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Abstract

Asymmetric evolution of coherent vortices behind polygonal cylinders in an incident flow is studied using Proper
Orthogonal Decomposition (POD) based phase averaging analysis. Flow around polygonal cylinders of side number
N ∈ [5,8] at Reynolds number 104 is simulated using three-dimensional Large Eddy Simulation for six incident
angles α to cover the entire incidence spectrum. POD analysis is performed on a two-dimensional subset of the
data at the mid-span of the cylinder. It is found that except heptagon at corner orientation, where extra secondary
vortex shedding is observed, all the other cases resemble the classical periodic Kármán vortex shedding at the Strouhal
frequency. The first pair of POD eigenvalues show similar and dominant energy content in all the cases, with negligible
N or α dependence. Maximum circulation of primary vortices calculated using the POD-based phase averaging
method displays significant asymmetry between the vortices shed on the upper and lower sides, when the cylinder is
at off-principal orientations with respect to the incoming flow. This maximum circulation on each side of the wake
occurs close to a properly defined vortex formation distance where vortex centroids are closest apart in the transverse
direction. Correlation analysis reveals that the difference of the maximum circulations between the upper and lower
sides scales weakly with the time-mean lift coefficient, and their sum scales well with the time-mean drag coefficient
positively and Strouhal number inversely.
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1. Introduction

Polygonal cylinders, which refer to cylinders of polygonal cross-sectional shapes, are widely seen in architectural
and engineering applications. Fluid mechanical characteristics associated with polygonal cylinders, such as oscillatory
aerodynamic forces and periodic wake flows, typically resemble those of general two-dimensional bluff-bodies, e.g.,
the circular cylinder. Specifically, the periodic vortex shedding with a certain frequency causes vibration on the
objects, that is, the so-called vortex-induced vibration (VIV), frequently occurs in ocean engineering applications[1,
2], such as in the design and stability analysis of offshore platforms, marine structures, marine risers, and underwater
vehicles. Flow around polygonal cylinders of different side numbers N, at various incoming flow incidence angles
α (because of their quasi-axisymmetric geometries) and Reynolds numbers Re, manifests distinct flow separation
characteristics, and hence the induced fluid forces and wake evolution. In particular, it was previously shown in a
systematic wind tunnel experiment [3] for cylinders of N ∈ [2,16] at principal orientations (either a flat surface or an
edge facing normally to the incoming flow) that lift and drag forces as well as the Strouhal number, St, all exhibit
significant non-linear dependence on N. Flow past those polygonal cylinders in general resembles the one past the
circular cylinder [3]. However, unlike the continuous surface of a circular cylinder, their geometrical discontinuity
largely determines the location of flow separation points, and hence the topology of the near wake flow region. For a
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polygonal cylinder of N ≲ 10, flow tends to separate at a fixed edge, showing weak sensitivity to Re in the sub-critical
regime [4]. It thus can be expected that at an arbitrary (off-principal) orientation, there exists subtle variation on α

of the aerodynamic forces, including a non-zero time-mean lift, which indeed is confirmed by a recent Large Eddy
Simulation (LES) study for polygonal cylinders of N ∈ [5,8] covering the entire α spectrum [5].

In terms of the flow characteristics in the wake behind polygonal cylinders, those for the triangular (N = 3) and
the square cylinder (N = 4) have been extensively studied owing to their simple geometry and wide applications.
To mention a few among others, Agrwal et al. [6] experimentally studied the effect of the apex angle on the flow
around the triangular cylinder using Particle Image Velocimetry (PIV) at Re = 520, focusing on the flow structure
and aerodynamic forces. It was found that the drag coefficient CD increases with the apex angle, while St is inversely
proportional to the apex angle. The results of turbulence intensity and the spanwise vorticity showed that as the apex
angle increases, vortex shedding is delayed, and the recirculation region behind the cylinder is extended further into
the wake. In addition, the power spectra density (PSD) from the velocity signal, measured using hot-wire anemometer
showed additional peaks other than the Strauhal frequency in the frequency spectrum, attributed to the non-linear
interaction between the Kármán vortices from the upper and the lower side. Lyn et al. [7] investigated the flow
around a square cylinder in turbulent regime using two-component Laser Doppler Velocimetry measurements and
phase averaging based on the pressure signal. They found that the streamwise evolution of the circulation of coherent
vortices in the near wake region is very similar to that of the circular cylinder. The average decay rate of circulation
is slightly larger than that of the circular cylinder. They also found that the maximum circulation of these vortices is
about 60% higher than that of the circular cylinder, which is attributed to the larger vorticity magnitude and vortex size.
Oudheusden et al. [8] performed Proper Orthogonal Decomposition (POD) analysis on their PIV data to study the
effect of α on the flow features. They reconstructed the turbulent flow field using the first two POD modes having the
highest energy content, which is about 75% of the total turbulent kinetic energy. POD provided a good global phase
identifier which enables effective investigation of coherent vortex evolution at various α . Hu et al. [9] experimentally
studied the effect of the corner radius of a square cylinder on the near wake flow using PIV and phase averaging.
They found that as the corner radius increases, the peak vorticity and circulation of the coherent vortex structure both
decay while the vortex shedding frequency increases significantly. Also, since the vortex shedding frequency grows
with increasing corner radius, the wavelength between tandem vortices decreases. Bai and Alam [10] investigated the
dependence of wake flow structures, as well as the time-mean CD for the square and the circular cylinder over the
range of 103 < Re < 107 and classified their dependency on Re into five distinctive regimes.

