𝑄

𝑑
𝑔,𝑡, 𝑍

𝑑
𝑢,𝑡, 𝑍

𝑑
𝑑,𝑡, ℎ

𝑑
𝑙,𝑡, 𝑄

𝑑
𝑜,𝑡,

𝑉 𝑑
𝑡 , 𝑉 𝑑

𝑇 , 𝑍𝑑
𝑢,𝑇 , 𝛾1,𝑡, 𝛾2,𝑡, 𝛾3, 𝜇1,𝑡, 𝜇1,𝑡, 𝛾4,𝑡, 𝜇2,𝑡, 𝜇3,𝑡, 𝜇4,𝑡, 𝜇5,𝑡,

𝜇6,𝑡, 𝜇6,𝑡, 𝛾5,𝑡, 𝛾6,𝑡, 𝛾7,𝑡, 𝜇7,𝑡, 𝜇7,𝑡, 𝜇8,𝑡, 𝛾8,𝑡, 𝛾9, 𝜇9,𝑡, 𝜇9,𝑡, 𝛾10,
𝛾11, 𝑦1,𝑡, 𝑦1,𝑡, 𝑦2,𝑡, 𝑦3,𝑡, 𝑦4,𝑡, 𝑦5,𝑡, 𝑦6,𝑡, 𝑦6,𝑡, 𝑦7,𝑡, 𝑦7,𝑡, 𝑦8,𝑡, 𝑦9,𝑡,
𝑦9,𝑡,∀𝑡 ∈ 𝜏∖{𝑇 }}.

Taking a day as a scenario, all the training scenario
days contain both day-ahead wind power output forecast
and real-time actual wind power output. And the optimal
adjustment parameter for these training scenario days can
be obtained through the MILP problem. Moreover, taking
the predicted wind power output, hydro inflow as inputs and
corresponding adjustment parameter as output, a machine
learning training and validating set can be generated. With
the trained machine learning model, when making the day-
ahead plan for practical use, using the wind power output
forecast and hydro inflow information as input, a corre-
sponding adjustment parameter to tighten the constraint for
day-ahead planning model can be generated. The WHHPS
can make the day-ahead plan and real-time operate with the
normal processes, and the day-ahead plan can be evaluated
by the proposed reliability metric. The complete procedure
for the proposed method is shown in Fig.1.

4. Case study
In this case study, the effectiveness of the proposed

tighten-constraint method is discussed. The WHHPS in this
case study consists of a wind power generator and a hy-
dropower generator as shown in Table 1. The entire schedul-
ing period in the day-ahead planning framework and the
subsequent real-time operation is 24 hours. A-year-long
forecast and actual wind power output data of 4 wind power
generators with 1h time intervals are obtained from [42]. A
hydropower located in China is chosen and the inflow data is
collected for the same days. The data is scaled to ensure the
validity of the WHHPS in this case study. By replacing the
wind power generator data in the WHHPS and taking each
calendar day as a scenario, there are 1464 scenario days in
total for this case study. Considering the consistency of the
hydropower operation, the initial and final reservoir water
levels are set as the same.

As the performance of different relaxing methods de-
pends on the specific problem structure and data[37], for
the WHHPS in this paper, with the testing method proposed
in Appendix A, we use 10000 points to test the relaxation
accuracy of the McCormick convex relaxation and the re-
sults show that an accuracy of more than 92.5% can be
guaranteed in this case study. Apart from the control model,
as mentioned in the introduction, stochastic model is the
main method to handle the inherent uncertainty in wind
power forecast. The models tested in this case study for
comparison are listed in Table 2. The day-ahead plans for
comparison are made with each method, and the real-time
operation operates according to real-time operation model in
Section 2.3. All the optimization problems in this paper are
modeled in AIMMS and solved by Gurobi. The hardware
environment of this paper is a personal computer with an
Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz 32GB RAM.
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Figure 1: The complete procedure for the proposed method

Table 1
Parameter settings for WHHPS

Component Parameter Value Unit

Wind power Installed capacity 150 𝑀𝑊

Hydropower

Installed capacity 360 𝑀𝑊
Dead water level 415 𝑚
Normal water level 425 𝑚
Maximum generation flow 589 𝑚3∕𝑠
Maximum hydraulic head 91.5 𝑚
Minimum hydraulic head 73.75 𝑚

