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Abstract

This paper presents a novel extended isogeometric boundary element formulation (XIGABEM) for three-dimensional
linear elastic fracture mechanics. The formulation utilises the Dual BEM to accommodate coincident geometries for
opposing crack surfaces, and inherits the well-known advantages of the NURBS basis as other isogeometric imple-
mentations. The originality herein involves the extension of the above-mentioned scheme to 3D using enrichment
functions derived from asymptotic solutions for near-field crack tip displacements, in which Williams’ expansions
are used on the crack surfaces and on the boundaries crossed by the crack front. Besides, Heaviside functions enrich
external boundaries and allow the displacement discontinuity modelling. As with most enriched formulations, addi-
tional degrees of freedom are introduced; novel strategies are presented for the generation of auxiliary equations to
recover a square system.

Another key element of the proposed scheme is that the stress intensity factors are recovered directly from the
solution vector and no post processing is required. Four applications demonstrate the formulation robustness, with
results of models having comparatively few degrees of freedom comparing well against classical and other published
results.

Keywords: Extended isogeometric boundary element method, Enriched formulations, Three-dimensional fracture
mechanics, Linear elastic fracture mechanics, Stress intensity factors

1. Introduction

The correct prediction of the mechanical behaviour of cracked materials and structures is of great interest to engi-
neers owing to the influence of cracks on material failure mechanisms. Fracture is a severe mode of failure because it
can occur suddenly and catastrophically, often without warning. In studying crack behaviour, Linear Elastic Fracture
Mechanics (LEFM) provides a method of assessment for problems in which the fracture process zone (FPZ) is negli-
gible. The assumption that the plastic region arising at a crack tip is small is often valid for brittle materials, hydraulic
fracture and for linear fatigue life cycle analysis, for instance. There exist several examples of numerical analysis
formulations (some of them enriched) for planar components under the LEFM assumption, and this is satisfactory
for the assessment of cracks in plane structures. However, some industry sectors involve mechanical components
that require a fully three-dimensional formulation to represent their mechanical fields. Therefore, there is a need for
e↵ective and accurate numerical formulations capable of determining the response of these three-dimensional bodies
considering LEFM, which can contribute to safe and economic design.

The crack stability criteria in the LEFM demand the computation of stress intensity factors (SIFs) that characterise
the complexity of the crack tip stress field. In a numerical analysis, such as those based on finite elements or boundary
elements, it typically requires specific techniques that accommodate the singular behaviour of the stress field. J
integral methods [1, 2, 3] are path-independent, precise approaches, in which a closed contour integral is performed
around the crack tip to asses the SIFs. However, in three-dimensional approaches, this task becomes computationally
prohibiting. Other methods, such as the Displacement Correlation Technique [4] and special crack tip elements [5],
can be applied, however, with lower accuracy.
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The Finite Element Method (FEM) is the most widespread numerical method for the solution of elasticity prob-
lems. Classical FEM formulations assume the displacement to be represented using polynomial functions, so it
struggles in representing the singular stress field at the crack tip. Another drawback of the finite element approach
is the requirement of a complex and time-consuming re-meshing at each crack growth step for this type of analysis.
On the other hand, alternative numerical approaches arise to successfully circumvent these problems, such as peri-
dynamics [6, 7, 8, 9] and phase-field models [10, 11, 12]. The comparison between these two methods performed
by Dielh et al. [13] highlights as advantages of both methods: ability to capture crack initiation, the dismissal of an
additional criteria to describe crack growth and their applicability in multi-field fracture. However, these two methods
are computationally expensive and, as a plausible consequence, there are few three-dimensional researches based on
these two approaches. Moreover, the peridynamics approach can allow mechanical e↵ects to propagate too quickly
through media since mechanical interactions are instantaneous over a finite horizon.

E↵orts to overcome the limitations of describing a singular stress field using polynomials led to the development
of the eXtended/Generalized Finite Element Method (XFEM/GFEM). In this approach, the displacement is expanded
in a set of functions drawn from an a priori known expected behaviour in the response. The implementation in
existing FEM codes is relatively straightforward since these additional functions generate only an augmented algebraic
system while preserving the standard FEM contribution. The introduction of the Williams solution [14] (according
to Aragón and Duarte [15]) and the discontinuous (Heaviside) [16] functions in the approximation space of the two-
dimensional XFEM/GFEM allows the crack to exist and propagate in a geometry completely independently of the
FEM mesh. The seminal work of Sukumar et al. [17] incorporated these enrichment functions for three-dimensional
analysis. Based on these strategies, several applications of the XFEM/GFEM were successful for fracture mechanics
problems, such as in dynamic crack propagation [18], higher order functions in XFEM/GFEM [19], crack initiation
[20], among others [21, 22, 23, 24]. Moreover, XFEM/GFEM obtains optimal convergence in LEFM problems in
both 2-D [19, 25, 26, 27, 28] and 3-D [29, 30] applications. However, it is important to use techniques such as these
with caution because of the consequent ill-conditioning in the sti↵ness matrix caused by the enrichment contributions,
which can compromise solution accuracy if not suitably treated.

The Boundary Element Method (BEM) has become popular as a robust approach for LEFM problems. The
advantages of the BEM arise from the boundary-only mesh requirement, which allows a straightforward introduction
of the crack and also simplifies the re-meshing process during crack propagation. The reduction of the problem
dimensionality simplifies the mesh generation task. Another advantage of the BEM in the fracture mechanics is the
absence of domain interpolation, which permits an accurate determination of the mechanical fields even close to the
crack tip despite the singular behaviour at this region. The dual BEM formulation [31] allows the BEM to be used
e↵ectively for fractured media. This strategy consists of using two linearly independent boundary equations, one at
each of the opposing crack faces, overcoming the singularity in the algebraic system. Due to the these characteristics,
the BEM has been successfully explored for two-dimensional crack problems [32, 33, 34, 35, 36], and also for three-
dimensional applications [37, 38, 39, 40, 41]. In the three-dimensional context, there are some strong singularities
and hyper-singularities that demand semi-analytical treatment, as presented in [42, 43].

In contrast to the wide body of literature in the XFEM/GFEM, the use of enrichment functions to extend BEM
approximations is comparatively in its infancy. The pioneering works of Simpson and Trevelyan [44, 45] utilised
the concept of Partition of Unity to expand the displacement field with the Williams solution for displacements in
two-dimensional fracture problems, resulting in highly accurate stress intensity factor solutions from coarse models.
Besides, the availability of SIFs directly from the solution vector, with any post-processing cost, is a considerable
advantage. This has been demonstrated for 2-D isotropic [46] and anisotropic [47] media. In addition, a Heaviside
enrichment function for 2-D LEFM problems [48] in the XBEM dismisses the re-meshing task when the crack inter-
sects the external boundary. Once the crossing in this case is a point-line intersection, the re-meshing would not be as
cumbersome as in 3-D applications. The sole study considering 3-D XBEM [49] introduces the direct extraction of
SIF by the Williams solution for displacements, in which only the analysis of non-inclined cracks is present. There-
fore, the proposition of enrichment functions for three-dimensional extended BEM formulations is a novel aspect that
is the main objective of this work.

Recently, since the proposition of the Isogeometric Analysis (IGA) by Hughes et al. [50], this paradigm has
increasingly become a powerful tool in the numerical methods context. By applying the approximation functions of
Computer-Aided Design (CAD) geometries, the numerical methods inherit several improvements. The approximation
functions can possess a high degree of continuity, which allows the exact representation of complex curves as circles
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and ellipses. Another improvement relies on the direct use of the CAD geometry as the mesh, which can minimise one
of the most demanding tasks of industrial structural analysis. Further, there is a large body of literature showing that
the smoothness and non-negativity of the IGA basis functions frequently gives improved convergence properties over
the classical piece-wise polynomial approximation space. The use of IGA for fracture mechanics has been widely
explored, in which phase-field modelling [51, 52, 53] and the eXtended IGA (XIGA) approach [54, 55, 56, 57, 58, 59]
demonstrate the robustness of using IGA basis functions on Finite Element procedures.

In the BEM framework, the IGA concept becomes even more appealing because the CAD geometry mesh, which is
purely a surface in 3-D models, is directly the boundary-only mesh. In elasto-statics, the IGABEM starts with the work
of Simpson et al. for 2-D applications [60], while Scott et al. [61] extend this framework for 3-D geometries by using
unstructured T-splines. Beer et al. [62] present the foundations of the IGABEM, as well as its application in a plethora
of engineering problems. The use of enrichment functions in 2-D IGABEM also permitted the direct extraction of
LEFM relevant parameters, such as SIFs in homogeneous media [63], and SIFs and T-stresses for bi-materials [64].
It is relevant to mention that these enriched approaches align with the Geometry Independent Field approximaTion
(GIFT) paradigm [65], firstly introduced by Marussig et al. [66] for elasticity applications with IGABEM. This
strategy consists of using a di↵erent set of approximation functions in the geometry and in the approximation fields.
As a consequence, it becomes possible to refine the mechanical fields without changing the geometry. Following
studies have shown the advantages of GIFT for 2-D and 3-D elasto-statics [67, 68, 69], fluid mechanics [70], and
potential problems [71] in the BEM framework.

For three-dimensional fracture mechanics,the IGABEM has been successfully applied by Peng et al. [72] and
further explored as in [73, 74, 75, 76]. Still, in all these works the boundary element formulation gives a non-physical
displacement jump at the crack tip so that, although the J-integral can provide good SIFs, the local displacement field
is incorrectly represented. Moreover, the IGABEM demands a mesh alignment between the external boundary and
the crack mesh to allow the numerical method to capture the correspondent discontinuous field. However, this can
lead to a re-meshing procedure that may be impractical for NURBS surfaces, once they are based on a tensor-product
of two uni-variate NURBS curves, which represent a large portion of the solid.