Studies of cylinders with N ≥ 5 are relatively scarce. Khaledi and Andersson [11] numerically studied the wake
behind a hexagonal cylinder (N = 6) at corner and face orientation for 102 ≤ Re ≤ 103, and found that St for the face
oriented case is larger than the corner orientation and it increases with Re for 100 ≤ Re ≤ 500. Tian and Wu [12]
studied even N polygonal cylinders at corner orientation for both inviscid and low Re viscous flows. Considering
the Re effect, they proposed a correction to the linear relation between St and Re−1/2 originally proposed by Fey
et al. [13]. Yang et al. [14] numerically studied the aerodynamic performance and VIV characteristics of an 18-
sided polygon cylinder. They examined the influence on CD of Re for 2.3× 104 ≲ Re ≲ 10.6× 104, and the surface
roughness at Re = 7.1× 104. A significant reduction of in CD up to 47% has been found in comparison with the
circular cylinder. They also found that as the surface roughness increases, the CD initially decreases, then increases
and eventually stabilizes since the separation points are fixed at the edge of the groove at higher roughness values.

The aerodynamic forces and wake flow characteristics on N ∈ [2,16] for 104 ≤ Re ≤ 105 were more systematically
studied by Xu et al. [3] in a wind tunnel, but only for principal orientations. They found that CD, lift coefficient
fluctuation C′

L and St all show strong dependence on N and orientation. A corrected flow separation angle ζ , which
takes into consideration the observed separation-reattachment phenomena, was proposed. Correlations for St-ζ and
CD-ζ were presented. Furthermore, the semi-empirical correlation ζ = C0.6

D St was proposed. Wang et al. [4, 15]
addressed the dependence of flow characteristic length scales and the evolution of coherent wake vortices for polygons
of N ≥ 3 at Re = 104 using PIV measurements in a wind tunnel. It was found that both CD and C′

L are linearly
correlated with the wake width, supported by two empirical functions. The coherent vortex structure extracted by POD
phase analysis suggested a spatially two-stage development of vortex circulation, separated at the vortex formation
length, where the circulation maximises. The vortex centroid trajectory showed that vortices shed from the upper and
lower side first move towards the wake centerline and then away from it. They also found that the size of the vortices
grows monotonically downstream for all the tested cases whose scaled growth rate is almost universal.

Masoudi et al. [5, 16] extended the aforementioned studies by considering incidence angle α effect on polygonal
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Figure 1: (a) Schematic of the computational domain and problem configuration (not to scale); (b) Global mesh (x-y plane view) of Heptagonal
cylinder, with a close-up view of the mesh near the cylinder surface at the bottom right [18].

cylinders of N ∈ [5,8] using LES at Re = 104. In addition to the aerodynamic forces and time-mean wake flow,
they noticed a flapping motion associated with separated shear layers, whose strength varies non-linearly with N and
α , which affects the shear layer reattachment and secondary separation behaviour. This flapping motion correlates
directly with CD and St, and indirectly with the time-mean lift coefficient CL. Furthermore, since the flapping motion
leaves clear footprint in the time-mean shear layer topology, empirical formulations based on the time-mean shear
layer length and width were proposed, which unify CD, CL and St for the polygonal cylinder studied, as well as those
not studied but available in the literature [3, 4], including the circular cylinder. The classical inverse relationship
between CD and St [3, 17] was also confirmed for arbitrary α conditions.

To the best of our knowledge, the asymmetric evolution of the coherent vortices shed behind these cylinders and
their relations to the characteristic aerodynamic behaviours, owing to the effect of the incidence angle α , are yet to
be revealed. In this work, we aim to directly address this, making use of the available LES data in Masoudi et al. [5]
POD is applied as the flow field phase identifier to extract phase-averaged flow fields. The Re studied in the current
study is within the sub-critical regime where no transition phenomena have been observed in experiment [3], due to
the small side number of the polygons studied. Primary flow separation points are fixed at two corners and insensitive
of Re. Therefore the results obtained in this study are expected to be valid across a wide sub-critical Re regime.

2. Methodology

2.1. Computational modelling and numerical setup
Three-dimensional constant Smagorinsky LES was implemented in OpenFOAM and performed on polygonal

cylinders of N ∈ [5,8], each at six equal-spaced incidence angles α . Based on the dimensionless incidence angle,
defined as α∗ =αN/180◦, the equal space ∆α∗ = 0.2. α∗ = 0 and 1 are defined for the corner and the face orientation,
respectively. Re = U∞Di/ν = 1.0× 104, where U∞ is the free stream velocity, Di is the in-circle diameter of the
cylinder and ν is the kinematic viscosity of the working fluid.

A sketch of the computational domain and the definition of the coordinate system are given in Fig. 1(a), where
Rc and Ri denote the circum-circle and in-circle radius, respectively. Details of the numerical setup and validations
against experimental results can be found in Masoudi et al. [5]. Only key information is repeated here. Polygonal
cylinders are placed at the centre of a cylindrical domain of 40Di in diameter and πDc in length (which is also the
cylinder spanwise length), where Dc is the circum-circle diameter. Right-handed Cartesian coordinate systems are
adopted at the centre of the domain, where the x′-y′ system is fixed and equally splits the outer boundary into inlet
and outlet surfaces, while the x-y system is set to align with the desired incident flow U∞ direction; x, y and z are the
streamwise, transverse and spanwise direction, respectively. The corresponding velocity components are u,v and w.
Cylinders are fixed in the domain, while α is varied by changing the relative incoming flow direction.
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Structured mesh with the number of cells in the radial (Nr) and circumferential (Nθ ) directions are typically
216 ≤ Nr = Nθ ≤ 224, and Nz = 56 cells in the spanwise direction, where Nθ and Nr vary based on the specific
polygon, aiming to ensure an equal distribution of cell divisions on each edge of a given polygon. The grid size
grows exponentially in the radial direction (r) from the cylinder surface and is uniformly spaced in the circumferential
direction (θ ) and the spanwise direction (z). The cell growth rate in the r direction is set such that the maximum non-
dimensional wall distance y+ value is below unity. An example of the global mesh used to perform the computation is
given in Fig. 1(b). Validation study [5] involved assessing time-mean CD and St against the experimental data reported
in Xu et al. [3] measured at the same Re, showing good agreement. Besides, the grid sensitivity examination indicates
that the present mesh configuration and numerical scheme are capable of capturing more than 90% of turbulent
kinetic energy, except near separation region, which is about 80%. Therefore, the current LES can be considered
well-resolved for reliable subsequent analyses.