4.1. Relationship between hydropower reservoir
status and day-ahead plan reliability

4.1.1. Experimental step
In this section, the full 1464 scenario days are divided

into training set with 1200 scenario days and testing set with
264 scenario days. The control model M1 is used as bench-
mark and as M5-M13 all contain our proposed method,
we use M10 as a candidate to show the effectiveness of
our proposed method under different hydropower reservoir
status and the impact of the hydropower reservoir status
on the results. We set 3 different initial and final reservoir
water levels, i.e. 20%(417m), 50%(420m), 90%(424m) of the
feasible water level range, to simulate different status of the
hydropower reservoir as shown in Table 3. The adjustment
parameters for the training set are obtained with the MILP in
Section 3.3.3 and the results are used to train the XGBoost
model in M10. The compared results are obtained by using

the testing set as the testing scenario days for the M1 and
M10.

4.1.2. The influence of different hydropower reservoir
status under M1

Fig. 2 presents the planned generation for each scenario
day under different hydropower reservoir status. For the
scheduled day-ahead generation, with the increase in the
initial and final reservoir water levels, the generation head
increases simultaneously, which means the generation effi-
ciency of the hydropower increases. As shown in the Fig.2,
the planned generation in higher initial and final reservoir
water levels is usually no less than that in lower initial
and final reservoir water levels. This improvement can be
significant in certain circumstances. In the 23rd scenario,
the planned generation under the initial and final reser-
voir water level of 417m, 420m, 424m are 5495.92MWh,
7382.64MWh, 7607. 95MWh, respectively. However, with
the increase in reservoir water level, the storage capacity de-
creases at the same time. In some cases, insufficient storage
capacity can lead to curtailed water, in return decreasing the
planned generation in higher reservoir water level. In 14th
scenario, the plan made under the initial and final reservoir
water level of 424m gives the worst planned generation of
4563.39 MWh comparing with 4848.92MWh in 417m and
420m.

Fig. 3 shows the reliability of the day-ahead plan in each
scenario day under different hydropower reservoir status.
With higher reservoir water levels, higher generation plan
could be made from the model. This will lead to decrease
in reliability of the day-ahead plan. Comparing with the
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Table 2
Methods Compared in Case Studies

Method Description

Control Model M1 The conventional operation model using the predicted wind power output to
make the day-ahead plan directly.

Stochastic Model
M2 Assuming the wind power output forecast error obeys a normal distribution

with zero mean as 𝜎𝑡 = 15% ×𝑁 𝑐𝑎𝑝
𝑤 ∕2 considering a confidence level of 95%,

and 2000 forecast error representative scenarios are generated through Monte
Carlo sampling for each scenario day [17][24].

M3 Same as M2, but Latin Hypercube Sampling is used [11].
M4 The adjacent time interval is obtained to depict the fluctuation of wind power

prediction, and the upper boundary, wind power output forecast, and lower
boundary are taken as the representative scenarios for each scenario day. The
method is detailed in [25].

Tighten-constraint Model

M5 The proposed method using Decision Tree Regression as the embedded
machine learning model.

M6 Same as M5, but KNN is used.
M7 Same as M5, but ANN is used.
M8 Same as M5, but SVR is used.
M9 Same as M5, but Random Forest Regression is used.
M10 Same as M5, but XGBoost is used.
M11 Same as M5, but LightGBM is used.
M12 Same as M5, but Gradient Boosting Regression is used.
M13 Same as M5, but CatBoost is used.

