
Preserving non-negative porosity values in a bi-phase elasto-plastic
material under Terzaghi’s effective stress principle.

Giuliano Prettia, William M. Coombsa,∗, Charles E. Augardea, Marc Marchena Puigvertb,
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Abstract

Poromechanics is a well-established field of continuum mechanics which seeks to model

materials with multiple phases, usually a stiff solid phase and fluid phases of liquids or

gases. Applications are widespread particularly in geomechanics where Terzaghi’s effective

stress is widely used to solve engineering soil mechanics problems. This approach assumes

that the solid phase is incompressible, an assumption that leads to many advantages and

simplifications without major loss of fidelity to the real world. Under the assumption of

finite (as opposed to infinitesimal) strains, the poromechanics of two- or bi-phase mater-

ials gains complexity and while the compressible solid phase case has received attention

from researchers, the incompressible case has received less. For the finite strain - incom-

pressible solid phase case there is a fundamental issue with standard material models, in

that for some loadings solid skeleton mass conservation is violated and negative Eulerian

porosities are predicted. While, to the authors’ best knowledge, acknowledgement of this

essential problem has been disregarded in the literature, an elegant solution is presented

here, where the constraint on Eulerian porosity can be incorporated into the free energy

function for a material. The formulation is explained in detail, soundly grounded in the

laws of thermodynamics and validated on a number of illustrative examples.
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1. Introduction1

Poromechanics is the branch of mechanics describing the behaviour of porous media2

significantly influenced by the fluids which saturate the pore space. Various materials3

can be ascribed to this category, whose engineering applications range enormously: for4

instance environmental engineering, mining and petroleum engineering, geotechnical and5

seismic engineering, industrial engineering, bioengineering and biomechanics; for examples6

see [1–6].7

If considering a single fluid filling the pore volume (a bi-phase material), the theoretical8

foundations for describing its mechanical behaviour were laid down in a series of seminal9

works by Biot [7–9]. However, the first investigations of such materials are even earlier (see,10

in this regard, de Boer and Ehlers [10]). The extension of Biot’s theory to finite strains11

has since been pursued in numerous publications (see, for instance, MacMinn et al. [11]12

for a detailed comparison between small and finite strain poroelasticity). The interested13

reader can refer to the thorough bibliographies presented in Selvadurai and Surovov [12]14

and Zhang [13].15

As far as the hydro-mechanical behaviour of a bi-phase material is concerned, there16

are essentially three ways in which there can be volume change (Figure 1). Two of these17

relate to the individual constituents, i.e. the compressibility of the individual phases (solid18

and liquid), while the third concerns the boundary conditions imposed on the fluid phase,19

i.e., the so-called drained or undrained conditions. Hence, when dealing with numerical20

analyses, while boundary conditions are associated with the problem under consideration,21

the choice of the compliance of single constituents is informed by the physics of the prob-22

lem and the materials modelled. As emphasised by Nedjar’s work [14, 15], these choices,23

especially when made in conjunction with the assumption of finite strains, must also be24

combined with the physical condition that the Eulerian porosity n (defined as the ratio of25

the current volume occupied by the fluid part over the total current volume) is physically26

constrained in the range between 0 and 1. In particular, Nedjar [14, 15] analysed how in-27
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Figure 1: Comparison of drained volumetric compression in three dimensions with grains (top row) and
idealised bi-dimensional boxes (bottom row). From the initial configuration (a), the same drained volumetric
compression is applied to a compressible solid matrix sample (b) and to an incompressible solid matrix
sample (c).

corporating bounded Eulerian porosity values has consequences when both solid and fluid28

phases are compressible (the case illustrated in Figure 1b). While it is widely recognised29

(see Bennethum [16]) that considering the solid phase (henceforth also referred to as the30

solid matrix or solid skeleton) as incompressible considerably simplifies the relationship31

between the phases, the consequences of such an assumption (especially in light of the32

constrained values of Eulerian porosity) have not been discussed in the literature and this33

is the main topic of this paper. Here we show how the hypothesis of incompressibility of34

the solid phase1 (considered in Figure 1c for the case of drained volumetric compression)35

leads to a violation of the skeleton mass conservation and unphysical negative Eulerian36

1It must be highlighted that this work differs from the model proposed by Bernaud et al. [17], who
investigated the consequences of the plastic incompressibility for a porous material. The hypothesis being
considered here is the incompressibility of the entire solid phase, regardless of its decomposition into an
elastic and plastic part.
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porosities when standard finite strain models are used. A new model, developed from first37

principles of thermodynamics is developed and compared to previous work for the case of38

a compressible solid matrix. Within the finite strain theory, in the case of elastic strains,39

the model meets the principles of hyper-elasticity, and, in the elasto-plastic case, those of40

hyper-plasticity.41

The outline of the manuscript is as follows: Section 2 introduces the founding assump-42

tions of this work, comparing the thermodynamics of compressible and incompressible solid43

materials. Section 3 proposes a free energy function of the solid skeleton by modifying a44

Hencky material (originally proposed in [18]) as well as detailing its implementation for45

elastic and elasto-plastic materials. Section 4 shows by means of numerical examples how46

this new free energy function is required in constitutive models for routine geotechnical47

problems in elasticity and elasto-plasticity, highlighting the unsuitability of the original48

Hencky material for these applications. Conclusions and future work are outlined in Sec-49

tion 5. It is worth noticing that there are two ways to read this manuscript: one is to follow50

the outlined course of the paper throughout the sections; the other, particularly helpful51

for more implementation-oriented readers, consists of reading Section 3 and Appendix A,52

after having familiarised with the nomenclature at page 5.53

2. Thermodynamic framework of bi-phase materials54

Finite strain theory of poromechanics is widely established (see, for instance, Coussy [19],55

or Lewis and Schrefler [20]) using the nomenclature included here to characterise the dif-56

ferent quantities considered. The assumed hypotheses which constitute the bases of the57

whole work are summarised below:58

• the fully saturated porous material is treated as superimposition of two continua, the59

solid skeleton and the interstitial fluid, with non-occluded pore space. The presence60

of a double porosity network (see Coussy [19]) is excluded;61

• thermal effects are neglected;62
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Nomenclature