The governing Navier-Stokes equations and continuity equation for the current LES simulation are written as

∂ ūi

∂xi
= 0, (1)

∂ ūi

∂ t
+

∂ ūiū j

∂x j
=− 1

ρ

∂ p̄
∂xi

+
∂

∂x j

[
ν

(
∂ ūi

∂x j
+

∂ ū j

∂xi

)
+ τi j

]
, (2)

where all the velocity and pressure components in the above equations are filtered quantities. The residual stress term
τi j can be decomposed as

τi j = uiu j − ūiū j. (3)

Based on the eddy-viscosity type subgrid scale model, the sub-grid scale stress tensor τi j is modelled as

τi j −
2
3

ktδi j =−2νt

(
S̄i j −

1
3

S̄kkδi j

)
, (4)

S̄i j =
1
2

(
∂ ūi

∂x j
+

∂ ū j

∂xi

)
, (5)

where S̄i j is the rate of the strain tensor in resolved scales; νt and kt are subgrid scaled viscosity and turbulent
kinetic energy, respectively. In this study, a typical value of Smagorinsky coefficient Cs = 0.1 is applied based on the
successful validation of the circular cylinder flow [19, 20], and a wall-damping formulation proposed by Van Driest
[21] is implemented as

∆ = min
(

kv

C∆

,∆

)
y
[

1− exp
(
−y+

25

)]
, (6)

where kv = 0.4187 is the von Kármán constant and model constant C∆ = 0.158. No wall function is used in this study.

2.2. Snapshot based POD

POD analysis is performed on a subset of the LES data to examine the phase information of the vortex shedding
behind all the tested cylinders. The selected two-dimensional (2D) subset spans a rectangular region of −1Di ≤ x ≤
7Di and −1.5Di ≤ y ≤ 1.5Di at the mid-span (z = 0). It was found that the spanwise variation of the flow physics
of interest is unimportant compared to that in the x-y plane [5, 16], and therefore only this 2D area is analysed. We
made use of snapshots covering a duration of approximately 30 vortex shedding cycles after the transient period, at a
time interval of ∆t∗ = ∆tU∞/Di = 1. This results in about 27 snapshots per shedding cycle. Fig. 2 presents example
snapshots used for the present study, where the spanwise vorticity component ωz = ∂v/∂x− ∂u/∂y. The x and y
coordinates are normalised by the constant cylinder in-circle diameter Di, as x∗ and y∗, respectively.

POD decomposes an ensemble of flow field data into an optimal combination of orthogonal basis functions and
modes [22]. It has been successfully applied to reconstruct low-order dynamic models to extract large-scale coherent
flow structures in turbulent wake flow behind bluff bodies and turbulent planar jet [23, 24, 25, among many others]. It
has also been used to perform phase averaging and to evaluate the mean fluctuating motions and turbulence properties
[26, 8]. Here, the snapshot based POD [27] is applied because of higher spatial dimension than temporal dimension.
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Figure 2: Instantaneous vorticity fields of N = 7, α∗ = 0 (corner orientation). (a–f) present example snapshots over 2/3 of a vortex shedding cycle
after the wake is fully developed, i.e., 2π/5–12π/7. The local region of the temporary secondary separation points is magnified in (b) and (e). The
arrows in (e) indicate the primary and the secondary vortices, with the secondary vortex emerging from the strongly flapping shear layer motion,
which influences the appearance of the (temporary) secondary separation points. The primary separation points are marked by ◦ and the secondary
separation points by □.

Figure 3: Scatter plot of modal coefficients associated with the highest modal energy a1 versus a2 for all the snapshots of case N = 7,α∗ = 0. ri
represents the radius of the ith snapshot point, rmean the mean radius marked by the red circle, and ξ marks the bin size for phase-averaging. The
modal coefficients corresponding to the instantaneous flow fields presented in Fig. 2 are marked by the 6 red dots, where the one corresponds to
Fig. 2(a) is labeled, and the remaining 5 are for Figs. 2(b)–2(e) in counterclockwise order.
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Mathematically, the POD decomposition procedure can be summarised as follows, using velocity quantity as
example

q′(x, t) = q(x, t)−q(x) =
Nt

∑
n=1

an(t)φn(x), (7)

where q′ is the velocity fluctuation and q is the time-mean velocity, both are functions of space x; Nt is the total
number of snapshots used for decomposition. an and φn are the nth POD coefficient and POD mode, respectively,
which can be obtained by constructing the covariance matrix R.

R =UTWU, (8)

where U = [u1 · · ·un · · ·uNt ], and un represents the two in-plane fluctuating velocity components (u,v) of the nth

snapshot available from LES, restructured into one column. The intensity of the spanwise velocity w is much lower
and it does not have noticeable impact on the results. Here a spatial weighting matrix W is necessary to normalise
the inner product because the LES data is stored in cylindrical coordinate structure. A standard eigenvalue problem is
solved

Rψn = λnψn, (9)

where n = 1 · · ·Nt , and the eigenvalue λn denotes the energy content of the corresponding eigenvector ψn. By sorting
λn in descending order, one may obtain a rank of the energy of the associated POD mode. The first few high-energy
modes usually represent coherent flow structures or motion, while the higher-ranked low-energy modes often contain
incoherent flow information or noise.