In this study we present for the first time a XIGABEM formulation for three-dimensional LEFM problems capable
of directly extracting SIFs, reducing the errors on the mechanical fields description at the crack front, dismissing
the requirement for mesh alignment at the intersection between crack and external boundary, and also improving
the convergence rate. These capabilities derive from the use of three di↵erent types of enrichment functions: (i)
over fully cut external boundary meshes a Heaviside function is introduced to account for the discontinuity in the
displacement field, (ii) over partially intersected boundary faces the leading order term in the Williams solution is
used to capture both the displacement discontinuity across opposing crack faces and also the

p
r behaviour observed

in the displacement field, (iii) over the crack surfaces themselves an enrichment also based on the Williams solution
allows the introduction of the SIFs as system unknowns in the main BEM solution vector. Another advantage of these
novel formulations, as in the XFEM/GFEM, is the possibility of their coupling to existing IGABEM codes without
changes in the existing influence matrices.

This work is organised in the following manner. Section 2 defines the enrichment functions and how they are
incorporated in the IGABEM framework, with a remark on the additional equations required to generate a square
system. Next, section 3 discusses some specific implementation aspects required by the enrichment function. Then,
section 4 presents four LEFM numerical applications demonstrating the improvements of the XIGABEM when com-
pared against the standard IGABEM framework.

2. Enrichment strategies on 3-D IGABEM for fracture mechanics

This section discusses the enrichment schemes adopted in the proposed extended IGABEM for linear elastic frac-
ture mechanics. It constitutes several advances in the the well-established IGABEM formulation for three-dimensional
elasto-statics, which is presented in Appendix A.

2.1. Heaviside enrichment for strong discontinuities
As well understood in eXtended Finite Element Method (XFEM) research, a Heaviside function is useful to

represent strong discontinuities in the displacement field for fully intersected boundaries. Once NURBS surfaces
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represent large portions of the discretised domain, it becomes complex or even unfeasible to align a mesh given by
a CAD model with an intersecting edge crack. Therefore, this enrichment allows strong discontinuities on these cut
surfaces to be captured successfully without re-meshing. In this approach, the standard IGABEM displacement field,
eq. (A.7), expands in a manner as follows:

u�k (⇠1,⇠2) =
n�X

↵=1

��↵(⇠1,⇠2)d�k +
n�

HX

↵=1

⇥
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��

H

↵ d
�
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where u�k (⇠1,⇠2) is the displacement at the enriched NURBS surface �H . H represents the Heaviside function, which
takes the value �1.0 before the crossing and 1.0 after it. H↵ is the Heaviside function at the corresponding collocation
point ↵. The subtraction of the enrichment function by this term triggers the shifting approach [77]. In this initial
proposition, the need for blending elements is avoided. This implies that the Heaviside enrichment on fully cut faces
should consider shifted basis functions. Further, for partially cut faces including a crack tip, in section 2.2, the entire
face is enriched with the Williams solution and no shifting is considered. ��

H

↵ is the basis function contained in the
set of n�

H
enriched functions, which is reduced because of the local support of the Heaviside enrichment. Lastly,

displacement coe�cients d
�

k come as additional unknowns that represent the jump in displacements at the enriched
surface.

The introduction of the expanded approximation for u�k (eq. (1)) on the BIEs, by applying the same procedure that
obtains the standards IGABEM Displacement BIE (DBIE) and Traction BIE (TBIE), eq. (A.10), leads to the modified
discretised equations as:
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k` j emerge from enrichment function influence, being:
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The definition of the enriched basis functions is directly related to the number of added degrees of freedom.
The set ��

H

↵ consists of all non-null basis functions of each knot-span crossed by the crack. The implementation
details associated to this task in the isogeometric context are presented in section 3.1. A key complication is that the
introduction of the unknowns d

�

k does not naturally come with additional equations, which leads to an ill-posed system
containing an insu�cient number of equations. Strategies to obtain the auxiliary equations required for this, and other
enrichment strategies of this study, are presented in section 2.4. Note that all terms arising from a standard IGABEM
analysis are still present in the augmented system, highlighting the straightforward introduction of enrichment in
pre-existing IGABEM codes.

The shifting procedure removes the requirement for the CPV in the DBIE and for HFP in the TBIE in the SST for
the strongly singular and hypersingular integrals. Consequently, the SST for the S ⇤ kernel does not require the first
derivative of the enrichment function, which constitutes an advantage of this approach compared against the use of
unshifted enrichment functions. Additionally, the influence of the Heaviside enrichment on the jump term cancels out
as a consequence of the shifting procedure.

Another aspect of the integration of the kernels in eq. (3) is its discontinuous nature over the crossed knot-span. In
this case, as standard for the GFEM/XFEM [25],its accuracy depends on an element subdivision scheme to correctly
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account for each continuous contribution. More details of the generation of a cell-based subdivision and integration
are presented in sections section 3.1 and section 3.2.

2.2. Williams solution enrichment for
p

r behaviour on cut surfaces
Edge cracks present an enormous challenge for boundary-based methods, because of the requirement of aligned

meshes between the external boundary and crack surfaces. In addition, the displacements over the crack surface
exhibit a classical

p
r behaviour found in LEFM, with r being the distance from the crack front. Standard NURBS

basis functions and the Heaviside enrichment cannot precisely capture this for the external boundary partially cut
by the crack, which leads to a sub-optimal convergence. In this context, this study proposes a displacement field
enrichment for partially cut surfaces based on the leading order term of the Williams expansion [78]. This expansion
leads to the augmented displacement field as:
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in which the additional unknowns d̂�M represent the magnitudes related to the enrichment function  �qM . Rkq is a
rotation matrix from the local coordinate system at the crack front, where  �qM is defined, to the global coordinate
system, according to fig. 1. The Williams-based enrichment function,  �qM , is:
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(5)

in which rt is the distance to the crack tip, ✓t is the angle between the tangent vector in the local coordinate system and
the vector r

t, as defined in Appendix C.  is the Kolosov constant, being  = 3 � 4⌫ for plane-strain and  = 3�⌫
1+⌫ for

plane-stress and µ = E
2(1+⌫) is the shear modulus. This proposition is similar to the Oden-Duarte [79, 14] enrichment,

but with the major di↵erence that here all enrichment functions are combined based on the rotation matrix to become
a single function multiplying each additional unknown.

In this study a Williams-based enrichment is applied to all NURBS basis functions on the partially cut surface,
which justifies the use of ��↵ on both standard and enriched terms of the eq. (4). Then, the substitution of the expanded
displacements in eq. (4) on the BIEs results in a similar equation to that in the standard IGABEM, eq. (A.10), but with
an additional kernel, as:
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Figure 1: Local coordinate system at the crossing between crack and external face.
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in which Tt
↵�
`k and St

⇤↵�
k` j are new kernels originated from the Williams-based enrichment, being:
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Analogously to the Heaviside enrichment (section 2.1), the Williams-based expansion of the displacements does
not change the standard IGABEM coe�cients, which are retained in the BEM matrices, while introducing additional
parameters to the discretisation. Thus, it shares the capability of being directly incorporated into existing IGABEM
computational codes. Additional equations are necessary due to the addition of new unknowns, similarly to the
Heaviside enrichment, and this is tackled in section 2.4. Another similarity comes from the discontinuous nature of
the term sin ✓

2 , requiring integration over a cell-based subdivision, as detailed in section 3.1.
In this study, the main focus is the first development of the extended IGABEM for 3D fracture mechanics and the

calculation of SIFs from the crack front enrichment depicted in section 2.3. A simple unshifted Williams enrichment
is applied on the partially crossed faces. Since the shifting approach has not been applied for the Williams solution
enrichment, singularities arise and they must be treated accordingly by using the SST, as detailed in Appendix B.
Then, derivatives of both  qM and Rkq are required with respect to the parent coordinate space, where integration is
carried out. Their expressions are in the Appendix C.
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2.3. Crack front enrichment for the direct SIF extraction
The enrichment strategy for the introduction of SIFs as additional unknowns consists of using the Williams-based

enrichment function (eq. (5)) on the crack surfaces. In addition, these parameters are interpolated by uni-directional
NURBS basis functions over the crack front, which leads to the following enriched displacement field for the crack
surface:
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in which �̃cf
s (v) is the uni-directional NURBS basis functions over the crack front cf that interpolates the SIFs coe�-

cients K̃s cf
M . This set of basis functions comes from the corresponding univariate NURBS curve in the crack front that

generates the crack surface �+/�. Thus, each crack front introduces n�K additional unknowns related to the distribution
of SIFs along the front. The incorporation of eq. (8) in the BIEs yields to:
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in which, analogously to both Heaviside and Williams-based enrichment, a new kernel arises in each BIE as:
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This integration takes place at the enriched crack surface. The kernels make use of the uni-directional coordinate
t for the crack front projection at each Gauss point, which is obtained by a point projection algorithm [80].

Special care must be taken in the rotation matrix definition. For a crack front, fig. 2 defines the local coordinate
system of the Williams solution, which may change depending on the crack geometry. The present research applies
the Frenet-Serret frame [81, 82] to accurately determine both the rotation matrix and its derivatives based on the crack
front NURBS parametrisation, as shown in Appendix C. For flat cracks, the rotation matrix is simplified by having
~T parallel to the crack front, ~N aligned to the normal outward vector of the upper crack surface (over which we apply
the DBIE), with ~B = ~T ⇥ ~N.