•̇, •̈ material (first and second) time de-
rivative

(•)T transpose of (•)
sym (•) := 1/2

(
(•) + (•)T

)
I(2) second-order identity tensor

: double contraction of tensors

⊗ tensor product of tensors or vectors

(•)f quantity related to the fluid phase

(•)sk quantity related to the solid skel-
eton

(•)0 quantity related to the initial con-
figuration

Xsk original position of the solid phase

x current position shared by the two
phases

F := ∂φsk(Xsk,t)

∂Xsk , solid deformation
gradient

J := detF , Jacobian

C := F TF , right Cauchy-Green
strain tensor

b := FF T , left Cauchy-Green strain
tensor

ϵ := 1
2 ln (b), logarithmic strain

tensor

ϵv := ϵ : I(2), volumetric part of the
logarithmic strain tensor

l := Ḟ F−1, velocity gradient

d := sym (l), stretching tensor

u := x−Xsk, solid displacement

α set of internal variables

τ Kirchhoff stress tensor

pf fluid pressure (Cauchy measure of
stress)

ρf intrinsic fluid density

n Eulerian porosity

ϕ := Jn, Lagrangian porosity

mf := ρfϕ, fluid mass content

qf := nρf
(
ẋf − ẋs

)
, fluid flux

Ψ free (Helmholtz) energy density per
unit reference configuration

f body acceleration vector

• the framework is cast within the finite strain theory, where x indicates the current63

position shared by the two constituents. The original position of the solid phase64

is indicated by Xsk. The fluid phase’s original position is not used throughout65

this work, and, as such, its notation is not introduced. Therefore, the deformation66

gradient and all the kinematical and statical quantities based on its definition are67

relative to the solid phase. For the sake of notation, the superscript is dropped from68
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these quantities. Elasto-plasticity is treated via the multiplicative decomposition of69

the elasto-plastic deformation gradient (firstly proposed by Kröner [21], Lee [22] and70

Mandel [23]). The effects of viscosity, either visco-elastic or visco-plastic, are not71

considered;72

• there is no mass exchange between solid and fluid phases, i.e., mass conservation for73

the solid and fluid phases can be written separately;74

• the considered continuum is isotropic;75

Given the above assumptions, the strong (local) form of the Clausius-Planck inequality276

for a porous saturated medium per unit current mixture volume is as follows77

1

J

(
τ : d+ ṁfµf − Ψ̇

)
︸ ︷︷ ︸

:=Dsk

−
(

1

ρf
∂pf

∂x
−
(
f − üf

))
· qf︸ ︷︷ ︸

:=Df

≥ 0. (1)

Focusing on Df , i.e., the fluid dissipation per unit reference volume, a constitutive relation-78

ship is necessary to describe how the fluid flux vector qf relates to the gradient of pressure79

and the relative inertia components. For small Reynolds numbers (see, for instance, Sun80

et al. [26]), this relationship is linear and it is expressed by the Darcy–Weisbach formula,81

i.e.,82

qf = −ρf k
(
∂ pf

∂x
− ρf

(
f − üf

))
, (2)

where the hypothesis of isotropic permeability is expressed by the simplification for the83

mobility tensor into kij = k δij . Replacing the unique inequality expressed by (1) with84

multiple inequalities (i.e., Dsk ≥ 0 and Df ≥ 0) is a standard procedure (see, for instance,85

2Bennett et al. [24] have shown the importance of an Eshelby-like stress tensor in the context of elasto-
plasticity: this is the only stress tensor which satisfies the second law of thermodynamics and maintains
the intermediate configuration as a stress-free state. However, since the Kirchhoff stress tensor does not
violate the second law of thermodynamics, as stated in (1), (while it does not lead to intermediate stress-free
configuration), this work continues (see, for instance, de Souza Neto et al. [25]) to traditionally consider
the Kirchhoff stress tensor as an adequate measure to include plasticity.
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Coussy [19]) justified by the different physical natures underlying the two diverse dissipation86

mechanisms. Owing to this observation and to Eq. (2), the dissipation denoted as Df is87

always greater than or equal to zero.88

According to the hypothesis of the mixture theory (see, in this regard, Bowen [27]), the89

total free energy functions Ψ can be expressed as a sum of their solid skeleton and their90

fluid constituent, i.e.,91

Ψ = Ψsk +mf ψf , (3)

with ψf being the fluid-specific (per unit mass) free energy. It is also useful to express the92

fluid-specific free energy via other state variables, such as the fluid-specific enthalpy µf ,93

the pressure pf ,and the current fluid density ρf , giving94

ψf = µf − pf

ρf
. (4)

Using the above equations, J Dsk can be re-written as95

J Dsk = τ : d+ pf ϕ̇− Ψ̇sk − ρf ϕ

(
µ̇f − ṗf

ρf

)
≥ 0. (5)

The last term of the above inequality does not contribute to the dissipation if some additive96

hypotheses on the nature of the fluid are introduced3. In particular, by neglecting thermal97

effects and viscosity, the following two options can be considered: the fluid can be either98

barotropic (see, for instance, Armero [28]), i.e.,99

∂µf

∂pf
=

1

ρf (pf )
, (6)

3Introducing the hypothesis of barotropic or incompressible fluid is, by all means, a constitutive rela-
tionship. From a rigorous perspective, this step should be carried out via the Coleman-Noll procedure,
described in Sections 2.1 and 2.2. However, as the focus of this work is on the part relative to the free
energy function of the solid skeleton Ψsk, this hypothesis is implemented at this stage to simplify the cal-
culations and highlight only the parts of interest for the current work. The same idea can be applied to the
introduction of the Darcy–Weisbach (2) formula, as also this is a constitutive relationship.
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or incompressible (see, for instance, Gajo [29]), i.e.,100