Table 3
Hydropower reservoir status

Reservoir status Initial and final
reservoir water
level

Unit

Low reservoir water level, suffi-
cient storage capacity

417 m

Moderate reservoir water level,
relative sufficient storage ca-
pacity

420 m

High reservoir water level, in-
sufficient storage capacity

424 m

plans made under the initial and final reservoir water level of
417m, there are 18 scenarios under 420m and 14 scenarios
under 424m whose day-ahead plans get lower reliability.
However, with higher generation efficiency, the reliability
of the day-ahead plan can be improved in some cases. The
reliability of the plans under the initial and final reservoir
water level of 424m is no less than that in 420m. Even though
in some cases, like 25th scenario, the planned generation
in 424m is 8504.22MWh which is larger than that under
420m with 8384.06 MWh. Sometimes, when the storage ca-
pacity is insufficient, to maintain the smooth output profile,
hydropower needs to curtail water and the planned gener-
ation decreases which can lead to a higher reliability. As
mentioned above, in 14th scenario, the planned generation
in 424m is minimum however the reliability is 1 comparing
with 0.96 in 417m and 420m.

Figure 2: Planned generation under different reservoir status

4.1.3. The effectiveness of M10
Fig.4 represents 3 statistical indices of the results from

M1 and M10. The first sub-figure represents the average
reliability of unfulfilled scenario days in M1. After using
M10, the reliability in the same scenario days increases from
around 86% to 99% under different reservoir levels. With the
high guarantee in reliability of day-ahead plan, the average
standard deviation and average unfulfilled generation over
all the test set scenario days drops significantly as shown in
the second and third sub-figures.

4.2. Comparison of results for different models
4.2.1. Experiment step

As mentioned in the introduction, when making the
day-ahead plan, apart from the conventional model (M1),
to handle the inherent uncertainty in wind power forecast,
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Figure 3: Reliability of day-ahead plan under different reservoir
status

typically, stochastic models are used in which the day-ahead
plan is essentially the optimum of an statistical average
over multiple representative scenarios. To further show the
effectiveness of our proposed method, the stochastic mod-
els presented in some references are taken for compari-
son. Meanwhile, different machine learning methods may
perform differently when finding the proposed adjustment
parameter, in this experiment, a few prominent regression
methods are selected for comparison to showcase the influ-
ence of the different levels of regression precision on the
results as shown in Table 2. According to the results in the
previous experiment, when the reservoir water level is low
or the storage capacity is insufficient, the results might be
influenced. For the following experiments, the initial and
final reservoir water levels are set as 420m. For M5-M13,
the machine learning models are trained respectively based
on the training set. The results are compared under the full
testing set.

4.2.2. The reliability and calculation time of
day-ahead plan under different models

The reliability of day-ahead plans for the testing set
under different models are shown in Fig.5. As shown in the
figure, amongst all the models, the M4 performs the worst.
It gets the least number of scenario days (48.11% of all
scenario days) whose reliability is 1 (reliable plan) and the
highest number of scenario days whose reliability is under
0.9. Followed by M1, with only 56.82% of scenario days
reach a reliability of 1. Comparing with M1, the M2 and M3
improve the number of scenario days with reliable plan to
81.44% and 76.52%, respectively. The reason why M3 gets
a fewer number of reliable plans lies in the differences of
random sampling between Monte Carlo and LHS. As LHS
uses stratified sampling to consider extreme conditions, it
might have a more optimistic expectation for real-time wind
power output. This will lead to a higher generation plan
while decrease the reliability. Comparing with the highest
81.44% in stochastic model M2, the lowest one reaches
93.94% (M13) and the highest one reaches 99.62% (M5)

after using the proposed method. A high reliability plan can
always be expected after using our method.

The average converge elapsed time under different mod-
els and computation burden comparing with M1 are shown
in Table 4. While the M2 and M3 have a relative higher
ability than M1 in making a reliable plan, they incur signifi-
cant computation burden simultaneously. By comparison, a
higher reliable plan rate without extra computation burden
can be achieved after using our method in M5-M13.

4.2.3. Optimal gap under M5-M13
For the grid operator, high reliability in day-ahead plan

can improve the reliability and operational security for the
real-time grid operation. However, the less total generation
planned in day-ahead plan, the higher reliability might be
achieved in real-time operation. In other words, when the
generation in day-ahead plan is set as 0, this plan can always
get a reliability of 1 in real-time operation. Under the context
of electricity markets, how to plan more generation under
the premise of high day-ahead plan reliability can benefit
both the SO and generator. Therefore, given the guarantee
of high reliable plan rates in M5-M13, further discussion
should be put on another dimension, i.e. the efficiency in
using resources in the WHHPS for generation.