Besides allowing a direct determination of the SIFs, and thereby precluding post-processing tasks, this strategy
also introduces the

p
r behaviour in the formulation, giving rise to accuracy improvements. The enrichment is applied

over the entire crack surface, instead of solely at the portion closest to the crack front. Extending the enrichment over
the whole crack surface gives rise to no additional degrees of freedom. To accommodate the new unknowns that are
proxies for the SIFs, section 2.4 presents a specific scheme to generate auxiliary equations using crack front tying to
enforce displacement continuity at the crack front. This results in the SIFs becoming available in the solution vector
as terms K̃s cf

M .
The SIF determination occurs in a straightforward manner by simple interpolation at the crack front from the

obtained unknowns K̃s cf
M . In this matter, it is worth mentioning the di↵erences between the approach herein and the
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Figure 2: Local coordinate system for crack front enrichment.

special crack tip element successfully proposed by Li, Mear and Xiao [83] in the Symmetric Galerkin BEM approach.
Their study proposed a di↵erent set of basis functions containing the

p
r behaviour for the crack front elements, which

culminates in a change in the construction of the H and G influence matrices. On the other hand, the present study
allows the direct introduction of the SIF parameters without changes in the existing H and G matrices from IGABEM.

2.4. Additional equations and XIGABEM algebraic system
The use of enrichment functions in addition to the standard NURBS basis functions introduces new unknowns.

Unlike Galerkin-based schemes, this becomes challenging in a collocation-based IGABEM formulation because col-
locating only at the existing collocation points will produce an insu�cient number of equations given the increased
number of unknowns. In this study, the additional equations for the three-dimensional XIGABEM come from two
di↵erent procedures: one for both Heaviside and Williams-based enrichment and another one for the crack front
enrichment that directly contains the SIFs.

The strategy associated with the Heaviside and Williams-based enrichment functions applies the TBIE on the
collocation points whose basis functions are enriched (in addition to the DBIE already used). Then, these colloca-
tion points receive simultaneously DBIE and TBIE, and, due to the linear independence nature of these two integral
representations, the resulting equations are not redundant. A feasible alternative strategy might be additional collo-
cation points [44], but the TBIE approach dismisses the requirement to determine a suitable location for additional
collocation points.

Remark. The SST of the TBIE requires Hölder continuity at the collocation point, in which the first derivative
of the displacement field (for the S ⇤ kernel) must be C1 continuous at the singular point. However, for degree 1
NURBS surfaces, the Greville Abscissae scheme locates these points where the basis functions are C0. Then, the sole
application of the SST is not su�cient for the accurate evaluation of the hypersingular integrals. To overcome this
issue, the rigid body motion approach [84] is a useful alternative to compute the missing contribution. This strategy
considers a body under no traction in its boundary, which leads to a constant displacement uRBM

k field in the body.
Additionally, once the parameters introduced by the extended IGABEM are associated to crack opening and to the
asymptotic behaviour at the crack, they do not exist in a rigid body motion context, hence being zero. In this context,
the TBIE becomes:

0
BBBBBB@n`(x̂)

NSX

�=1

S⇤↵�k` j

1
CCCCCCA uRBM

k = 0k (11)

Considering that eq. (11) holds for any arbitrary uRBM
k , the terms inside the parentheses must be zero. Therefore,

it is possible to find the missing terms that must be spread over the contributions associated to the S ⇤ kernel as:
0
BBBBBB@�n`(x̂)

NSX

�=1

S⇤↵�k` j

1
CCCCCCA

n�X

↵=1

��̂↵(x̂)d�k + c`k(x̂)
n�X

↵=1

��̂↵(x̂)p�k

+n`(x̂)
NSX

�=1

S↵�k` jd
�
k + n`(x̂)

NSX

�=1

Sh
⇤↵�
k` j d

�

k = n`(x̂)
NSX

�=1

D⇤↵�k` j p�k

(12)
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which must be applied specifically for p = 1 or q = 1 NURBS patches in the XIGABEM scheme. The algebraic sys-
tem receives this correction term after the integration of the boundary, in which eq. (11) determines its corresponding
sum.

For the direct SIF enrichment scheme applied on the crack surfaces, the additional equations are obtained by
considering compatibility at the crack front. Both upper and lower crack faces are expected to experience identical
displacement at the crack front. However, the discontinuous BEM approach for fracture mechanics cannot guarantee
this behaviour. In two-dimensional analysis, it has been shown that a ‘tying equation’ enforcing displacement con-
tinuity at a crack tip is a simple approach to provide an additional equation, but it is also advantageous in that the
unknowns K̃s cf

M from eq. (8) become good approximations to the SIFs[46, 48]. In the three-dimensional scope that is
the focus of the current work, the crack front is a curve, and a weak-form strategy is presented to enforce compatibility
as:

Z

�cf
s

h
��̄
+

↵ (⇠1,⇠2)d�
+

k � �
�̄�

↵ (⇠1,⇠2)d�
�

k

i
�̃cf

s (v)dv = 0k (13)

in which �cf
s is the line describing the crack front. �̃cf

s is the weighting function chosen for this weak-form compatibil-
ity; here we adopt the NURBS function that interpolates the SIFs.

The final extended IGABEM algebraic system assumes its form by augmenting the standard IGABEM algebraic
matrix, eq. (A.15) with the e↵ects of the enrichment functions on the BIEs, which are eq. (2), eq. (6) and eq. (9). By
introducing also the additional equations as described, the XIGABEM system becomes:

2
666666664

H Hh Ht Hs
H

T
H

T
h H

T
t H

T
s

�s 0 0 0

3
777777775

8>>>>>><
>>>>>>:

d

d

d̂

K̃

9>>>>>>=
>>>>>>;
=

2
666666664

G

G
T

0

3
777777775
n

p

o
(14)

in which H, G, d and p refer to the standard IGABEM contributions. The subscript h refers to the contribution from
the Heaviside enrichment for fully cut faces in the external boundary, eq. (2). In addition, the terms with the subscript
t contain the results from the Williams-based enrichment for partially cut faces, coming from eq. (6). The subscript
s stands for the crack front enrichment contributions, eq. (8). The superscript T indicates the TBIE coe�cients when
applied at the collocation points whose basis functions are enriched. �s is the sub-matrix containing the contributions
from eq. (13). Lastly, d, d̂ and K̃ are the additional unknowns from the Heaviside, Williams-based and crack front
enrichment strategies, respectively. By applying the boundary conditions on eq. (14) in the same manner as for the
standard IGABEM, a linear system Ax = b is obtained, and use of a standard solver recovers all standard displacement
and traction parameters in the solution vector x, as well as the unknowns associated with the enrichment functions.

3. Implementation aspects

3.1. Crossing detection between crack face and cut face
The detection of the crossings between the crack faces and the external boundary is fundamental to the extended

IGABEM, as it allows the crack surface geometry to be fully defined and completes the definition of the enriched
basis functions. It also provides important geometric information on the crossed NURBS patch. This task consists of
searching the external boundary NURBS surfaces that contain the mid-point of each upper crack face edge (those with
the DBIE applied), as depicted in fig. 3. This search algorithm makes use of a Newton-Raphson method to find the
associated parametric coordinates that give the geometric coordinates of each mid-point. Then, each NURBS surface
found is then classified as enriched, in which either the Heaviside or the Williams-based functions will be applied, the
choice depending on whether the face is fully or partially cut. Similarly, a search for the corresponding lower crack
face edge takes place to define the pair of crack face edges that account for the enrichment.

The next step is to project the crack edge on the enriched NURBS surface. Then, the intersecting NURBS curve on
the crossed surface has the same degree, knot-span and number of control points as the univariate NURBS curve that
generates the upper crack face and crosses the external boundary, as in fig. 3. The objective is to generate a NURBS
curve for the crack edge in the parametric space of the enriched NURBS surface, so that further geometric procedures
will be taken directly on the external boundary NURBS parametric space. To find the corresponding control points in
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Figure 3: Mid-points at each crack edge that search their correspondent external boundary face.

the parametric space, a sample of ts anchor points on the crossing crack edge are first defined, based on the Greville
Abscissae. For each anchor point, the NURBS basis functions are computed, and also the parametric coordinates in
the projected NURBS surface, which results in the following algebraic system:

nX

k=1

�k(ts)
˜
⇠s

1 = ⇠1(ts)

nX

k=1

�k(ts)
˜
⇠s

2 = ⇠2(ts)
(15)

in which the pair (
˜
⇠s

1,˜
⇠s

2) refers to the control points written in the parametric coordinates of the enriched patch, and the
pair (⇠1(ts),⇠2(ts)) refers to the parametric coordinate on the enriched patch that returns the same geometric position in
the physical space as ts from the NURBS curve. Lastly, �k(ts) is the basis function value. In this procedure, each new
control point inherits its weight from that of the corresponding control point from the univariate edge NURBS curve.

Additionally, it is helpful to detect the intersection between the projected NURBS curve and the knot-span limits
at the enriched patch. These points are further needed to define the sub-cells for integration, as well as to classify the
face as fully or partially cut, and to define the enriched basis functions for the Heaviside enrichment. This detection
consists of a marching through the parametric coordinate of the projected NURBS curve in incremental steps of
� = (tL � tF)/ns, in which tF and tL are the first and last knots, and ns is the number of divisions. For each ti = tF + i�,
the obtaining of the pair (⇠1(ti),⇠2(ti)) allows the detection of its corresponding knot-span in each univariate direction.
When there is a change in the knot-span from ti+1 compared against ti in the direction dir, a crossing occurs for a
NURBS curve parametric coordinate tc such as ti  tc  ti+1. Then, a local Newton-Raphson procedure determines tc,
in which the associated residual is E(t) = ⇠S

dir � ⇠dir(t), where ⇠S
dir is the known parametric coordinate at the external

boundary surface. By expanding E(t) in its first term of Taylor Series, the increment �tk is:

�tk =
E(tk)
@E
@t

���
k

(16)

in which there is an update as tk+1 = tk + �tk until the residual is smaller than a given tolerance. The derivative @E/@t
is the tangent vector component in the dir direction.