∂µf

∂pf
=

1

ρf0
. (7)

In the numerical examples presented in Section 4, the fluid part is considered as barotropic.101

However, regardless of the choice between barotropic or incompressible fluid constituent102

(or others available in the literature), the hypothesis on the fluid constituent relationship103

simplifies (5) to104

J Dsk = τ : d+ pf ϕ̇− Ψ̇sk ≥ 0. (8)

So far, no assumption on the volumetric compressibility of the solid skeleton part has105

been introduced, which, as predictable, affects the way Ψsk describes the solid matrix106

behaviour. In particular, Section 2.1 considers the broader hypothesis of solid skeleton107

compliance, while incompressibility is assumed Section 2.2, laying the thermodynamical108

foundations for the novel constitutive relationship.109

2.1. Thermodynamics for compressible solid matrix110

Focusing only on the solid skeleton part of dissipation, it is straightforward to think the111

free energy of the solid skeleton as a function of the (external) variables explicitly appearing112

as rate quantities in (8). Furthermore, the dependency of this free energy function on a113

set of other internal variables (denoted as α) is introduced to take further dissipative114

mechanisms into account. Owing to the above considerations, Ψsk can be expressed as115

Ψsk = Ψ̂sk (F , ϕ,α) . (9)

As objectivity of the free energy function is required (see, for instance, Simo [30]), the above116

dependency of the free energy function on the deformation gradient can be expressed via117
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the right Cauchy-Green strain tensor C, i.e.,118

Ψsk = Ψ̂sk (C(F ), ϕ,α) , (10)

where the reader is invited to overlook the slight abuse of notation Ψ̂sk, which is repeated119

throughout this work several times. Furthermore, considering the multiplicative decom-120

position of the deformation gradient into an elastic and a plastic part (F = F e F p), the121

free energy function usually becomes dependent only on the elastic part of the deformation122

gradient F e via the elastic right Cauchy-Green strain Ce (F e).123

However, this approach is not sufficient to define which parts of the free energy function124

Ψsk can be recovered. As a matter of fact, this function also depends on other variables,125

whose possibility of being divided into an elastic and a plastic part must be discussed. In126

the literature, several options have been explored. Armero [28] and Coussy [19] additively127

split the Lagrangian fluid mass content mf into an elastic and plastic part. A variation of128

this approach is presented by Anand [31], who introduces an additive decomposition of a129

normalised measure of the variation of the fluid mass, and in Gajo’s work [32], where the130

variation of the fluid content between the current and the initial configuration is additively131

decomposed. Karrech [4] and Nedjar [14] additively split the Lagrangian porosity ϕ into an132

elastic and a plastic part. In another work, Nedjar [15] considers the Eulerian porosity n133

additively decoupled. Physically, the plastic change expressed by these quantities appear-134

ing in the literature (mostly related to the porosity) accounts for the irreversible volume135

variation offered by the particles sliding). In the case of a compressible solid matrix, this136

mechanism and the irreversible change in volume of the particles are responsible for the137

total irreversible volume variation, this total value being quantified by Jp.138

Despite the different nuances in the approaches proposed by the literature, none of139

them consider the physical limits of the Eulerian porosity in the range [0, 1], except for140

Nedjar [14, 15]. Therefore, following Nedjar’s model [14], this section considers the additive141
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decomposition of Lagrangian porosity into an elastic and a plastic part, i.e.,142

ϕ = ϕe + ϕp. (11)

Hence, in compliance with the hypotheses introduced so far (i.e., a compressible solid143

skeleton, the multiplicative decomposition of the deformation gradient, the additive de-144

composition of the Lagrangian porosity, and the physical limits of the Eulerian porosity)145

the free energy function becomes146

Ψsk = Ψ̂sk (Ce(F e), ϕe,α) . (12)

In the case of an isotropic stress-strain relationship, as in this study work, the dependence147

of the deformation gradient can be expressed via the left Cauchy-Green strain tensor, i.e.,148

Ψsk = Ψ̂sk (be(F e), ϕe,α) . (13)

Owing to the definition (13) of the free energy function, inequality (8) can be rewritten149

as150

J Dsk =

(
τ − 2

∂Ψ̂sk

∂be
be

)
: de +

(
pf − ∂Ψ̂sk

∂ϕe

)
ϕ̇e + τ : dp + pf ϕ̇p − ∂Ψ̂sk

∂α
∗ α̇ ≥ 0, (14)

where ∗ indicates the appropriate product operator between the set of conjugate thermo-151

dynamical variables ∂Ψ̂sk

∂α and α̇. Inequality (14) makes also use of the standard kinematic152

relationship ḃe = lebe + be (le)T , with le := Ḟ e (F e)−1.153

Following the standard arguments of the Coleman-Noll procedure (see Coleman and154

Noll [33], and Coleman and Gurtin [34]), the above inequality must hold for any elastic155
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strain and any elastic porosities, i.e., ∀de ∧ ∀ϕ̇e, resulting in156 

τ = 2
∂Ψ̂sk

∂be
be; (15a)

pf =
∂Ψ̂sk

∂ϕe
; (15b)

J Dsk = τ : dp + pf ϕ̇p − ∂Ψ̂sk

∂α
∗ α̇ ≥ 0. (15c)

Even though correct, the above system does not give any insight on the decomposition of157

the total stress tensor into two parts, one of which is the so-called effective stress. To show158

how the total stress tensor can be decomposed and by following again Nedjar’s [14] work,159

the skeleton free energy function can be written via the Legendre transformation in terms160

of its dual free energy potential161

Ψ̂sk (be,α, ϕe) = Xsk
(
be,α, pf

)
+ pf ϕe = X

′ sk (be,α) +Xpor
(
Je, pf

)
+ pf ϕe, (16)

where the equation on the right-hand side considers a division of the dual free energy162

function into a fully drained part (or effective) X
′ sk and a part relative to the pore space,163

i.e., Xpor, responsible for maintaining the Eulerian porosity in its physical range. Owing164

to Eq. (16), Eq. (14) can be re-written as165

J Dsk =

(
τ − 2

∂X
′ sk

∂be
be − Je∂X

por

∂Je
I(2)