In this context, the optimal generation plan refers to the
reliable day-ahead plan with largest generation. The optimal
generation plan can be obtained by the introduced tightened-
constraint method with the introduced 𝜆 calculating from the
bilevel game model. The optimal gap refers to the difference
between the generation in optimal generation plan (𝐺𝑂𝑝𝑡)
and the generation in the reliable day-ahead plan made in
each models (𝐺𝑃 𝑙𝑎𝑛). The cross validation results of the
machine learning models in M5-M13 for this experiment are
shown in Appendix B.

Ranking the test scenario days by the generation in the
optimal generation plan, the relationship between the 𝐺𝑂𝑝𝑡

and 𝐺𝑃 𝑙𝑎𝑛 in the corresponding scenario in M5-M13 is
shown in Fig. 6. As shown in the figure, The optimal gap
can vary significantly in different models. Although the M5
can make the most reliable plans, the average optimal gap in
these plans is 1436.57 MWh, which is much larger than the
smallest one of M13 with only 489.64 MWh.

As the only difference between M5-M13 is the different
choice of machine learning model, this large optimal gap
difference might come from the different ability in predicting
the proposed adjustment parameter. Therefore, to show this
relationship, the prediction precision of adjustment param-
eter in these scenario days, whose reliability of the day-
ahead plans made in M5-M13 are all 1, are calculated as
the𝑅2 with eq.(12)[43]. The relationship between prediction
precision of the proposed adjustment parameter and optimal
gap is shown in Fig.7. With the improvement in prediction
precision of the adjustment parameter, the marginal benefit
increases, which means per unit increase in prediction pre-
cision can bring a larger and larger decrease in optimal gap.
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Figure 4: Comparison of M1 and M10 under different reservoir status

Table 4
Converge time

@Models Converge time(s) Burden rate Models Converge time(s) Burden rate

@ M1 0.005 M8 0.005 0%
@ M2 1.349 26880% M9 0.005 0%
@ M3 1.42 28300% M10 0.005 0%
@ M4 0.007 40% M11 0.005 0%
@ M5 0.005 0% M12 0.005 0%
@ M6 0.005 0% M13 0.005 0%
@ M7 0.005 0%

Figure 5: Reliability distribution of testing set under different
models

𝑅2
𝑀𝑖 = 1−

∑𝑆
𝑠=1

∑𝑇−1
𝑡=1 (𝜆𝑀𝑖

𝑡,𝑠 − 𝜆∗𝑡,𝑠)
2

∑𝑆
𝑠=1

∑𝑇−1
𝑡=1 (𝜆∗𝑡,𝑠 − 𝜆∗)2

, 𝑖 = {5, 6,⋯ , 13}

(12)

Where 𝜆∗𝑡,𝑠 is the actual optimal value obtained from the
MILP, 𝜆𝑀𝑖

𝑡,𝑠 is the predicted value and 𝜆∗ is the average of all
actual value. 𝑆 is the scenario days set.

4.3. Relationship between training set size and
results

4.3.1. Experimental step
As shown in the previous experiments, after using M5-

M13, the high reliability of day-ahead plan can be guar-
anteed and with the increase in prediction precision of the
proposed adjustment parameter, the optimal gap can be
decreased faster and faster. Previous research has shown the
simulating performance of the machine learning methods
can be affected by parameter settings[44]. In this paper,
rather than trying different hyper parameters to investigate
the influence of model parameters on the prediction pre-
cision of the proposed adjustment parameter, we hope to
explore the relationship between the size of training data set
and results. Based on a training set of 1200 scenario days,
we started with 48 scenario days and added 48 scenario
days each time, resulting in a total of 25 training subsets.
According to the previous experiment, the M13 is used in
this part. We use each subset to train the CatBoost in M13
and the testing set is used for comparison.

4.3.2. Training set size and reliability
Fig.8 shows the percentage of reliable plan in testing set.

Under different training set sizes, this portion remains a high
level over 91.29% and reaches a maximum of 97.35%. As
before, the 𝑅2 is chosen to show the prediction precision.
The relation of the prediction precision of the proposed
adjustment parameter over the training set size is shown in
Fig.9. The figure suggests a continuous growing trend in
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Figure 6: Comparison of the relationship between 𝐺𝑂𝑝𝑡 and 𝐺𝑃 𝑙𝑎𝑛 in M5-M13

prediction precision, however, the marginal gain increases
significantly at first and decreases later.