With the eigenvalues and eigenvectors determined from equation (9), the nth POD mode φn in equation (8) can be
calculated by

φn =
√

WUψn
1√
λn

. (10)

The W term on the rhs accounts for the non-uniform mesh grid weighting. Accordingly, the POD coefficient an is
calculated as

an =UT
√

Wψn. (11)

2.3. POD-based phase averaging
The first two modal coefficients associated with the highest energy can be used to extract the phase information

of the periodic vortex shedding as demonstrated by Oudheusden et al. [8], and are less affected by phase jitter [28]
which generally occurs while estimating the phase by performing local or truncated field information like pressure
signals. The phase angle ϕi for the ith snapshot is related to the first two modal coefficients a1 and a2 by

a1 = ri
√

2λ1 sin(ϕi), a2 = ri
√

2λ2 cos(ϕi). (12)

It is not difficult to see that
a1

2

2λ1
+

a2
2

2λ2
= r2

i , (13)

where ri is the radius of the coefficient space for the ith snapshot.
Figure. 3 shows the scatter plot of the first two POD mode coefficients, a1 and a2. Every dot represents one

instantaneous flow field snapshot. The distribution of a1 and a2 around the circle of the mean radius rmean is evident
and the scattering of the dots around rmean is attributed to the coherency fluctuation of the vortex shedding pattern.
That is, those having smaller radii usually show clear vortex structures, while for those having larger radii, vortices
tend to be distorted and fragmented. A bin size of ξ = ϕ±π/18 is chosen to perform the phase averaging in this study.
Typically each bin contains about 35 snapshots. The chosen bin size is a result of considering the balance between the
convergence of phase averaging and the desired phase resolution to resolve vortex strength and its position (or phase)
as correctly as possible. A convergence test related to the bin size was performed (figure not shown) to evaluate the
effect of the bin size on the outcomes. The results indicate that reasonable bin size variation does not have a strong
effect on the phase averaged results for this level of bin filling, aligning with the findings of Oudheusden et al. [8].
This reassures adequate statistical convergence for the order of the quantities studied here.
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Figure 4: POD mode energy distribution of the pentagon cylinder at various α∗. N = 5 is used as an example.

It is worth clarifying that phase averaging of the present data may equivalently be performed based on the time-
resolved lift coefficient CL(t), which is available from the LES simulation. The POD-based phase averaging directly
makes use of the flow field information only, whose synchronisation to the aerodynamic forces on the bluff-body may
not always be guaranteed. It can also be applied to data obtained from a non-time-resolved PIV experiment without
force measurement [15]. More importantly, POD offers some preliminary analysis based on the spatial distribution of
its orthogonal modes, which is relevant to the statistical analysis discussed later in Section 3.2.

3. Results and discussion

3.1. POD analysis of the wake flow

Figure. 4 shows the distribution of the modal energy En of the six α∗ cases for the pentagon, in descending
order, where En = λn/∑

Nt
n=1 λn. En represents the relative contribution of the corresponding eigenmode to the total

fluctuation kinetic energy, and as expected, the first two modes share similar energy level, each taking about 27%
of the total energy. The higher modes have much lower energy level and decrease rapidly. This pattern resembles
the classical Kármán vortex shedding. α takes negligible effect on the energy content of the first two modes, and
only subtly influences the energy contribution of the higher modes, representing less coherent vortex structures or
turbulence. Other polygons display similar patterns, i.e., distinctively high and similar energy content of the first two
modes, and insignificant α effect.

The spatial distribution of the first two POD modes φ1 and φ2, on the basis of u′v′, are shown in Fig. 5 for eight
selected cases. The two modes reflect anti-symmetric structures with a pattern shift of about 1/4 of a wavelength in
the streamwise direction, which is associated with a 1/4 period offset between a1(t) and a2(t) (figure not shown). It
resembles the downstream convection of the vortex street [29, 30]. The asymmetric distribution of the mode structure
for cylinders at off-principal orientations is also clearly seen in Fig. 5.

The selected cases shown in columns 3 and 4 of each row in Fig. 5 correspond to the α∗ cases showing the furthest
shear layer penetration distance into the wake behind the cylinders of the same N. These cases also have the smallest
CD and largest St, as well as the most stable shear layer dynamics reflected as the weakest flapping motion strength
and the thinnest shear layer in the time-mean sense [16]. These features can be seen, although subtly, by comparing
columns 1 and 3 for the same row, i.e., a smaller growth rate of the mode packet size in the streamwise direction and a
smaller wavelength (streamwise distance between the neighbouring packets of the same sign) corresponding to higher
St.

3.2. Asymmetric evolution of coherent vortcies in the wake

Since instantaneous flow fields are typically turbulent (Fig. 2), we follow a method similar to that introduced in
Wang et al. [15] to identify coherent vortex packets in the wake. The procedure is summarised in Fig. 6.
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Figure 5: POD mode 1 (the first and third columns) and mode 2 (the second and fourth columns) of selected cases. The contours are based on u′v′.