)
: de −

(
ϕe − ∂Xpor

∂pf

)
ṗf+

τ : dp + pf ϕ̇p − ∂X
′ sk

∂α
∗ α̇ ≥ 0. (17)

Applying again the Coleman-Noll procedure, the above inequality must hold for any elastic166
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strain and any elastic porosities, i.e., ∀de ∧ ∀ϕ̇e, resulting in167 

τ = 2
∂X

′ sk

∂be
be + Je∂X

por

∂Je
I(2); (18a)

ϕe = −∂Ψ̂
sk

∂pf
; (18b)

J Dsk = τ : dp + pf ϕ̇p − ∂X
′ sk

∂α
∗ α̇ ≥ 0. (18c)

From the above system, it can be seen how the total stress can be additively decomposed168

into an effective and a porous part, i.e., τ = τ ′ + τ por. In particular, the latter term169

τ por is more sophisticated than a term proportional to the fluid pressure (see Nedjar [14]170

for details). Hence, even though the work proposed by Nedjar [14, 15] is by all means171

consistent both in terms of thermodynamics and bounded values of Eulerian porosity, it172

can be understood how a particularly elaborate expression of τ por increases implementation173

difficulties. This increase in the level of complexity is notably evident when that expression174

of τ por is compared to the well-established and straightforward decomposition of the total175

stress tensor proposed by Biot [7] for a compressible solid skeleton, i.e., τ = τ ′ − b pfI(2)
176

(with b being the Biot coefficient).177

Furthermore, Eq. (18c) implies that a law governing the plastic evolution of the poros-178

ity is required, i.e., the classical flow rule governing the plastic strains and the internal179

set of variables are not sufficient. Nedjar [15] defines this evolution law as yield concept,180

respectful of Karush-Kuhn-Tucker (KKT) conditions analogous to the classical yield func-181

tion ones. Since yield functions governing the strain plasticity have been studied for a182

long time and the publications to describe different materials are practically countless,183

it can be understood how yield concepts would require as much work to reach the same184

level of sophistication as yield functions. Moreover, the definition of the yield concept and185

its multiplier leads to another non-linear function, whose solution comes with additional186

computational costs.187
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2.2. Thermodynamics for incompressible solid matrix188

Introducing the hypothesis of incompressibility of the solid matrix has been justified189

in multiple ways in the literature. The idea has both physical reasons, i.e., the volumetric190

deformations in the solid matrix are of secondary importance (this is especially true in191

the case of non-occluded porosity, see Coussy [19], which is one of the hypotheses intro-192

duced at the beginning of this section), and mathematical ramifications, as it simplifies the193

calculations (see, for instance, Bennethum [16]).194

Keeping the solid volume constant introduces some kinematic relationships, which are195

widely recognised in the literature (see [35–38]). Mathematically, these relationships can196

be expressed in several mutually equivalent ways, i.e., if the infinitesimal solid volumes are197

considered198

dΩsk
0 = dΩsk, (19)

or, expressing the solid volume fraction via the Eulerian porosity, the above equation199

becomes200

(1− n0) dΩ0 = (1− n) dΩ, (20)

where dΩ and dΩ0 indicates the infinitesimal current and initial volumes of the mixture.201

Furthermore, since this current volume of the porous material dΩ is related to its original202

counterpart by the Jacobian, the above equation becomes203

1− n0︸︷︷︸
:=ϕ0

= J − J n︸︷︷︸
:=ϕ

. (21)

Using of the equation relating the volumetric part of the logarithmic strain and the Jac-204

obian, the above equation can also be rearranged as follows205

1 + ϕ− ϕ0 = J = exp ϵv. (22)
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If the Eulerian porosity is expressed in terms of the Jacobian, then it also follows that206

n = 1− 1

J
(1− n0) . (23)

In the literature (see, for instance, Coussy [19] or Gajo [32]), the above equation is often207

computed via solid mass conservation, having imposed constant density. Thus, at constant208

density (assumed by solid matrix incompressibility), disregarding Eq. (23) implies the209

violation of the solid mass conservation.210

From Eq. (22) and (23), it can be appreciated how considering the solid matrix as211

incompressible creates a relationship between the measures of the porosity and the Jacobian212

(or volumetric part of the logarithmic strain). Being the Eulerian porosity physically213

bounded in the range (0, 1), these constraints affect the admissible values of the Jacobian.214

These considerations have several consequences, the first one being that the porosity and215

the deformation gradient are not two independent variables as in the case of a compressible216

solid matrix. Therefore, Eq. (9) becomes217

Ψsk = Ψ̂sk
inc (F ,α) = Ψ̂sk

inc (C,α) , (24)

where the equation on the right-hand side is introduced for a matter of objectivity, as218

previously for Eq. (10).219

Another consequence of the above-introduced hypothesis regards the decomposition of220

the quantity of interest into an elastic and a plastic part. In particular, if the multiplicative221

decomposition of the deformation gradient is considered again, the decomposition of the222

Jacobian is given by J = Je Jp. From the rate of Eq. (22), it can be seen that223

J̇ = ϕ̇ = J ϵ̇v = J I(2) : d;

(Je Jp)· = (ϕ)· = Je Jp (ϵ̇ev + ϵ̇pv) = Je JpI(2) : (de + dp) , (25)
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with (•)· being the rate of the whole quantity (•) between the brackets. From Eq. (25),224

it can be understood that the Lagrangian porosity rate must match the Jacobian rate,225

implying that a change in the whole volume must correspond to a change in the volume226

of the fluid constituent, as expected. However, Eqs. (22) and (25) show that there is no227

one-to-one correspondence between the elastic or plastic Jacobian and the elastic or plastic228

Lagrangian porosities, either in terms of finite or rate forms, i.e.,229

ϕe ̸= Je, ϕp ̸= Jp; (26)