If one of the ends of the NURBS curve that represents the crack lies inside the enriched surface, this patch can
be defined as partially cut, and all basis functions on the patch will be enriched by the Williams-based enrichment
function. On the other hand, when both ends of the NURBS curve cross the NURBS surface edges, it is a fully cut
face. For this fully cut patch, all non-null basis functions at

⇣
⇠1(tk

c),⇠2(tk
c)
⌘
, in which tk

c = (tk+1
c + tk

c)/2, are enriched by
the Heaviside function. This represents the influence zone required for the Heaviside enrichment at the crossing, once
tk
c lies exactly on the crack.

The numerical integration of the kernels arising from the enrichment strategy demands a sub-cell approach to
account separately for the contribution of each term due to the the discontinuous nature of the enrichment functions.
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Therefore, the intersection between the NURBS curve that represents the crack and each knot-span allows the gener-
ation of sub-cells, over which Gauss-Legendre integration can safely be applied independently. There are six possible
cases for the generation of the sub-cells in entirely crossed knot-spans, which are shown in fig. 4. In addition, when
the crack ends inside a knot-span there are four possible sub-cell configurations, illustrated by fig. 5.

Figure 4: Possible cases for entirely crossed knot-span, in which the crack is indicated by red and the knot-span sub-divisions are represented in
dashed green.

Figure 5: Knot-span subdivision for crack ending inside its domains.

Since the Heaviside function H takes a constant value over each sub-cell, it only needs to be computed once for
the cell and do not require assessment separately at each Gauss point, accelerating the integration procedure for the
associated enriched kernel. The value of H can be easily computed as the dot product sign between the vector that
goes from one of the crack ends pointing to the interior of the sub-cell (fig. 6) and the normal outward vector of the
upper crack face. The obtaining of H↵ for each collocation point proceeds analogously, by defining the vector from
one of the crack ends to the collocation point.
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Figure 6: Heaviside function determination based on dot product between upper surface normal outward vector and internal vector. In this scheme,
sub-cells A and B receive H = +1.0 while cells C and D have H = �1.0.

In the context of the integration requiring the SST, the sub-cells of the same knot-span that share the same H are
merged. This allows the use of the SST parameters on the whole face, and also reduces loss of accuracy that could be
caused by nearly singular integration of these parts.

3.2. Numerical integration of sub-cells
The sub-cell integration requires a specific treatment due to the triangular shape of the cells adopted. Moreover,

some cells have the crack curve as one of its edges, which must be accounted for in this process. In this context,
this study proposes a polar transformation to perform this task. Three additional mappings are used for relating the
NURBS parametric space to the integration space where the Gauss quadrature is performed. This procedure also
holds for the singular integration, in which the polar transformation is intrinsically part of the SST.

This strategy starts by defining a pole in which the polar parameters ⇢ and ✓ are defined. In the non-singular
integration, the pole is at the farthest vertex to the crack curve, while in the singular integration the pole is the
collocation point.

The first mapping relates a point from the Gaussian space {⇠̂1,⇠̂2} 2 ⇤ |⇤ = {[�1; 1] ⇥ [�1; 1]} to the first auxiliary
space ⌦P

1 = {[t1, t2] ⇥ [0, ⇢̂]} as:

T
P
1 : (⇠̂1,⇠̂2)! (t, ⇢)

t =
(t2 � t1)⇠̂2

2
+

(t2 + t1)
2

⇢ =
⇢̂(t)⇠̂1

2
+
⇢̂(t)
2

(17)

in which t refers to the parametric coordinate on the NURBS curve that defines the crack crossing, t1 and t2 are the
corresponding ends for this coordinate at the sub-cell, and ⇢̂(t) is the distance between the pole and the point given by
t at the NURBS curve. All these variables are illustrated in fig. 7. Also, ⇢̂(t) expression is:

⇢̂(t) =

r
h
⇠1(t) � ⇠0

1

i2
+

h
⇠2(t) � ⇠0

2

i2
(18)

in which (⇠0
1 ,⇠

0
2) is the parametric coordinates of the pole in the patch.

The second transformation T
P
2 consists of defining the polar coordinate ✓ in terms of (⇠1(t),⇠2(t)) as:
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Figure 7: Variables in T
P
1 mapping

T
P
2 : (t,⇢)! (✓,⇢)

cos ✓ =
⇠1(t) � ⇠0

1

⇢̂(t)

sin ✓ =
⇠2(t) � ⇠0

2

⇢̂(t)

✓ = arctan
0
BBBB@
⇠2(t) � ⇠0

2

⇠1(t) � ⇠0
1

1
CCCCA

(19)

Lastly, T
P
3 is the transformation that obtains the parametric coordinates pair (⇠1,⇠2) at the patch from the polar

parameters ⇢ and ✓, as:

T
P
3 : (✓,⇢)! (⇠1, ⇠2)

⇠1(⇢,✓) = ⇠0
1 + ⇢ cos ✓

⇠2(⇢,✓) = ⇠0
2 + ⇢ sin ✓

(20)

The Jacobian of each transformation enables the integration in the Gauss space going from the NURBS parametric
space, and they are:

J̄P�
1 =

⇢̂(t)
2

(t2 � t1)
2

J̄P�
2 =

d✓
dt

J̄P�
3 = ⇢

(21)

and the total d�� becomes:

d�� =
������
@r

@⇠̂1
⇥
@r

@⇠̂2

������ d⇤

d�� = J̄P�
1 J̄P�

2 J̄P�
3 J�2 d⇤

(22)

in which J̄P�
2 comes from the chain rule as:

d✓
dt
=
@✓

@⇠1

@⇠1

@t
+
@✓

@⇠2

@⇠2

@t
(23)

13



in which @⇠1/@t and @⇠2/@t are the components of the NURBS curve tangent vector, and the derivatives in respect to
✓ are:

@✓

@⇠1
=

�1

1 +
2
66664
⇠2(t) � ⇠0

2

⇠(t) � ⇠0
1

3
77775

2

⇠2(t) � ⇠0
2h

⇠1(t) � ⇠0
1

i2 =
⇠0

2 � ⇠2(t)
h
⇠1(t) � ⇠0

1

i2
+

h
⇠2(t) � ⇠0

2

i2 )

@✓

@⇠1
=
⇠0

2 � ⇠2(t)
⇢̂(t)2 =

� sin ✓
⇢̂(t)

@✓

@⇠2
=

1

1 +
2
66664
⇠2(t) � ⇠0

2

⇠1(t) � ⇠0
1

3
77775

2
1

⇠(t) � ⇠0 =
⇠(t) � ⇠0

1h
⇠1(t) � ⇠0

1

i2
+

h
⇠2(t) � ⇠0

2

i2 )

@✓

@⇠2
=
⇠1(t) � ⇠0

1

⇢̂(t)2 =
cos ✓
⇢̂(t)

(24)

We remark that this scheme holds for triangles which do not have a NURBS curve as one of the edges. In this
case, this edge parametrisation consists of a straight line between each edge of the opposite side, and also t1 = 0.0 and
t2 = 1.0.

4. Numerical applications

4.1. Penny-shaped crack
The first application of this study is a penny-shaped circular crack with radius R = 1.0 embedded in an infinite

domain, subjected to a remote uniaxial stress �0 = 1.0, according to fig. 8(a). Since the Dual BEM formulation
herein applied requires the discretisation of the external boundary, the crack is located inside a cube of side 200R. The
material properties are E = 1.0 and ⌫ = 0.0. It is noteworthy that the proper choice of the local coordinate system
performs a major role for the crack front enrichment scheme when its front is curved. Thus, this application allows
the evaluation of the Frenet-Serret frame, especially for mixed mode I/II/III problems. In addition, the analysis of
both in-plane and inclined cracks allows the evaluation of a pure mode I and a mixed mode I/II/III in a problem whose
enrichment function does not match with the analytical solution. For the pure mode I problem, both SIFs and the u2
displacement at the crack have a reference solution [85] as:

u2(x1,x2,x3) =
�2n2(1 � ⌫)�0

⇡µ

q
R2 � (x2

1 + x2
3))

KI =
2�0

⇡

p
⇡R

KII = KIII = 0

(25)

in which �0 is the remote traction applied. For the crack inclined through an angle ✓i, the corresponding SIFs are:

KI =
2�0

⇡

p
⇡R cos2 ✓c

KII =
4�0

⇡(2 � ⌫)
p
⇡R cos ✓i sin ✓i cos ✓c

KIII =
4�0(1 � ⌫)
⇡(2 � ⌫)

p
⇡R cos ✓i sin ✓i sin ✓c

(26)

in which ✓c is the angle of the crack front position taken in the crack plane.
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Figure 9: Deformed shape for penny shaped crack using (a) conventional IGABEM and (b) extended IGABEM

Figure 8: (a) Geometry and loading conditions for penny-shaped crack and (b) Control points position for penny-shaped crack mesh

The discretisation adopted for this application consists of an external boundary composed of 6 NURBS surfaces
with degree p = q = 1 Constant boundary conditions are responsible for representing the uniform stress state in the
far field, in which the bottom face (x2 = �100.0) has nil displacements in all directions and there is a traction t2 = 1.0
applied over the top face (x2 = 100.0). For the crack faces, five p = q = 2 degree NURBS surfaces describe each face,
as illustrated in fig. 8(b). Each of the four patches that compose the circular crown receive the crack front enrichment,
while the central circle remains with only the NURBS basis functions. The circular crown length is set as R/5, based
on the analysis performed with the Displacement Fitting Technique [73], and the crack front increment chosen by Peng
et al [72] in their penny-shaped crack growth analysis. In addition, a Lagrangian BEM analysis considers a 9-node
quadrilateral quadratic element to compare the XIGABEM and IGABEM results against the conventional BEM.