We first apply POD-based phase-averaging process to instantaneous flow fields (Fig. 6 a) following the procedure
explained in Section 2.2 and 2.3. The phase-averaged vorticity field ⟨ωz⟩ is shown in Fig. 6(b), where coherent
vortices are more easily identifiable. A common vortex identification method Q-criterion proposed by Hunt et al.
[31], Fig. 6(c), is then applied to quantify the circulation and motion trajectories of these vortices. In the case of the
2D flows, Q can be calculated as

Q =
1
2
(
∥Ωi j∥2 −∥Si j∥2)

=−1
2

[(
∂u
∂x

)2

+

(
∂v
∂y

)2
]
− ∂u

∂y
∂v
∂x

,
(14)

where Ωi j and Si j are the rotational and strain rate tensors, respectively; Q is the positive second invariant of the
velocity gradient tensor, which can be considered as the region where rotation exceeds strain. An appropriately
selected low-level universal threshold Q(Di/U∞)

2 = 0.2 is set to individualise the vortex packets after numerous
sensitivity tests. An in-house developed iterative segmentation algorithm is then applied to the Q field in (c) to define
the vortex boundaries. The centroid coordinates of each vortex packet (xc,yc) is calculated as the ⟨ωz⟩ weighted-
centroid [29]

xc =
1
Γ

∮
A

x⟨ωz⟩dA,

yc =
1
Γ

∮
A

y⟨ωz⟩dA,
(15)

where Γ is the circulation of each vortex packet,

Γ =
∮

A
⟨ωz⟩dA, (16)
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Figure 6: Procedure for coherent vortex identification, using case N = 5,α∗ = 0.4 as an example. (a) Instantaneous ωz field; (b) the corresponding
phase-averaged vorticity ⟨ωz⟩ field, with the vortex packet centroids marked by ✩, the identified boundaries of the vortices are marked in black; (c)
the corresponding Q contour.

and A is the internal area enclosed by the boundaries shown in Fig. 6(b), where the calculated vortex centroids are
also marked.

The phase-averaged vorticity fields, which match the phases shown in Figs. 2(c)–2(f), are presented in Figs. 7(a)–
7(d). While all the other cases investigated in this study display the classical Kármán vortex shedding with a single
distinctive peak at the Strauhal frequency in the v′(t) frequency spectrum, only case N = 7,α∗ = 0 shows a second
peak at a higher frequency; see Fig. 7(e), where the same spectrum for case N = 7,α∗ = 1 is also included for
comparison. Here, the Strouhal number is defined as St = f Di/U∞, where f is the frequency of the v′(t) signal. The
sampling point in each case is located at the centroid of the newly rolled-up primary vortex just ready to be convected
downstream, identified in the phase-averaged fields. Note the similar Strauhal frequency (the first peak) of the two
cases shown here [5].

The spectrum peak at 2St for case N = 7,α∗ = 0 is not a simple superharmonic, but indicates the physical shed-
ding of secondary coherent vortices, labeled in Fig. 7(c). Secondary vortices are not easily distinguishable from the
Kelvin-Helmholtz like vortices in the instantaneous vorticity field of the shear layer shown in Fig. 2(e), but are better
manifested in the phase-averaged fields. They are not to be considered as ‘strong’ Kelvin-Helmholtz like vortices,
since the latter do not leave clear footprints in the v′ spectrum; see the 7F spectrum in Fig. 7(e). Note that this sec-
ond peak was also noticed in the fluctuating wall shear stress spectrum of this particular case between the secondary
separation point (see Fig. 2 for their locations) and the immediate corner downstream (in the base area) [16], which is
owing to the secondary vortex shedding too. It however is not reported in Wang et al. [15], plausibly due to the lower
spatial resolution of their PIV experiment.

The secondary vortex shedding is only observed in case N = 7,α∗ = 0, among all the 24 testing cases. The exact
physical origin of this unique observation, which is probably related to the special local geometry near the primary
separation points (see Fig. 2 for their locations), is left for a future study. Even though the two peaks in Fig. 7(e)
are of similar magnitude, suggesting similar strength of the primary and the secondary vortices at the sampling point
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Figure 7: (a)–(d): Phase-averaged vorticity fields corresponding to the instantaneous fields shown in Figs. 2(c)–2(f). (e) PSD (in arbitrary unit)
of v′(t), sampled at the point shown in (a); 7C stands for the case N = 7,α∗ = 0. For comparison, v′(t) spectrum was plotted for N = 7,α∗ = 1,
marked as 7F, sampled at a similar location.

location, secondary vortices are less coherent and shorter lived. For instance, the motion of the secondary vortices in
the transverse direction is appreciably different to that of the primary ones, as can be inspected in Fig. 7(c) and 7(d).
As the primary vortex moves inwards across the wake centerline to the other side of the wake region, the secondary
vortex advects outwards in the opposite transverse direction, mostly due to the resultant induced velocity from the two
(upper and lower side) primary vortices. Also attributing to the influence of the two primary vortices, the coherence
of the secondary vortex is quickly lost; see Fig. 7(d).

Cases of 0 < α∗ < 1 all result in asymmetric wake behind them, which have been addressed in terms of the time-
mean near wake flows [5]. This asymmetry mean flow must originate from the asymmetric circulation of the coherent
vortices shed from the top and the bottom side, and their asymmetric evolution trajectories, which are discussed next.

3.2.1. Vortex trajectory
The trajectories of the coherent vortex centroid (xc,yc) as calculated by equation 15 are shown in Fig. 8 for all

the testing cases, including that for the secondary vortices in case N = 7,α∗ = 0. For cylinders at their principal
orientations, the vortex trajectories basically resemble the findings in experiment [15]. For off-principal orientations,
asymmetric trajectories about y= 0 between the upper and lower vortices may be noticed, especially at large x∗, where
off-set (deviation from symmetry) is more obvious (see the red-highlighted case in each sub-figure for example).
Closer inspection reveals that off-set direction varies, even though α∗ universally increments in the same clock-wise
direction for all the cases. For N = 5, off-sets are all negative (y < 0), whilst for N = 6,7 they are positive (y > 0).
The off-sets for N = 8 cylinders are very small and subtle, in the sense that those for α∗ = 0.2,0.4 are negative and
α∗ = 0.6,0.8 are positive. These are in line with the trend of the time-mean CL sign and the time-mean wake off-set
quantified previously [5].