ϕ̇e ̸= J̇e, ϕ̇p ̸= J̇p. (27)

The above equations comply with the physical explanation: if the compressibility of the230

solid phase is not considered, only the particles sliding contribute to the total volume231

variation, tracked by J , and decomposed into an elastic and plastic part. Therefore, in this232

model accounting for the incompressibility of the solid phase, the Lagrangian porosity is a233

proxy only of the free volume filled by the water.234

As discussed in Section 2.1, let the considered solid skeleton be isotropic. To consider235

the kinematic relationship (22) (or, equally, (23)) between the Jacobian and the porosity,236

and, simultaneously, accounting for the impossibility of decomposing the latter (i.e., the237

porosity) into an elastic and plastic part, the free energy function must be expressed as238

Ψsk = Ψ̂sk
inc (b

e, bp,α) . (28)

The above equation underlies how the dependency from the whole strain tensor is required239

to account for a material being dependent from the porosity.240

For the case of incompressible solid matrix, the solid skeleton part of the Clausius-241
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Duhem inequality (8) becomes242

J Dsk =

(
τ + JpfI(2) − 2

∂Ψ̂sk
inc

∂be
be

)
: de+

(
τ + JpfI(2)

)
: dp−2

∂Ψ̂sk
inc

∂bp
ḃp− ∂Ψ̂sk

inc

∂α
∗α̇ ≥ 0,

(29)

where Eq. (25) is used to express the rate of the Lagrangian porosity as rate of the Jacobian.243

Before applying the Coleman-Noll procedure, which does not account for any restric-244

tion in the adopted strain measure, the above-mentioned consequences of the kinematic245

relationship (23) must be considered. Since the Eulerian porosity is physically bounded246

by the inequalities 0 < n < 1, these can also be expressed in terms of the volumetric247

logarithmic strain4 via Eq. (22), i.e.,248


ϵv > ln (1− n0) ; (30a)

1

exp (ϵv)
(1− n0) > 0. (30b)

While the latter of the above inequalities is always satisfied (the initial Eulerian porosity249

satisfies 0 < n0 < 1), the former is not. Inequality (30a) imposes a constraint on the negat-250

ive (i.e., compression) values of the volumetric logarithmic strain. If expressed in terms of251

the Jacobian, (30a) gives J > (1−n0), which is more restrictive that the usually considered252

J > 0 for the standard mechanics of solids. Violation of (30a) leads to negative values of253

the Eulerian porosity and, as motivated above, to violating the solid mass conservation.254

Given the restriction in (30a), the Coleman-Noll procedure can be applied to (29),255

4Inequalities (30) are expressed in terms of logarithmic strain since Section 3 will discuss their implic-
ations for a Hencky material, i.e., a material describing a stress-strain relationship between the Kirchhoff
stress and the logarithmic strain. Nothing prevents expressing the inequalities inherited from the physical
constraints on the Eulerian porosity as a function of other strain measures.
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resulting in256 
τ ′ = 2

∂Ψ̂sk
inc

∂be
be; (31a)

J Dsk = τ ′ : dp − 2
∂Ψ̂sk

inc

∂bp
ḃp − ∂Ψ̂sk

inc

∂α
∗ α̇ ≥ 0; (31b)

ϵv > ln (1− n0) , (31c)

where the introduction of the Terzaghi effective stress defined as257

τ ′ := τ + JpfI(2), (32)

naturally derives from the Clausius-Duhem inequality (29) and the hypothesis of solid mat-258

rix incompressibility. The decomposition of the total stress tensor into an effective and a259

fluid pressure part has been widely used in the literature (see, for instance, [39] for the260

introduction of this idea in the small strain theory and [40] for its adaptation to the finite261

strain case), both for its simplicity and its compliance with the laws of thermodynamics.262

Eqs. (31a) and (31b) fit into the framework of hyper-plastic formulations (see the work of263

Collins and co-workers [41–49]), provided that a dissipation function J Dsk ≥ 0 is intro-264

duced. The compliance of this inequality with the principles of hyper-plasticity is briefly265

summarised in Appendix B.1.266

3. A new incompressibility-compliant free energy function267

While (31a) and (31b) constitute the classical equations for (hyper-)elasto-plasticity, an268

implementation that has incompressibility of the solid matrix as its founding assumption269

must include (31c) too. In the literature, multiple ways exist to include constraints, such as270

the penalty method or the Lagrange multiplier, to name the most popular ones. However,271

these methods add terms to the primary equations (and primary unknowns too in the272

case of the Lagrange multiplier), making them less attractive, especially if these primary273

equations require a linearisation to be solved implicitly. As suggested in Section 2.1, another274
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potential way forward to include (31c) is via a modification of the free energy function.275

Such an amendment can be easily applied to materials exhibiting a free energy function276

energy given by the sum of a volumetric and a deviatoric part (these materials have firstly277

been proposed by Flory [50]). In particular, the inclusion of constraint (31c) can be ensured278

if the volumetric part of the free energy function contains these two features:279

• it has a vertical asymptote for values of the volumetric strain approaching the con-280

straint, i.e., limϵv→ln(1−n0)
+ Ψ̂sk

inc (ϵv) = +∞;281

• it is not defined for the volumetric deformations excluded by constraint (31c), be-282

ing these inadmissible by the incompressibility assumption, i.e., Ψ̂sk
inc (ϵv) : ϵv ∈283

(ln(1− n0),+∞) → R.284

This work considers a free energy function of a Hencky material and accommodates it to285

comply with the above-listed requirements, resulting in the following formula286

Ψ̂sk
inc (ϵ,α) =

K

2n
(ϵev)

2 +
3

2
G
(
ϵeq
)2

+ Ψ̃sk
inc (α (n)) , (33)

with K > 0 and G > 0. In the above equation, K is the (constant) bulk parameter (in287

contrast to the (tangent) bulk modulus, which will be discussed in the following section),288