4.3.3. Training set size and optimal gap
Having shown the ability of our method in producing

reliable day-ahead plans in previous results, to further show
the influence of training set size on optimal gap, 6 scenario
days are selected for analysis as shown in Fig.10. In general,
with the increase in training set size, a decrease trend in
optimal gap can be seen. In some cases, like case 2, the
optimal gap drops significantly by 67.6% at first. Similar
results can be obtained from case 5, 7, 9. The average optimal
gap of the scenario days with reliable plans under different
training data set is shown in Table 5. With the increase in

training set size, the optimal gap can drop by more than 50%,
which can improve the efficiency in resources utilization and
guarantee the profit of the WHHPS.

5. Conclusion
From the perspective of real-time operation, this paper

proposes a new tighten-constraint method for WHHPS to
improve the effectiveness of the day-ahead plan. First, a
conventional multi-objective day-ahead planning model for
the WHHPS considering generation and output fluctuation
is formulated. By using 𝜀-constraint method, the multi-
objective model is reformulated as a single objective model.
Then, with the help of McCormick convex relaxation and
choosing a fluctuation averse strategy, the non-convex single
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Figure 7: Relationship between optimal gap and prediction
precision of the adjustment parameter

Figure 8: Relationship between training set size and reliable
plan rate

Figure 9: Relationship between training set size and prediction
precision

objective model is reformulated as a LP. The fulfillment
of day-ahead plan in real-time operation is formulated as a

Table 5
Optimal gap under different training set size(MWh)

Training set size Optimal gap Training set size Optimal gap

48 1194.52 672 617.6192
96 943.7891 720 598.9485
114 817.5091 768 551.3343
192 805.2866 816 613.7816
240 813.7606 864 524.9576
288 792.8734 912 541.6922
336 692.3983 960 512.9952
384 661.7904 1008 512.3668
432 660.3133 1056 491.3405
480 647.3919 1104 508.481
528 625.1581 1152 513.2965
576 681.75 1200 509.9319
624 632.545

MIP and the reliability metric is proposed to evaluate the
day-ahead plan from the perspective of real-time operation.
To handle the error in wind power output forecast which
may lead to low reliability of the day-ahead plan, a tighten-
constraint method by introducing an adjustment parameter
is introduced and a bilevel game-theoretic framework is pro-
posed to determine the adjustment parameter. The tighten-
constraint day-ahead planning model is considered in the
lower level problem, while a reliable and high generation
day-ahead plan from the perspective of real-time opera-
tion is considered in the upper level problem. Then the
bilevel model is transformed into a single-level MILP and
the data-driven process is clarified. Numerical results are
presented to demonstrate the feasibility and effectiveness of
the proposed tighten-constraint method and the influence of
prediction precision on the proposed adjustment parameter
is discussed. The main conclusions drawn are as follows:
(1) In M1, there is no absolute relationship between the
hydropower reservoir status and reliability of the day-ahead
plan. However, a sufficient storage and high reservoir water
level may improve the reliability. The proposed method can
improve the reliability, decrease real-time operation fluctu-
ation and unfulfilled generation in all hydropower reservoir
status.
(2) M2 and M3 can improve the reliability of the day-ahead
plan but they will lead to computation burden simultane-
ously (26880% and 28300% burden rate respectively in case
study). In contrast, M5-M13 can guarantee a higher level
of reliability for the day-ahead plan while at the same time
rely on no additional computation burden (0% burden rate).
However, the optimal gap of the planned generation under
M5-M13 can vary because of different ability in finding the
best adjustment parameter. This can be further alleviated by
using more training data as the WHHPS continues to operate
over long-term.
(3) A high level of completion rate can always be found
(larger than 0.91 of reliable plan rate in the case study)
even though when the training set size is relatively small.
However, with larger training set size, there would be an
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Figure 10: Relationship between training set size and optimal gap

increase trend in prediction precision of the proposed ad-
justment parameter and decrease trend in optimal gap of the
planned generation (from 1194.52 MWh to 509.93 MWh in
case study).