The special case N = 7,α∗ = 0, where secondary vortices emerge in the separated shear layer, is also highlighted
in Fig. 8(c). The opposite convection directions of primary and secondary vortices discussed qualitatively above
are confirmed. Because of their mutual interaction, secondary vortices also significantly influence the trajectories of
primary vortices, resulting in their unique behaviour. In particular, the primary vortex trajectories cross the centreline
y = 0, i.e., centroids of the positive and negative sensed primary vortices switch side at x∗ ≈ 2.7, and then remain
close to y = 0, while those for all the other cases always move further apart in the transverse direction.

A common feature of the near field development of all the trajectories shown in Fig. 8 is that primary vortices firstly
move towards y∗ = 0 until x∗ ≈ 1.2–1.5. We may use this feature to define the vortex formation distance Lc, as shown
in Fig. 9, which is equivalent to the formation length L f commonly defined based on the peak root-mean-squared
(rms) u′ along y = 0 [15]. Lc is instead defined by the x-coordinate of the primary vortex trajectory turning point, i.e.,
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Figure 8: Primary vortex centroid trajectories, including the secondary vortex centroid trajectories in N = 7,α∗ = 0 (c). The most asymmetric
cases of each N, as well as case N = 7,α∗ = 0, are highlighted in red solid line.

the smallest xc where dyc/dxc ≈ 0 (for most cases) or where the value of dyc/dxc changes appreciably (for the few
cases displaying strong wake asymmetry). The location of this turning point is also assured by manual inspection.
Accordingly, the transverse distance between the upper and lower Lc points, denoted as LU

c and LL
c , respectively, is

defined as Dc.
In this work, Lc is used to quantify the vortex formation distance instead of L f because of two reasons. First,

formation distances for upper and lower primary vortices differ at off-principal orientations, while L f is a unique
quantity for a given polygon in a given flow condition. Second, determination of L f relies on good data statistical
convergence, which is not sufficiently achieved in this study due to relatively small simulation duration (30 cycles).

Masoudi et al. [16] demonstrated that the time-mean shear layer penetration distance in the streamwise direction,
xT,B

δ
, for the upper and lower side, respectively, is a suitable characteristic length scale. L f , on the other hand, is a

widely accepted universal characteristic length scale for bluff bodies, supported by numerous studies, e.g., Wang et
al. [4] for polygonal cylinders at α∗ = 0,1. The physical equivalence of Lc and L f therefore suggests that the former
should be correlated with xδ , and this is shown in Fig. 10(a).

The associated transverse distance Dc is found to be correlated with the back pressure coefficient Cpb (as indicated
in Fig. 10(b)), averaged in both time and spatial sense, where Cpb = 2(pb − p∞)/

(
ρU2

∞

)
with pb and p∞ being the

base and free stream static pressure, respectively. The spatial average is performed over the base area between the
upper and lower primary separation points, where the pressure variation is appreciably small compared to that over
the windward area [5]. The correlation, which is positive, makes sense since stronger (larger Γ magnitude) coherent
vortices rolled up behind the base area induce larger velocity, which in turn reduces the pressure over the base area.
On the other hand, stronger vortices tend to be large in size and associated with a small Dc value. Case N = 7,α∗ = 0
has a particularly small value of Dc, in line with Fig. 8(c), and is further away from the correlation line compared to
the other cases. This is due to the influence of the secondary vortices. Also as expected, Dc correlates well with the
characteristic wake width extracted from the time-mean velocity field (figure not shown).

3.2.2. Vortex circulation
Wang et al. [15] showed that circulation Γ of coherent vortices behind polygonal cylinders at α∗ = 0 and 1,

calculated by equation 16, maximises at x ≈ L f . The maximum Γ value, denoted as Γmax, scales with the characteristic
wake width, which further scales with the drag coefficient CD. In this section, drag and lift coefficients are calculated
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Figure 9: Definition of characteristic length scales Lc and Dc, using case N = 6,α∗ = 0.6 as example. The background contour is ⟨ωc⟩ field at an
arbitrary phase. Vortex trjectories going through the vortex centroids is reassured.

as
CD =

Fx
1
2 ρU2

∞ (LzDi)
, CL =

Fy
1
2 ρU2

∞ (LzDi)
, (17)

where Fx and Fy are the total force in the x and y direction, respectively, and Lz is the cylinder length. They are both
time-mean values by default; the instantaneous lift coefficient is denoted as CL(t). For 0<α∗ < 1, Γmax magnitude for
the upper and lower side differ, and the x-coordinate where Γmax occurs for each side is also asymmetric, but consis-
tently close to Lc. Fig. 11(a) presents Γmax in its dimensionless form, defined as Γ∗

max = |Γmax|/(U∞Di). Hereafter the
asterisk on Γ is omitted for clarification purpose. For case N = 7,α∗ = 0, only Γmax for primary vortices are shown.
By the time primary vortices maximise (at x ≈ Lc), secondary vortices are not yet formed (see Fig. 7a).