G is the shear modulus and ϵq :=
√

2
3 e : e is the von-Mises equivalent strain, with e :=289

ϵ− ϵv
3 I

(2) being the deviatoric part of the strain tensor. Due to the modification introduced,290

the material described by Eq. (33) will henceforth be called improved Hencky material. It291

must be recognised that a similar adaption (i.e., scaling the bulk modulus with the inverse292

of the Eulerian porosity) modulus can be applied to other kinds of materials, such as293

the compressible versions of neo-Hookean or Mooney-Rivlin material (see, for instance, de294

Souza Neto et al. [25]). However, these modifications are beyond the scope of this work,295

which focuses on the improved Hencky material.296

A few considerations on the free energy function introduced by Eq. (33) can be made:297
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• A similar constitutive model considering the dependence of the effective stress on298

the porosity has been proposed by Nordstrom et al. [51] and Hewitt et al. [52] in the299

context of the small strain setting for the mono-dimensional case. The above formula-300

tion represents an extension to the three-dimensional finite strain case accounting for301

(hyper) elasto-plasticity. The above models are also supported by laboratory tests,302

thus enabling the proposed formulation to be thoroughly supported by laboratory303

tests and theoretical self-consistency;304

• the deviatoric part of the energy is unmodified compared to the linear Hencky mater-305

ial. Keeping the shear modulus constant is not a unique choice, since the literature306

has proposed materials with a constant Poisson’s ratio and a variable bulk modulus.307

Nonetheless, as pointed out by Zytinsky et al. [53] a material with these features is308

non-conservative, thus non hyper-elastic. Moreover, such a material would fail to309

reproduce an asymptotically incompressible material, as the Poisson’s ratio should310

asymptotically tend to 0.5 in this case (see, in this regards, Figure 2d);311

• as Eq. (33) is a modification of a Hencky material, it suffers from drawbacks similar to312

its original formulation. In particular, it is well-known that the free energy function313

of a Hencky material is not poly-convex but only convex, as it can be appreciated314

from Figures 2a and 3a), and as pointed out, for instance, by Simo [30, 54]. This315

leads to issues in the case of large elastic strains (see, for instance, [55] or [56] for316

discussions on this matter). However, as typical for geo-materials, a prominent role317

is played by plastic strains, relegating elastic range to a secondary status;318

• it can be noticed that Eq. (33) cannot be written in the form of a decoupled or319

uncoupled material, defined as Ψsk = Ψsk
1 (be) + Ψsk

2 (bp). These materials were320

first described by Lubliner [57]. In particular, Eq. (33) defines a material exhibit-321

ing modulus coupling, which, to be in compliance with the laws of thermodynamics,322

requires a non-associated flow rule (this is detailed in Appendix B.1, but, for a com-323
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plete treatment of this subject, the reader is referred to Collins and Houlsby [41]324

and Collins [58]). In the case of elasto-plastic behaviour, this coupling causes a de-325

pendency of the effective stress response on the plastic strain, which, as previously326

mentioned in Section 2.2, stems from the impossibility of decomposing the porosity327

into an elastic and plastic part. This coupling result, stemming from theoretical328

considerations, is further supported by laboratory tests with hydrogel particles (see329

Hewitt et al. [52]). These experiments found that a hysteresis loop is created for330

increasing and decreasing fluid pressure. For these different fluid pressure values,331

the steady state is fully achieved, and strain values vary accordingly, thus fostering332

the notion that effective stress must consider a dependency on plastic phenomena to333

reproduce the hysteretic behaviour;334

• this specific feature describing the dependency of the elastic moduli on a bounded335

parameter (i.e., the Eulerian porosity in the case of Eq. (33)) bears some similarities336

with damage mechanics (see Houlsby and Puzrin [59] for a thermodynamical back-337

ground and Murakami [60] for a detailed explanation). In the context of damage338

mechanics, the damage parameter (or damage variable), which varies between 0 and339

1, makes the stress response vary between the undamaged state of the considered340

sample and the entirely damage status;341

• conceptually speaking, the model described by Eq. (33) provides a stiffening of the342

volumetric behaviour in the case of compression, i.e., when the ejection of water from343

the sample makes the material progressively similar only to its solid constituent, this344

being, by assumption, is incompressible. This idea of increasing volumetric stiffness345

is in compliance with other non-linear models available in the literature for the finite346

strain theory in geo-mechanics (see, for instance, the models in [61]). However,347

when the incompressibility of the solid phase is introduced, a stiffening behaviour of348

the bulk modulus during a volumetric compression phase is not sufficient to respect349

constraint (31c).350
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3.1. Stress computation for elastic strain351

In this section, the stress state is computed only taking elastic deformations into ac-352

count, i.e., F = F e. Calculations are detailed in Appendix A.1.353

If the free energy function introduced by Eq. (33) is considered, Eq. (31a) becomes354

τ ′ =
∂Ψ̂sk

inc

∂ϵe
=
K ϵev
n

(
1 +

ϵev
2n

(n− 1)

)
︸ ︷︷ ︸

:=p′

I(2) + 2G ēe︸ ︷︷ ︸
:=s

, (34)

where Eqs. (A.1)- (A.4) are used. In compliance with Eq. (32), effective deviatoric parts355

match their total counterparts. As such, the superscript (•)′ is dropped for these quantities.356

The plots of the volumetric part of the free energy function as well as its first derivative357

with respect to ϵev (i.e., the pressure part of effective Kirchhoff stress p′) are illustrated in358

Figures 2a and 2b. Both these figures and Eq. (34) clearly show that, in terms of p′, the359

improved Hencky material becomes progressively similar to the original Hencky as n→ 1−.360

This serves exactly the purpose of this work, namely modifying the free energy function361

in correspondence of inadmissible strain values, while maintaining the behaviour of the362

original material far from this limit.363

As the model is non-linear in terms of strain, it is necessary to compute the incremental364

stress-strain relationship to study the tangent moduli. Hence, if the rate of Eq. (34) is365

considered, it follows that366

dτ ′ =
∂2Ψ̂sk

inc

∂ϵe ⊗ ∂ϵe︸ ︷︷ ︸
:=De

: dϵe =
(
Ke, tan I(2) ⊗ I(2) + 2G I(4), dev

)
: dϵe, (35)

with367

Ke, tan :=
K

2n3

(
n2
(
(ϵev)