In conclusion, the proposed tighten-constraint method
gives a new way to guarantee a high reliability for the
day-ahead plan from the perspective of real-time operation
given wind power output forecast uncertainty for WHHPS,
and with the increase of historical data, a plan which has
high efficiency in resource utilization for generation can be
expected. This method can be applied to the hybrid power
system consisting of both variable RES and complementary

power source. However, this method only considers the
hybrid power system with 1 RES power plant and 1 com-
plementary power plant which limits its application. For the
hybrid power systems with more than 1 RES power plant or 1
complementary power plant, further research should be car-
ried out to prove the effectiveness of the proposed method.
At the same time, it is worth mentioning that this method is
not fully explored. At this stage, we only consider improving
the reliability of the day-ahead plan under the circumstance
when wind power output forecast is overestimated, which
means this method may not guarantee a best resource utiliza-
tion in real-time operation under all conditions. In addition,
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this study only obtains one-year forecast and actual output
data from four wind generators and further data collection is
needed to enhance the capability of this method in increasing
efficiency in resources utilization. The future work can be
extended into the context of electricity power marketization
to estimate potential profit gains as a result of applying
the proposed method to both the generation company and
SO. Meanwhile, further works can be carried out to test
the performance of the proposed method in systems with
high levels of wind power integration and there is potential
to extend this research to address challenges in long-term
operation horizons.

A. Algorithm for checking the relaxation
accuracy

The procedure of relaxation accuracy checking is shown
in Algorithm 1. For the WHHPS used in case study, 𝐼 = 𝐽 =
100.

Algorithm 1 Approximation accuracy check
1: Initialize the testing data grid 𝐺 = {(𝑄𝑔,𝑖, ℎ𝑗)|𝑖 =

1, 2,⋯ , 𝐼 ; 𝑗 = 1, 2,⋯ , 𝐽}
2: 𝑇𝐸 = 0, 𝑛 = 0
3: for 𝑖 = 1 to 𝐼 do
4: for 𝑗 = 1 to 𝐽 do
5: 𝑁ℎ = 𝑘𝑄𝑔,𝑖ℎ𝑗
6: 𝐿 = max{𝑄𝑚𝑖𝑛

𝑔 ℎ𝑗 + ℎ𝑚𝑖𝑛𝑄𝑔,𝑖 −
𝑄𝑚𝑖𝑛

𝑔 ℎ𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥
𝑔 ℎ𝑗 + ℎ𝑚𝑎𝑥𝑄𝑔,𝑖 −𝑄𝑚𝑎𝑥

𝑔 ℎ𝑚𝑎𝑥}
7: 𝑈 = min{𝑄𝑚𝑎𝑥

𝑔 ℎ𝑗 + ℎ𝑚𝑖𝑛𝑄𝑔,𝑖 −
𝑄𝑚𝑎𝑥

𝑔 ℎ𝑚𝑖𝑛, 𝑄𝑚𝑖𝑛
𝑔 ℎ𝑗 + ℎ𝑚𝑎𝑥𝑄𝑔,𝑖 −𝑄𝑚𝑖𝑛

𝑔 ℎ𝑚𝑎𝑥}
8: if 𝑁ℎ ≤ 𝑁𝑚𝑎𝑥

ℎ or 𝐿 ≤ 𝑁𝑚𝑎𝑥
ℎ then

9: 𝑁ℎ = min{𝑁ℎ, 𝑁𝑚𝑎𝑥
ℎ }

10: 𝑈 = min{𝑈,𝑁𝑚𝑎𝑥
ℎ }

11: 𝐿 = min{𝐿,𝑁𝑚𝑎𝑥
ℎ }

12: 𝐸 = max{|𝑁ℎ − 𝑈 |, |𝑁ℎ − 𝐿|}
13: 𝑇𝐸+ = 𝐸

𝑁ℎ
14: 𝑛+ = 1
15: end if
16: end for
17: end for
18: 𝐴 = 𝑇𝐸

𝑛

B. Cross validation results
The cross validation results of the machine learning

models in the M5-M13 are shown in Table 6.
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