Figure 11(a) confirms that the magnitude of ΓL
max (> 0) and ΓU

max (< 0) may differ significantly for some off-
principal orientations. For instance, variation dependence of |ΓU

max| on α∗ is appreciably different to that of |ΓL
max| for

N = 6, and the two values at α∗ = 0.2 and 0.4 differ obviously, as well as N = 5,α∗ = 0.6. At principal orientations,
|ΓU

max| and |ΓL
max| are very close and the average values are shown. Their variation trends are also approximately

consistent with the experimental study [15]. Note that in the experimental study, the length scale used for non-
dimensionalisation is the cylinder projection width, which varies with N and α∗, whilst here the universal Di is used,
which provides a direct comparison of |Γmax|. It is worth noting that the difference of the vortex strength between the

upper side and the lower side in the principal orientation is considerably small, |∆Γ
U,P
max| = 0.03, which is anticipated

given the symmetric orientation to the incident flow direction. It lends additional credibility to the current findings.
According to Birkhoff and Zarantonello [32], and Berger [33], the raw vortex circulation |Γmax| is associated with

U∞ via a dimensionless quantity E as

E =
|Γmax| fvs

U2
∞

, (18)

where fvs is the Strouhal frequency. For a circular cylinder, Schaefer and Eskinazi [34] obtained a value of E = 0.343
from an analytic model of vortex street generated in a viscous flow at Re = 62. Experimentally, Koopmann [35] found
E = 0.32 for a vibrating cylinder for Re=200 and Berger [36] obtained a value of E = 0.39 at Re = 65 and 151. In
the present study, 0.39 < E < 0.53 for both upper and lower side, mostly around 0.45, which is in good agreement
with the theoretical value of 0.5[32] derived from the laminar parabolic boundary layer theory.

Griffin et al. [37, 38] found that the circulation (Γmax) of the vortices in the wake behind a circular cylinder vibrat-
ing in transverse direction (lateral vibration) is approximately inversely correlated with the ratio of vortex formation
length (L f ) to the wake width (Dw). The stationary cylinder can be considered as being vibrating at an infinitesimal
amplitude and hence this correlation plausibly holds. This is shown in Fig. 11(b). Here, in order to account for the
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N = 5 N = 6 N = 7 N = 8

Figure 10: (a) Correlation between xT,B
δ

and LU,L
c ; the solid markers are for the upper side and the open markers are for the lower side; (b)

Dependence of the base pressure coefficient Cpb on Dc; legends follow (a). Correlation excludes case N = 7,α∗ = 0 (labelled as 7C).

asymmetric Γmax and L f at off-principal orientations, we replace L f with LU,L
c obtained from §3.2.1. The empirical

fitting function can be written as
LU,L

c

Dw
=−0.45

∣∣ΓU,L
max

∣∣+2.65. (19)

The R2 value for this fitting function stands at 0.71, indicating a robust representation of the dataset, especially when
accounting for the inherent variability and turbulent characteristics of the flow. This is consistent with the positive
correlation of CD and Γmax which will be discussed later, since Dw is positively correlated with CD[4, 15].

Masoudi et al. [16] noticed that instantaneous shear layers flap in the transverse direction. The strength of
this flapping motion correlates with xδ , and impacts CD and St. The phase information resolved in the present study
facilitates direct quantification of the flapping motion amplitude in the time domain instead of in the frequency domain
as in Masoudi et al. We thus examine the transverse position of the separated shear layer centre, where |ωz| maximizes,
for every resolved phase at a constant location of x∗ = 0.4. This streamwise sampling location is chosen to minimise
the influence of the rolled up vortices. The true flapping amplitude, normalised by Di and denoted as Φ, is further
estimated by a sinusoidal function fit in order to account for the limited phase resolution (figure not shown). Fig. 11(b)
demonstrates a reasonable positive correlation between Φ and |Γmax|, with the upper and lower shear layer separated.
It suggests that stronger shear layer flapping motion results in vortices of larger circulation in general. Case 7C has a
slightly higher value of Φ, which plausibly suggests that the stronger flapping amplitude is attributed to the secondary
vortices; see Fig. 7.

Kutta-Joukowski theorem states that CL(t) ∝ −Γp(t), the circulation around the polygonal cylinder surface. Ac-
cording to Kelvin’s circulation theorem, −Γp(t) = Γs(t)+Γv(t), where Γs and Γv are the instantaneous circulation
associated with the separated shear layer and the rolled up vortices, respectively. Masoudi et al. [16] found that
the difference between xT

δ
and xB

δ
, extracted from the time-mean vorticity field where periodically rolled up vortices

manifest totally as shear-like structure, is linearly correlated with CL, including the sign effect. When α∗ = 0 and 1,
two shear layers are of the same length, and therefore CL = 0. Consider the phase (or the instant time t) where Γmax
occurs for either the upper or the lower side, if the magnitude |Γs| ≪ |Γv|, then Γmax ∼CL (t,max/min). This further
suggests that the difference of the vortex strength∣∣ΓL

max
∣∣− ∣∣ΓU

max
∣∣∼CL (t,max)+CL (t,min) , (20)
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Figure 11: (a) Dependence of the maximum circulation Γ∗
max on N and α∗; (b) Dependence of the shear layer flapping motion strength Φ and

the ratio LU,L
c /Dw of the vortex formation distance and the wake width on Γ∗

max. The solid and open markers are for the upper and lower side,
respectively, denoted as |ΓU

max| and |ΓL
max|.

N = 5 N = 6 N = 7 N = 8

Figure 12: Dependence of the trajectory deflection angle θd and
∣∣ΓL

max
∣∣− ∣∣ΓU

max
∣∣ on CL. Cases of α∗ = 0,1 are excluded because their CL, θd and

|Γmax| difference are all zero.

which further scales with the time-mean CL. Note that CL (t,max)> 0 and CL (t,min)< 0 always. This correlation is
shown in Fig. 12, where the non-zero Γs is responsible for the weak correlation.