2 + 4 ϵev + 2
)
− ϵev n (3 ϵ

e
v + 4) + 2 (ϵev)

2
)
. (36)

Full expression of I(4), dev appearing in Eq. (35) is given by Eq. (A.7). Limits for the368
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extremes values of the Eulerian porosity give (see also Figure 2c)369

lim
n→0+

Ke, tan = +∞; (37)

lim
n→1−

Ke, tan = K, (38)

which reaffirm the idea discussed above about the proposed modification.370

Known the tangent elastic bulk modulus and the constant shear modulus, the tangent371

elastic Poisson’s ratio can be computed as usual for isotropic materials, i.e.,372

νe, tan :=
3Ke, tan − 2G

2 (3Ke, tan +G)
, (39)

where, for the extremes values of the Eulerian porosity, it can be seen that (see also373

Figure 2d)374

lim
n→0+

νe, tan =
1

2
; (40)

lim
n→1−

νe, tan =
3K − 2G

2 (3K +G)
. (41)

3.2. Stress computation for elasto-plastic strain375

This section recovers the full hypothesis introduced in Section 2, where elastic and376

plastic strains are considered, i.e., F = F e F p. Some further details on the implementation377

of an elasto-plastic subroutine are given in Appendix A.2.378

As previously mentioned in Section 2.2, the introduction of a dissipation function J Dsk,379

by means of which a yield function Φτ ′ and a flow rule g can be described, makes the for-380

mulation consistent with the basic principles of hyperplasticity. Therefore, in this work, it381

is assumed that Φτ ′ and g are given once J Dsk is introduced. An example of this calcu-382

latiation is provided in Appendix B.2. Furthermore, as including a further hardening rule383

would not provide any further insight on the implementation of the current free energy func-384
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(a) Volumetric part of the free energy function.

ϵev

p′

(b) Effective Kirchhoff pressure.

εev

Ke,tan

(c) Tangent elastic bulk modulus.

ν = 0.5

ν = 3K/G−2
2(3K/G+1)

ν = −1

εev

νe, tan

(d) Tangent Elastic Poisson’ ratio.

Figure 2: Bi-dimensional plots for the elastic case. Grey-shaded areas indicate where (31c) is not respected.

tion, this is not considered here, i.e., Ψ̃sk
inc (α) = 0. Given these hypotheses, the standard385

equations for implementing a stress-strain subroutine are given by the (time-discretised)386

decomposition in the logarithmic strain space resembling the small-strain additive decom-387

position, and by the satisfaction of the yield function for the stress tensor, i.e.,388

ϵe − ϵe, tr +∆γ
∂g

∂τ ′ = 0; (42a)

Φτ ′
(
τ ′) = 0, (42b)
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where ∆γ ≥ 0 is the increment in the plastic multiplier, which, along with Φτ ′ (τ ′) ≤ 0389

and the compatibility condition Φτ ′ ∆γ = 0, gives the classical KKT conditions. Since the390

above system of equations cannot be solved analytically, its linearisation with respect to391

the unknown quantities (with the elastic trial strain an unknown in this case) is performed,392

this being393 
dϵe − dϵe, tr + d∆γ

∂g

∂τ ′ +∆γ
∂2g

∂τ ′ ⊗ ∂τ ′ : dτ
′ = 0; (43a)

∂Φτ ′

∂τ ′ : dτ ′ = 0. (43b)

As can be seen from the above equations, the computation of the stress increment dτ ′
394

becomes necessary. According to Eq. (33) and considering the elastic and plastic strains395

describing the whole sets of unknowns, the stress increment can be written as follows396

dτ ′ =
∂2Ψ̂sk

inc

∂ϵe ⊗ ∂ϵe︸ ︷︷ ︸
=De

: dϵe +
∂2Ψ̂sk

inc

∂ϵpv ∂ϵe
⊗ I(2)︸ ︷︷ ︸

=Dp

:

d∆γ ∂g

∂τ ′ +∆γ
∂2g

∂τ ′ ⊗ ∂τ ′ : dτ
′︸ ︷︷ ︸

=dϵe, tr−dϵe

 , (44)

where397

Dp :=
∂2Ψ̂sk

inc

∂ϵpv ∂ϵe
⊗ I(2) =

K

2

(
ϵev
n

)2

(1− n)

(
1 +

2

n
(1− n)

)
︸ ︷︷ ︸

:=Kp, tan

I(2) ⊗ I(2). (45)

The second term in Eq. (44) shows the above-mentioned coupling between the elastic and398

plastic parts of the free energy function taking place via the Eulerian porosity. As Eq. (45)399

and Figure 3 highlight, this coupling phenomenon is purely volumetric.400

From Eq. (44), the effective stress can be isolated, i.e.,401

(
I4, sym −∆γDp :

∂2g

∂τ ′ ⊗ ∂τ ′

)
: dτ ′ = De : dϵe + d∆γDp :

∂g

∂τ ′ , (46)
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(a) Volumetric part of the free energy
function.
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ϵev
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(b) Effective Kirchhoff pressure.
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Ke,tan

0

ϵev

ϵpv

0

(c) Tangent elastic bulk modulus.