The in-plane crack deformed shape presented in fig. 9 compares the responses from the extended IGABEM ap-
proach and the standard IGABEM for the most refined mesh. A jump in the displacement field at the crack front is
evident in the standard formulation, in contrast to the XIGABEM results. For the standard formulation, as previously
obtained by Peng et al. [72], the major contribution for the error is at the crack front. The absence of a displacement
jump in the XIGABEM solution is a direct consequence of the tying equations.

The convergence analysis in the L2 norm of error presented in fig. 10 demonstrates the improvements in the
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convergence rate for the XIGABEM responses against the standard IGABEM and the Lagrangian BEM. By adding a
small number of degrees of freedom, in addition to directly returning the SIFs, there is both a reduction in the L2 norm
of error and an increase in the convergence rate. These outcomes are associated to the asymptotic behaviour introduced
by the enrichment, as well as the tying at the crack front. Optimal convergence for collocation methods in the BEM
context still has open questions [86, 87], but for a smooth problem, Marussig et al. [87] achieved convergence rates of
O(N�p) in the L2 norm, with N being the number of degrees of freedom. For fracture mechanics, this behaviour does
not hold, as can be seen in Peng at al [72] and the standard IGABEM simulations used for comparison in fig. 10 of
the present study. On the other hand the XIGABEM approach described herein delivers improved convergence rates
over standard IGABEM, both for smooth solutions [87] and for fracture problems.

As widely presented in the literature for the GFEM/XFEM, enrichment strategies can cause an increase in the con-
dition number, which has the potential to become problematic for the system solution. Based on the condition number
growth shown in fig. 11, it is noteworthy that the extended IGABEM formulation for the crack front enrichment
improves the overall conditioning when compared against its standard version, instead of worsening it.
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Figure 10: L2 norm of error in displacements for in-plane penny-shaped crack.

Table 1 shows the average relative error for all SIFs to be in excellent agreement with the reference solution, being
below 5.10�3 for K1. Additionally, K2 and K3 are below 4.10�10 for all meshes except the most refined one, in which
the e↵ect of near-singular integrals on the evaluation of the BIEs kernels start to influence the overall precision. These
results can be improved by an enhanced integration scheme for those integrals, but this is beyond the scope of the
present research.

The numerical analysis for an inclined penny-shaped crack permits the proposed formulation accuracy assessment
in the mixed-mode context. For ✓i = ⇡/4, fig. 12 shows the SIFs for the most refined mesh. It is noticed that all SIFs
vary in agreement with the reference solutions, with relative errors below 2.03e � 3. Additionally, the L2 norm of
error converges in a faster rate than the SIFs, mainly associated to the correction of the non-physical displacements
at the crack front given by the IGABEM formulation. In summary, it is evident that the XIGABEM formulation for
a circular crack obtains highly accurate results with an increase of only a few degrees of freedom in comparison to
standard approach.
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Figure 11: Condition number growth for in-plane penny-shaped crack.

Table 1: Average SIFs error for in-plane penny-shaped crack.

Degrees of freedom avg. error in K1 avg. error in K2 avg. error in K3

378 4.689e-03 -2.47e-11 -3.00e-13
600 2.936e-03 -4.11e-11 3.67e-12
882 2.267e-03 3.85e-10 -1.59e-12

1224 1.776e-03 -5.09e-12 4.59e-11
1626 1.432e-03 4.04e-07 -1.22e-11

4.2. Elliptical crack
An elliptical crack embedded in an infinite domain and subjected to a far-field uniaxial stress�0 = 1.0 is the second

application considered. The crack has semi-major and semi-minor axis dimensions a = 10.0 and b = 5.0, respectively,
as depicted in fig. 13(a). Similarly to section 4.1, the truncated domain that represents an infinite medium is a cube
with side 200a. In this application, the mechanical properties are E = 1.0 and ⌫ = 0.3. Besides encompassing all
the characteristics of section 4.1 in respect to the definition of the local coordinate system, K1 is no longer constant,
which constitutes an important behaviour to capture by the enrichment scheme. The analytical solution for this case,
which also considers the inclination angle ✓i, is [85]:
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Figure 12: Stress intensity factors for penny-shaped crack inclined by ⇡/4 rad.

KI =
�0
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KII =
�0

2
(sin 2✓i)

p
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b⇡k2(1 � ⌫) sin ✓c

f (✓c)B(k)

k2 = 1 �
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cos2 ✓c
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777775
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b
a

!2

K(k)

K(k) =
Z ⇡/2

0

1
p

1 � k2 sin2 ✓c

d✓c

E(k) =
Z ⇡/2

0

q
1 � k2 sin2 ✓cd✓c

(27)

in which ✓i = 0 for an in-plane situation. Particularly, for the in-plane case, the u2 displacements are:

u2(x1,0,x3) =
2(1 � ⌫)�0

µ

b
E(k)

s

1 �
x2

1

a2 �
x2

3

b2 (28)

The crack mesh consists of 5 bi-quadratic NURBS surfaces for each face, in which the internal ellipse is scaled by
80% from the total crack size, as shown in fig. 13(b). In addition, the external boundary mesh has 6 bi-linear NURBS
surfaces. For the convergence study, a knot-insertion strategy is used to increase uniformly in each parametric direction
the number of basis functions only at the crack surfaces.
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Figure 13: (a) Geometry of elliptical crack and (b) Mesh and control points for in-plane elliptical mesh.

The convergence analysis in fig. 14 demonstrates again an increase in the order of convergence rate for the XI-
GABEM in comparison to the standard formulation. However, for the most refined mesh, the near-singular integral
precision starts to have a mild e↵ect on the solution accuracy. In addition, fig. 15 shows that the condition number
remains similar to the standard formulation. Moreover, the SIFs directly obtained as degrees of freedom, presented
in fig. 16, are in accordance with the analytical solutions for the in-plane case. Thus, the enrichment scheme is also
capable of capturing the trigonometrical variation for all three SIFs of this application.

102 10310�3

10�2

10�1

100

1
0.65

1

2.2

Degrees of freedom

e L
2

XIGABEM
Standard IGABEM

Figure 14: L2 norm of error in displacements for in-plane elliptical crack.

The elliptical crack inclined through angle ✓i = ⇡/6 permits an analysis of a complex crack geometry in a mixed-
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Figure 15: Condition number growth for in-plane elliptical crack.
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Figure 16: Stress intensity factor KI for in-plane elliptical crack.

mode loading case. The extracted SIFs are depicted in fig. 17, in which again the formulation precisely captures the
expected behaviour for all three SIFs. In addition, table 2 compares the SIFs relative errors with Peng et al. [72], when
the analytical SIF is non-nil. The enriched formulation provides lower errors for both cases in all SIFs. Specifically,
for KI and KIII , an improvement of one order of magnitude is found in the relative error.
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VCCI [72] M integral [72] XIGABEM

✓c = 0
KI 4.56e-2 1.53e-2 5.53e-04
KII 4.14e-2 1.28e-2 4.83e-03
KIII - - -

✓c = ⇡/2
KI 8.28e-3 2.21e-2 1.89e-03
KII - - -
KIII 6.88e-3 5.96e-2 1.77e-03

Table 2: Relative error for SIFs in elliptical crack inclined by ✓i = ⇡/6.
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Figure 17: Stress intensity factors for elliptical crack inclined by ⇡/6 rad.

4.3. Prism with edge crack: pure mode analysis
This application consists of a finite prismatic solid with a centred crack of geometry defined in fig. 18 and of

material properties E = 1.0 and ⌫ = 0.0. We consider the pure mode behaviour, allowing us to make use of known
analytical solutions as appropriate in order to elicit information about the numerical performance of the XIGABEM
formulation. The upper face (�1.0  x1  1.0, x2 = 1.0, 0.0  x3  2.0), lower face (�1.0  x1  1.0, x2 = �1.0,
0.0  x3  2.0), front face (x1 = 1.0, �1.0  x2  1.0, 0.0  x3  2.0) and back faces (x1 = �1.0, �1.0  x2  1.0,
0.0  x3  2.0,) are given displacement boundary conditions, while all other faces in the external boundary have
prescribed traction. Since the analytical expressions for the mechanical behaviour are known for each opening mode
[78], they are directly applied in the BIEs, as described in Appendix A. The displacement and stress values for this
application are:
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Figure 18: Geometry of prismatic block with edge crack.
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The numerical analysis via XIGABEM is performed on a NURBS mesh with 9 patches, in which 7 patches define
the external boundary and 2 patches represent the opposing crack faces. Figure 19(a) presents the extended IGABEM
mesh. It should be noted that the lateral faces do not align with the crack faces, since the Williams-based enrichment
functions capture the discontinuous solution independently of the mesh. The upper and lower crack faces are given
the crack front enrichment, which allows the direct determination of the SIFs. To compare the convergence rate of
the XIGABEM against the standard IGABEM formulation, the numerical responses for the conventional IGABEM
method utilises a mesh containing 15 NURBS patches, as shown in fig. 19(b). The increased number of patches
derives from the need for mesh alignment at the intersections between the external boundary and the crack on lateral
faces.