Figure 12 also shows that CL reasonably correlates with the wake deflection angle θd derived from the trajecto-
ries of primary vortices. The negative correlation can be understood from the momentum balance in the transverse
direction on a control volume enclosing the cylinder. Here θd = d

(
yU

c + yL
c
)
/dxc averaged over xc > Lc, where yU

c
and yL

c are the y-coordinate of the upper and lower vortex trajectory, respectively, at a given xc. Evidenced in Fig. 8,
trajectories for xc > Lc are fairly straight for most cases, which lends support to the validity of quantifying θd based
on the averaged slope. Closer examination of the marker distribution indicates that as N increases, θd tends to cluster
more closely around 0, which suggests that the trajectories tend to be more symmetric and less influenced by α . As
can be expected, θd , as well as CL, will eventually vanish for the circular cylinder N = ∞.

Having looked at Γmax asymmetry, we examine the property of
∣∣ΓL

max
∣∣+ ∣∣ΓU

max
∣∣. Perhaps as expected, this quantity

is correlated with Xpeak, the amplitude of the primary peak of the C′
L spectrum, defined as

X( f ) =
∫

C′
L(t)exp(−2π j f t)dt. (21)

This is illustrated in Fig 13(a) which exhibits a fairly significant correlation. That is, the fluctuating lift coefficient
directly indicates the strength of the shed vortices.
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N = 5

N = 6

N = 7

N = 8

Eqn (22)

Figure 13: Correlation between
∣∣ΓU

max
∣∣+ ∣∣ΓL

max
∣∣ and Xpeak (a), and CD (b), and St (c). Equation (22) is presented in (b). Fitting curves with various

β values (Equation 27) are also shown in (c).

Hu et al. [9] calculated the circulation of vortices behind rounded corner square prisms and found that it is
proportional to CD. This is also supported by Wang et al. [15], as mentioned above. Larger circulation induces
stronger velocity over the cylinder base area, reduces Cpb and increases CD, which is consistent with the correlation
shown in Fig. 10(b). Figure 13(b) demonstrates a fairly clear correlation between CD and

∣∣ΓU
max

∣∣+ ∣∣ΓL
max

∣∣, regardless
of N and α∗ in the tested range. The correlation can be described by a relatively simple function

CD ≈ 0.4
(∣∣ΓU

max
∣∣+ ∣∣ΓL

max
∣∣)−0.5. (22)

Lamb-Oseen (LO) vortex model is often utilised to model coherent vortices behind circular and polygonal cylin-
ders [3, 39, 40]. In this model, velocity components (ur, uθ , uz) are given by

ur = 0, uz = 0,

uθ (r, t) =
Γ

2πr

[
1− exp

(
− r2

4νt

)]
.

(23)

Here a local cylindrical coordinates centred at the vortex is adopted. Following the arguments in Xu et al. [3], energy
balance implies that drag force FD produced by a pair of vortices formed over one cycle period, which travels a
distance of one wavelength λ , is related to the kinetic energy budget as 2KE = FDλ [17], where KE is the kinetic
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energy associated with an isolated LO vortex, viz.

KE =
∫

∞

0
ρπru2

θ dr

= ρ
Γ2

4π

∫
∞

0

1
r

[
1−2exp

(
− r2

4νt

)
+ exp

(
− 2r2

4νt

)]
dr

= ρ
Γ2

4π
g(t).

(24)

Thus, considering the energy balance over a shedding cycle, we have

CD
(
U2

∞Di
)(U∞

fvs

)
∼ Γ

2g(t), (25)

and therefore

CD ∼
(

Γ

U∞Di

)2

g(t)St, (26)

where U∞/ fvs ∼ λ . Since CD ∼ Γ (equation 22), equation 26 suggests that St ∼ Γ−1 ∼ C−1
D . The first relation

indicates that the shedding frequency of vortices is inversely proportional to their strength, and the second inverse
relation between CD and St has been confirmed by numerous studies. To be specific, we can write

St ∼C−β

D ∼
(∣∣ΓU

max
∣∣+ ∣∣ΓL

max
∣∣)−β

, (27)

with β values proposed in the literature, e.g., β = 1 [41], β = 0.75 [42] and β = 0.6 [3]. Comparison of the three β

values are made in Fig. 13(c), where all three curves show reasonably good fitting quality for cylinders at all incidence
angles, with β = 0.6 slightly better.

4. Conclusions

In this paper, the evolution of coherent vortices shed behind polygonal cylinders of side number N = 5–8 in
incident flows of Re = 104 is studied utilising LES data and POD-based phase averaging. Vortices separated from
upper and lower shear layers are treated separately, in terms of their centroid trajectory and maximum circulation,
ΓU

max and ΓL
max.

Vortex shedding behind all the tested cases are of classical Kármán type, with a distinctive peak at the Strauhal
frequency in the transverse velocity frequency spectrum, except the heptagon at corner orientation, where a clear
secondary vortex pair is shed accompanying every primary vortex pair. These secondary vortices are short lived and
their trajectories are in the opposite direction to that of the primary vortices, which basically resemble those in all the
other cases. A trajectory deflection angle θd is defined and is found to be correlated with CL, which is clearly non-zero
at off-principal orientations. POD energy distribution shows that all the cases have approximately the same energy
content for the first two modes, each having about 30% of the total energy.

Based on the trajectory, vortex formation distance Lc is defined on each side of the wake, where ΓL
max and ΓU

max
occur. The two circulation display appreciable asymmetry at off-principal orientations. Individually, Γ

U,L
max magnitude

correlates with shear layer flapping motion strength. It was also found that
∣∣ΓL

max
∣∣+ ∣∣ΓU

max
∣∣ correlates with CD posi-

tively and St inversely, while
∣∣ΓL

max
∣∣−∣∣ΓU

max
∣∣ correlates positively, albeit weakly, with CL. The associated characteristic

wake width Dc is found to be positively correlated with the averaged based pressure coefficient Cpb.
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