This application considers each crack opening mode separately so that it is possible to evaluate the influence of
all terms from the enrichment functions. The boundary conditions for the pure mode M = I,II,III utilise eq. (29)
with KM = 1.0 and 0.0 for other K’s. Figure 20 presents the deformed shape for each crack opening mode for both
XIGABEM and standard IGABEM formulations. Discontinuous displacements are evident at the lateral faces in
the IGABEM model, since multiple discontinuously defined NURBS patches represent these faces, and therefore no
continuity between them is imposed. This is naturally circumvented by the extended IGABEM approach, because it
does not require mesh alignment, and this can be seen in the results with continuity maintained over the face. Further,
unlike in the standard IGABEM, the e↵ect of the tying equations enforces displacement continuity over the crack
front in the enriched XIGABEM scheme.

The convergence analysis shown in fig. 21 presents the error comparison for both XIGABEM and IGABEM
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Figure 19: Mesh for prismatic block with edge crack for (a) XIGABEM analysis and (b) standard IGABEM approach.

approaches for each crack mode. For all modes, the standard IGABEM convergence rate is around 0.6, explained
by the square-root nature of the fracture mechanics solution that is not captured by the NURBS basis functions
(neither in the crack faces nor in the lateral faces). On the other hand, this behaviour is injected into the extended
IGABEM approximation, which results in better convergence for all three modes when compared against the standard
formulation. It is evident from fig. 21 that di↵erent convergence rates are found for the di↵erent modes. We note that
some caution is needed in interpreting convergence rates for XIGABEM, since the important square root behaviour
is included in the coarsest models, but not improved in later refinements which add only the smooth NURBS basis
functions. In addition, fig. 22 presents the comparison of the condition number of the A matrix for both XIGABEM
and IGABEM approaches. For each approach, the condition number is the same for all modes, since a change in the
boundary conditions only a↵ects the right-hand side vector. Through this analysis, it can be seen that the enrichment
strategies cause a consequent increase in the condition number. Nevertheless, the degree of ill-conditioning for the
XIGABEM in this application is mild and does not jeopardise the accuracy of the system solution.
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Figure 20: Deformed shape for each pure crack loading where standard IGABEM results are on the left-hand side while the XIGABEM responses
are on the right-hand side.
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Figure 21: L2 norm of error in displacements for prismatic block with edge crack.

In table 3 we study the SIF results obtained directly from the XIGABEM solution vector x. The table presents
the average value for the absolute SIFs along the crack front for all crack opening modes. All SIFs match closely
with the expected value for each pure mode loading, and the errors reduce with mesh refinement. For all cases, the
most refined mesh provides the associated SIF for its pure mode loading with errors below 4.10�4. This provides
evidence that the proposed formulation is capable of delivering SIFs to high accuracy without the requirement for
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Figure 22: Condition number growth for prismatic block with edge crack.

Degrees of freedom avg. |KI | avg. |KII | avg. |KIII |

Mode I
639 1.00057 5.84e-07 2.66e-06

1275 0.99979 9.66e-06 2.95e-05
2175 0.99991 9.17e-06 1.96e-05

Mode II
639 7.06e-07 1.00125 1.70e-02

1275 7.55e-05 1.00050 2.21e-03
2175 8.36e-07 1.00032 1.39e-04

Mode III
639 7.19e-07 7.06e-04 0.99579

1275 1.51e-03 7.92e-04 1.00228
2175 6.81e-06 2.74e-04 0.99991

Table 3: Average values for SIFs in each pure mode loading case of prism with edge crack.

post-processing tasks, as J-Integral.

4.4. Prism with edge crack: uniform load
The fourth application of this study deals with the numerical analysis of a finite prismatic block under uniform

traction �0 = 1.0 at its ends. Figure 23 presents its geometry and boundary conditions, in which the displacements in
the highlighted region are responsible for preventing rigid body motion. The material properties are: Young modulus
E = 1000.0 and Poisson ratio ⌫ = 0.3. This application does not have an analytical response, which requires its
comparison against reference solutions obtained by other authors using di↵erent numerical methods. Also, it is
reasonable to expect plane-strain behaviour at the middle of the crack front z = 3.75, at which the correspondent KI is
[85]:

KI = �0
p
⇡aF(a/b)

F(a/b) = 1.122 � 0.231
✓a
b

◆
+ 10.550

✓a
b

◆2
� 21.710

✓a
b

◆3
+ 30.382

✓a
b

◆4 (30)

Initially, the crack surfaces are given only the SIF enrichment, and the corresponding mesh presented in fig. 24(a)
consists of 17 NURBS surfaces, of degree p = q = 1 for the external boundary and p = q = 2 for the crack
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Figure 23: Geometry and boundary conditions for prismatic specimen under uniform traction.

surfaces. In this mesh, all surfaces must align with the crack, which places additional demands on the CAD model
to satisfy this requirement. Additionally, the fully enriched analysis considers the SIF enrichment on the crack faces,
the Williams-based enrichment on the lateral faces and the Heaviside enrichment on the fully cut face, which reduces
the amount of NURBS surfaces to 10, as depicted in fig. 24(b). Again, the NURBS basis functions are of degree
p = q = 1 on the external boundary faces and p = q = 2 on the crack faces. In this application there is a plane-
stress/plane-strain transition at the crack front close to the lateral faces. In order to study this behaviour, and therefore
the influence of the Kolosov constant on the results, for the fully enriched model two di↵erent analyses consider
the Kolosov constant prescribed for plane-stress and plane-strain scenarios. Therefore, three di↵erent models are
compared against reference solutions using IGABEM by Cordeiro and Leonel [73] and Lagrangian BEM by Mi and
Aliabadi [37], and against the 2-D plane-strain solution. It is relevant to mention that the 2-D equivalent solution
for this problem does not hold for the entire crack front. However, the aforementioned references have shown that it
becomes a suitable comparison close to the crack front centre, where the plane-strain behaviour is more prominent.

Figure 24: Isogeometric mesh for prismatic block under uniform traction, in which (a) XIGABEM mesh with only the SIF enrichment, and (b)
fully enriched model.

The number of degrees of freedom for each analysis are 3,996 and 2,787 for the model with only SIF enrichment
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and for the fully enriched model, respectively. In addition, the models of Cordeiro and Leonel [73] comprise 3,273
and 5,121 degrees of freedom for two di↵erent refinement levels, while Mi and Aliabadi [37] do not provide their
model sizes. The normalised KI comparison in fig. 25 demonstrates that the crack front enrichment is capable of
directly determining the SIF for all scenarios in broad agreement with other results in the literature. At the crack
front coordinate z = 3.75, the XIGABEM model with only crack front enrichment has a relative di↵erence in KI
of 2.0% in comparison to the 2-D plane-strain solution, while the fully enriched models give rise to discrepancies
of 0.52% and 0.96% when using plane-strain and plane-stress Kolosov constants at the Williams-based enrichment,
respectively. Therefore, it is noticeable that capturing the square-root behaviour over the lateral faces improves the
SIF determination. On the other hand, it is interesting that the Kolosov parameter being considered as plane-stress
on lateral faces forces the overall KI variation to be lower than the plane-strain case. Still, both situations lead to
an accurate result in comparison to other numerical methods and the handbook two-dimensional solution. Moreover,
the fully enriched models deliver higher accuracy than the standard IGABEM model with 3,273 degrees of freedom,
whose di↵erence was 1.93%. It must be noticed that the present study and Cordeiro and Leonel [73] utilised ⌫ = 0.3
while Mi and Aliabadi [37] used ⌫ = 1

3 . The numerical analysis of this application with XIGABEM has obtained up
to only 0.5% di↵erence in SIF at the centre of the crack. In summary, it is possible to obtain higher accuracy from
coarser models, providing evidence of a gain in solution accuracy available using the extended IGABEM approach.
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Figure 25: Stress intensity factors along crack front, in which XIGABEM (a) is the model with only the crack front enrichment, XIGABEM (b)
and (c) are the fully enriched models with Kosolov constant set as plane strain and plane stress, respectively.

5. Concluding remarks

This study proposes enrichment strategies for the isogeometric boundary element method for three-dimensional
linear elastic fracture mechanics. Then, the eXtended Isogeometric Boundary Element Method was used for the
numerical analysis of 3-D cracked bodies.

Two di↵erent functions were responsible for enriching the expansion of the displacement field to incorporate the
expected behaviour of the fracture mechanics: the Heaviside and the Williams expansion. While the former permits
the direct representation of discontinuities for fully cut faces, the latter allowed the representation of the p⇢ behaviour
of displacements near the crack front. In addition, two di↵erent approaches consider the Williams solution: one on
boundary faces partially cut by the crack, and another over the crack surfaces themselves. For the boundary faces,
besides incorporating a behaviour that was not captured by the standard NURBS functions, this strategy precludes
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the need for a re-meshing task on this face. In addition, the Williams-based enrichment for crack faces introduces the
stress intensity factors directly as system unknowns, found in the solution vector, which removes a post-processing
task for their determination.

As a consequence of enriching the displacement field, the additional unknowns require new equations to recover
a square system. This may be achieved by the use of the Traction Boundary Integral Equation at the same position as
the collocation points whose basis functions were enriched, and for the SIF enrichment a tying constraint equation is
responsible for this task. With the additional benefit of the removal of a non-physical displacement discontinuity at
the crack front that occurs in the Lagrangian BEM and IGABEM.

Results showed that the convergence rate improves for the XIGABEM in comparison to the standard IGABEM in
various applications. In addition, it was possible to accurately extract the SIFs for problems containing straight and
curved crack fronts directly from the additional unknowns introduced by the crack front enrichment. The comparison
with literature applications also showed an improvement in the SIF determination.

This work demonstrated the feasibility and fundamental numerical analysis of the proposed scheme. Several
enhancements will be possible for researchers to follow up. For example, instead of applying enrichment to the entirety
of a surface partially intersected by a crack, we believe it will be possible to reduce the number of degrees of freedom
by restricting the size of the enrichment zone on these faces. Also, the combination of Heaviside and Williams-based
strategies on partially cut faces, will also be an interesting extension. Additionally, crack growth procedures based
on extended IGABEM can also be relevant for the numerical analysis of cracked complex engineering components.
These topics are work in progress to extend the state of art of the fracture mechanics analysis under XIGABEM.
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(1851) 193–207.
[83] S. Li, M. Mear, L. Xiao, Symmetric weak-form integral equation method for three-dimensional fracture analysis, Computer Methods in

Applied Mechanics and Engineering 151 (3) (1998) 435–459, containing papers presented at the Symposium on Advances in Computational
Mechanics. doi:https://doi.org/10.1016/S0045-7825(97)00199-0.

[84] C. Brebbia, The Boundary Element Method for Engineers, Pentech Press, 1978.
[85] H. Tada, P. Paris, G. Irwin, The analysis of cracks handbook, New York: ASME Press 2 (2000) 1.
[86] S. A. Sauter, C. Schwab, Boundary element methods, Springer, 2011.
[87] B. Marussig, R. Hiemstra, T. J. Hughes, Improved conditioning of isogeometric analysis matrices for trimmed geometries, Computer Methods

in Applied Mechanics and Engineering 334 (2018) 79–110.
[88] M. G. Cox, The Numerical Evaluation of B-Splines*, IMA Journal of Applied Mathematics 10 (2) (1972) 134–149.

doi:10.1093/imamat/10.2.134.
[89] C. De Boor, On calculating with b-splines, Journal of Approximation Theory 6 (1) (1972) 50 – 62. doi:https://doi.org/10.1016/0021-

9045(72)90080-9.
[90] C. De Boor, A practical guide to splines, Vol. 27, Springer-Verlag New York, 1978. doi:https://doi.org/10.1007/978-1-4612-6333-3.
[91] T. Greville, Numerical procedures for interpolation by spline functions, Journal of the Society for Industrial and Applied Mathematics, Series

B: Numerical Analysis 1 (1) (1964) 53–68. doi:https://doi.org/10.1137/0701005.

Appendix A. Three-dimensional Isogeometric Boundary Element Method

This appendix presents the IGABEM formulation for three-dimensional linear elasticity and for fracture mechan-
ics. Further details can be found in the ”Isogeometric Boundary Element Method” book [62]. The Boundary Element
Method consists of utilising integral equations written solely at the solid boundary to determine its mechanical fields.
Consider a three-dimensional body with domain ⌦, boundary � = �u [ �t, in which �u and �t contain Dirichlet
and Neumann boundary conditions, respectively, linear-elastic isotropic mechanical behaviour and absence of body
forces. For this body, the Displacement Boundary Integral Equation (DBIE) obtains its displacements uk on a collo-
cation point x̂ as:

c`k(x̂)uk(x̂) +
Z

�

T ⇤`k(x,x̂)uk(x) d� =
Z

�

U⇤`k(x,x̂)tk(x) d� (A.1)

in which x is a field point on the boundary, c`k(x̂) is the jump term associated with the position of x̂, assuming the
value of �`k when x̂ 2 ⌦ and 0.5�`k when x̂ is on a smooth portion of boundary �, being �`k the Kronecker delta.
uk and tk are the displacements and tractions, respectively, and U⇤`k and T ⇤`k denote the linear elasticity fundamental
solutions, given by:
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) (A.2)

in which µ = E
2(1+⌫) , E and ⌫ are the material properties shear modulus, Young Modulus and Poisson ratio, respectively. These

expressions use the distance vector r = x � x̂ between x̂ and x, its derivatives, and the normal outward vector n at the field point.
Given the singular aspect of the fundamental solutions, the first integration in eq. (A.1) is strongly singular when a collocation
point lies on the boundary, which requires the Cauchy Principal Value (CPV) for its regularisation [42], indicated by �

R
.

The Traction Boundary Integral Equation (TBIE) arises from the di↵erentiation of eq. (A.1) with respect to the point x̂. For x̂

in a smooth boundary, the TBIE is:

c`k(x̂) tk(x̂) + n`(x̂)=
Z

�

S ⇤k` j(x,x̂)uk(x) d� = n`(x̂)�
Z

�

D⇤k` jtk(x)(x,x̂) d� (A.3)

in which the fundamental solutions S ⇤k` j and D⇤k` j are:

D⇤k` j(x,x̂) =
1

8⇡(1 � ⌫)r2

h
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(A.4)

The kernel D⇤k` j is strongly singular and regularised by the CPV, while the hypersingular nature of S ⇤k` j requires the integration
in the Hadamard Finite Part sense, represented by =

R
in eq. (A.3). For brevity, the arguments of the fundamental solutions will be

omitted henceforth.
In this study, the basis functions describing Non-Uniform Rational B-Splines (NURBS) are used to interpolate both geometry

and mechanical fields. This choice enables an exact description of conic surfaces, such as spheres and ellipses. Moreover, the
boundary-only aspect of the integral equations allows the direct import of the CAD drawing, which precludes a costly mesh
generation task in the analyses [50]. In addition, NURBS basis functions possess several important properties for the numerical
methods, such as Partition of Unity, non-negativity, local support, existence of all derivatives of Ri in the interior of a knot span
and being p � k times continuously di↵erentiable at a knot, with k denoting its multiplicity, among other characteristics [80].

In order to describe the boundary � we make use of NURBS surfaces; here, the basis functions are derived from a tensor
product between two univariate NURBS curves [80, 50]. The univariate NURBS basis functions are built recursively based on the
B-spline basis using the Cox-de-Boor formula [88, 89, 90] and weights wi of each control point as:

�i(⇠) =
Ni(⇠)wi

nP
k=1

Nk(⇠)wk

Ni,0 (⇠) =

8>><
>>:

1 ⇠i  ⇠ < ⇠i+1

0 otherwise

Ni,p (⇠) =
⇠ � ⇠i

⇠i+p � ⇠i
Ni,p�1 (⇠) +

⇠i+p+1 � ⇠

⇠i+p+1 � ⇠i+1
Ni+1,p�1 (⇠)

(A.5)

in which a NURBS curve of degree p has a non-decreasing knot-vector ⌅ = {⇠1,⇠2, . . . ,⇠k}. Then, by taking two uni-variate NURBS
curves, one with degree p, amount of basis functions n and knot-vector ⌅1 =

n
⇠1

1 ,⇠
2
1 , . . . ,⇠

n+p+1
1

o
in ⇠1 direction and another with

degree q, amount of basis function m and knot-vector ⌅2 =
n
⇠1

2 ,⇠
2
2 , . . . ,⇠

m+q+1
2

o
in ⇠2 direction, the bi-variate basis function is:

�↵(⇠1,⇠2) =
Ni(⇠1)Mj(⇠2)wi j

nP
k=1

mP
l=1

Nk(⇠1)Ml(⇠2)w↵�

(A.6)

in which ↵ refers to the NURBS surface local index associated to the indices i and j of each univariate NURBS function, and wi j

is the corresponding weight. Based on these basis functions, it is possible to interpolate both geometry, represented by x�k , and
mechanical fields as:
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(A.7)

in which d�k and p�k are displacement and traction parameters, � is a global index given by a connectivity function from � and ↵,
and n� = (p� + 1) ⇤ (q� + 1) is the number of NURBS basis functions describing a patch �. It should be noted that these coe�cients
do not have physical meaning, but are simply coe�cients (with the appropriate units) from which the geometry, displacement and
traction can be recovered using (A.7). It is worth mentioning that this aspect requires special procedures in applying non-constant
boundary conditions.

The substitution of eq. (A.7) in eq. (A.1) and eq. (A.3), both written for a collocation point on the boundary, leads to the
discretised form of these BIEs, as:
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(A.8)

in which �̂ is the NURBS surface that contains the collocation point and NS accounts for the amount of NURBS surfaces in the
discretisation. The numerical integration makes use of the mapping between each bivariate knot-span [⇠i

1, ⇠
i+1
1 ] ⇥ [⇠ j

2, ⇠
j+1
2 ] and the

Gauss-Legendre integration space {⇠̂1,⇠̂2 2 ⇤ |⇤ = [�1; 1] ⇥ [�1; 1]} as:
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(A.9)

in which J is the Jacobian of the mapping between the physical space and the integration space. By substituting the mappings into
eq. (A.8), it becomes:
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(A.10)

in which T⇤↵�`k , U⇤↵�`k , S⇤↵�k` j and D⇤↵�k` j are:
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in which ks is the integrated knot-span and n�ks is the number of knot-spans in patch �. Moreover, when the collocation point
does not lie on the element being integrated, a standard Gauss-Legendre quadrature is su�cient to evaluate accurately the integral.
On the other hand, the Singularity Subtraction Technique (SST) [42, 43] can facilitate the integration for the strongly singular
and hypersingular kernels. The expressions associated with the expansions required are available in [73]; the basis functions are
expanded in a Taylor Series in polar coordinates. The enrichment strategies used in this study will require the corresponding
derivatives highlighted in Appendix B to perform the SST of the arising kernels. In addition, it is noted that this procedure requires
C1 continuity of the basis functions at the collocation point for the correct use of the hypersingular traction integral equation.

Once eq. (A.10) establishes a relationship between the mechanical fields at a given collocation point, it results in a set of
only three equations. However, the discretised linear elasticity problem has 3nd and 3nt displacement and traction coe�cients,
respectively. Half of these variables comes from boundary conditions, while the another half is unknown. Therefore, choosing n
di↵erent collocation points positions enables the obtaining of all linearly independent equations needed for a well-posed system.
The Greville Abscissae (GA) [91] are commonly applied to define the parametric coordinate of each collocation point in the
IGABEM context [72, 73, 74, 75]. For each basis function, the corresponding pair (⇠̂1,⇠̂2)↵ = (⇠̂i

1,⇠̂
j
2) is:

⇠̂i
1 =

Pi+p
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s
1

p

⇠̂ j
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P j+q
s= j+1 ⇠

s
2

q

(A.12)

in which ⇠s
1 and ⇠s

2 refer to the knot-vector of each univariate NURBS curve that generates the NURBS surface. In order to satisfy
the continuity requirements of the TBIE, some collocation points given by the GA approach need to be re-positioned to ensure that
C1 continuity in displacement exists at these points. One of the pair coordinates (⇠̂1,⇠̂2)↵ is modified if it coincides with a limit of a
knot-span [⇠i

1, ⇠
i+1
1 ] and [⇠ j

2, ⇠
j+1
2 ], as:
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i
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1 has p or higher multiplicity
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1 � ⇠

i
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1 has p or higher multiplicity
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2 has q or higher multiplicity
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2 � ⇠ j

2) when ⇠ j+1
2 has q or higher multiplicity

(A.13)

For fracture mechanics problems, the boundary is redefined as � = �u[�t[�+[��, in which �+ and �� are the upper and lower
crack surfaces. For this body, the GA strategy within IGABEM positions the collocation points at the same geometrical positions
on the opposing, coincident crack faces. Solely using the DBIE at two such coincident points leads to identical equations and hence
an ill-posed system. This is classically overcome by the Dual BEM approach [31, 37], which generates a linear system of linearly
independent equations by the application of di↵erent boundary integral equations, the DBIE and the TBIE, on the collocation
points over each opposing crack face, as illustrated in fig. A.26. Therefore, the application of eq. (A.10) for a collocation point x̂,
x̂
+ and x̂

�, at the external boundary, upper crack face or lower crack face, respectively, results in:
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in which jump terms arise in both equations applied to crack faces due to the limit analysis.

Figure A.26: Application of each integral equation in the Dual BEM.

The IGABEM algebraic system for cracked bodies emerges by applying eq. (A.14) at each collocation point obtained from
eq. (A.12) in matrix notation, as:
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3
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(A.15)

in which H
eb and G

eb contain the contributions from collocation points at the external boundary, while H
c+ and G

c+ refer to terms
from the upper crack face, and H

c� and G
c� terms from the lower crack face.

As in classical BEM implementations, at this point we can apply a su�cient number of boundary conditions to reduce this
to a solvable system. This procedure follows in the same way in IGABEM, but with the modification that a specific treatment
is required for the imposition boundary conditions having non-constant value over the patch. A least-square fitting approach is
suitable to find the coe�cients in a NURBS expansion of the boundary condition. Alternatively, it is possible to directly introduce
their analytical expression in the BIEs for patches where they are known, instead of using the NURBS interpolation. Then, the
numerical integration takes place by evaluating the applied BC at the integration point, which removes any NURBS functions
approximation error. The application in section 4.3 utilises this alternative procedure in its boundary condition application. After
the determination of d and t coe�cients for the known fields, the final algebraic system assumes its form in the usual BEM fashion
as:

Ax = b (A.16)
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in which A contains influence terms associated to the unknowns at the boundary, x is the unknown values at the boundary and b

results from multiplying the prescribed values at the boundary and its correspondent influence terms. It is worth noting that b also
contains the results of the integration between kernels and BCs when their analytical expression is introduced in the BIE evaluation.

Appendix B. Regularisation of the singular enriched kernels

Boundary integral equations have singular kernels due to the nature of the fundamental solutions. The method adopted for their
regularisation is based on the Singularity Subtraction Technique [42, 43]. In the XIGABEM context, the new kernels introduced
by the expansion of the displacement field for each enrichment strategy herein proposed also inherit this singular behaviour. Thus,
SST must be also applied to them, and this is performed by an analogous procedure that consists of considering the augmented basis
function as the basis function in the SST. For the Displacement BIE, the strongly singular kernel becomes regular by the expansion
in a Taylor Series around the collocation point, which results in evaluating the augmented kernels directly at this position, without
requiring any derivatives. On the other hand, the Traction BIE has a hypersingular kernel of order O(r�3), which requires the
expansion of the basis functions in a Taylor Series to its second term as � = �0(x̂) + ⇢�1(x̂) + O(⇢2). It is important to mention
that the components of �1 are:

�1
↵ =

@�↵

@⇠̂1

����
⇠1(x̂),⇠2(x̂)

cos(✓) +
@�↵

@⇠̂2

����
⇠1(x̂),⇠2(x̂)

sin(✓) (B.1)

in which ✓ is the angular value associated to the polar coordinate transformation of the SST. In the context of new kernels, their
regularisation takes place by the proper expansion of the enriched basis function in Taylor Series and its further incorporation in
the SST expressions. Then, the SST of the arising kernels solely requires the substitution of the standard basis functions and their
first derivative by the new augmented basis functions utilised. Therefore, expanding eq. (B.1) for each enrichment strategy applied
in this study is su�cient for SST process.

Appendix B.1. Partially cut faces: Williams-based enrichment
For partially cut faces, the St

s cf
k` j kernels of eq. (7) require regularisation of their O(r�3) hypersingular nature. The corresponding

augmented basis functions are:

�t
↵M = �

�
↵Rkq 

�
qM (B.2)

and these require expansion in a Taylor series in polar coordinates for the SST, as:
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(B.3)

in which, for this enrichment, @Rkq
@⇠̂1
=

@Rkq
@⇠̂2
= 0 since the local coordinate system is fixed at the crack tip. The derivatives of the

NURBS basis function are well known from the standard IGABEM, while the derivatives of the enrichment function require further
development. Initially, a chain rule enables the derivative in the NURBS parametric space as:

@ �qM

@⇠̂1
=
@ �qM

@⇠1

@⇠1

@⇠̂1
+
@ �qM

@⇠2

@⇠2

@⇠̂1

@ �qM

@⇠̂2
=
@ �qM

@⇠1

@⇠1

@⇠̂2
+
@ �qM

@⇠2

@⇠2

@⇠̂2

(B.4)

but due to the relationship between the parametric space and the Gaussian space, @⇠1
@⇠̂2
= @⇠2

@⇠̂1
= 0. In addition, the Williams-based

enrichment function is written in polar coordinates centred at the crack tip. This requires a sequential chain rule for both rt and ✓t

coordinates to obtain the derivatives in the Gaussian space, as:
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(B.5)

for the evaluation of the derivative in respect to the Gaussian coordinate in the j direction and @⇠ j
@⇠̂ j

comes from eq. (A.9). Further-
more, the derivatives of the Williams enrichment function with respect to the polar coordinates are:
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Lastly, rt and ✓t are determined based on the position of the crack tip x
ct as:

rt = ||~rt
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(B.7)

in which ~N is the vector parallel to the crack and ~T is the tangent vector, both at the crack tip and obtained by the Frenet-Serret
frame. Then, their derivatives in respect to the parametric coordinates are:
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Appendix B.2. Enrichment at the crack front for the direct extraction of SIFs
In the enrichment at the crack front that directly provides the SIFs as unknowns of the XIGABEM system, the local coordinate

system is no longer constant over the enriched patch. Additionally, there is a uni-directional function over the crack front to
interpolate the additional parameters that are proxiers for the SIFs. In the context of regularising the kernels from eq. (10), the
corresponding augmented basis function is:
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�
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and, for the SST, its first derivative in the Gaussian coordinate direction j becomes:
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in which both �̃cf
s and Rkq are functions of the uni-direction parametric coordinate t at the crack front. This requires a chain rule in

terms of this coordinate as:
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The terms d�̃cf
s

dv and dRkq
dv are the first derivatives of the uni-directional NURBS function and the rotation matrix at the crack

front, respectively. In addition, the expression for @v
@⇠ j

derives from the orthogonality between the vector ~rt and the tangent vector
~T at the crack front (~rt

· ~T = 0). It is worth mentioning that, for this enrichment, eq. (B.7) is valid by using xct
k as xcf

k (v) and ✓t = ±⇡

depending on whether it is a upper or lower crack surface. Then, the first variation of ~rt
· ~T = 0 becomes:
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Assuming that v = v(⇠1,⇠2), it is possible to write its perturbation in an implicit form as:
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which may be substituted into eq. (B.12) to give:
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Equation (B.14) holds for any arbitrary �⇠i, i = 1,2. Then, its rearrangement results in:
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Appendix C. Frenet-Serret frame for rotation matrix and derivative

The Frenet-Serret frame relates the rotation matrix and its first derivative with the curve parameterisation, and also the curvature
(v) and torsion ⌧(v) properties. In this context, the definition of the rotation system Rkq from the tangent vector ~T , the normal
vector ~N and the bi-normal vector ~B is:

R =
h
~N ~B ~T

i
(C.1)

in which each vector comes from the position ~x in the NURBS curve as:
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in which ~x0 = d~x
dv and ~x00 = d2~x

dv2 . The first derivative assumes its form in terms of the rotation matrix R as:
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Finally, the curvature (v) and torsion ⌧(v) are:
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with ~x000 = d3~x
dv3 as the third derivative of the NURBS curve with respect to the parametric coordinate.
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