Figure 3: Three-dimensional plots of the volumetric parts described by Eq. (33), and its first and second
derivatives with respect to ϵev.

where it is convenient to define the above-appearing fourth-order tensor as402

Ϙ :=

(
I4, sym −∆γDp :

∂2g

∂τ ′ ⊗ ∂τ ′

)−1

. (47)

Hence, Eq. (46) becomes403

dτ ′ = Ϙ : De : dϵe + d∆γ Ϙ : Dp :
∂g

∂τ ′ . (48)

The above equation can be directly substituted into Eqs. (42), giving404 
dϵe − dϵe, tr + d∆γ

∂g

∂τ ′ +∆γ
∂2g

∂τ ′ ⊗ ∂τ ′ :

(
Ϙ : De : dϵe + d∆γ Ϙ : Dp :

∂g

∂τ ′

)
= 0; (49a)

∂Φτ ′

∂τ ′ :

(
Ϙ : De : dϵe + d∆γ Ϙ : Dp :

∂g

∂τ ′

)
= 0. (49b)

Iterative solutions to (49) allow computation of the elastic strains and the plastic multiplier.405

These, in turn, permit the computation of the effective stress via Eq. (48).406

The original uncoupled Hencky material can be recovered by setting Dp as zero in407

Eq. (47), which also gives Ϙ = I4, sym.408

25



4. Numerical examples409

The proposed stress-strain relationship has been implemented into a Material Point410

Method (MPM) framework (outlined by Charlton et al. [62] and based AMPLE [63] code)411

and extended to porous materials, which is briefly introduced in Section 4.1. Section 4.2412

takes a column under self-weight into account, where the new model is benchmarked against413

a classical linear Hencky material in the elastic case. The analyses described in Section 4.3414

consider an elasto-plastic behaviour (both for the current model and the linear Hencky415

material) for a deformable footing problem in 3D, emphasising that the new model is not416

only necessary but also applicable to routinary geotechnical simulations.417

4.1. Implementation into an implicit Material Point Method formulation418

The stress-strain relationship defined by Eq. (34) for the elastic case, and by the iter-419

ative linear system (A.9) for the elasto-plastic case, has been implemented into an implicit420

Material Point Method (MPM) u− pf formulation, with one set of material points 5. The421

choice of implementing the new constitutive model into an MPM framework, avoids mesh422

distortions, which can occur with large deformations. However, this choice does not confine423

the new model to large deformations as inequality (31c) can also be violated for moderate424

deformations. The used formulation has been cast in a similar way to that proposed by425

Zhao and Choo [65], with the following differences:426

• water has been considered as a barotropic fluid. Hence, the fluid phase has been427

modelled as a slightly-compressible material according to the law ρ̇f = ρf

Kf ṗ
f (in428

compliance with Eq. (6)), with Kf being the bulk modulus of the fluid part;429

• viscosity effects are not considered for the current model, in contrast to Zhao and430

Choo [65];431

5The so-called u−p indicates the primary variables used in the coupled formulation, i.e., the solid phase
displacement u and the fluid pressure pf . The reader is referred to [64] for a detailed discussion on porous
material formulations and number of Material Point sets in the MPM.
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Table 1: Summary of the parameters considered
in the analyses of the elastic column under self-
weight.

Solid phase Fluid phase

G 3 · 105 Pa Kf 2.2 · 109 Pa

ρsk 2650 kg m−3 ρf0 1000 kg m−3

Porous material

κ0 1 · 10−5 m s−1

n0 0.3

H

z

b

Figure 4: Illustration of the elastic column under self-
weight.

• hydraulic conductivity κ varies according to the Kozeny-Carman formula (following432

the approach proposed by Bandara and Soga [66]), i.e.,433

k ρf g = κ = c1
n3

(1− n)2
, (50)

with c1 being a constant parameter and g the value of gravity;434

• the consistent mass matrix has been used in lieu of the lumped one (for a definition435

of these in the context of the MPM the reader is referred to [67]).436

The shape functions used for the simulations are those employed in the Generalised Inter-437

polation Material Point Method (GIMPM), originally proposed by Bardenhagen et al. [68]),438

and here defined as suggested by Zhao and Choo [65] for the u−pf formulation. The para-439

meters used in the following analyses relative to the fluid part represent water. Those440

relative to the solid skeleton are not distinctive of a specific material, but they span a441

range of values that interest geomechanics.442

4.2. Elastic column under self-weight443

As a first example, the elastic column under gravitational load shown in Figure 4 is444

considered. Roller boundary conditions are applied to the upper and lower sides of the445

column, with the right surface being fixed and the left surface free. In addition, the entire446

external surface is impermeable, except for the right part, where zero atmospheric pressure447
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is prescribed. The whole simulation is run using a quasi-static formulation for 3, 000 pseudo448

time-steps, and the gravitational load is increased linearly for the first 1, 000 steps and kept449

constant for the remaining time. The selected gravitation6 reaches b = 1, 000 m s−2. The450

height H of the column is 1 m, discretised by 20 × 1 elements, each of which is initially451

populated by 42 material points. The other hydro-mechanical parameters considered in452

the simulation are listed in Table 1.453

As it can also be noticed in Table 1, the bulk parameter is not given. The reason lies454

in the comparison between an original linear Hencky material with the proposed model455

characterised by a porosity-dependent volumetric behaviour expressed by Eq. (33). The456

bulk modulus for the linear Hencky material K̄ has been set so that it matches the initial457

elastic tangent bulk modulus Ke,tan
0 defined by Eq. (36), i.e., it has been computed in458

correspondence of initial porosity n0 and zero elastic volumetric strain, i.e., K = K̄ n0 =459

5 · 105 Pa. In this fashion, the stiffness of the two materials is initially the same.460

Figure 5 shows time-plots for different quantities comparing the two simulations. In461

particular, for the analysis where the original Hencky material is considered, time t̃ (cor-462

responding to the 157th pseudo time-step) highlights the watershed between positive and463

negative values of the Eulerian porosity (see Figure 5a, but also Figure 6a). From a phys-464

ical perspective, it is clear that the simulation using the original Hencky material cannot465

be regarded as valid after t̃. Nonetheless, it can be noticed from Figures 5c and 5d how466

the values of primary variables, i.e., displacement u and fluid pressure pf , differ consist-467

ently even for pseudo time-steps lower than t̃. The two models exhibit different behaviour468

even far from where more significant values of the deformation gradient. Thus, it can469

be seen how imposing constrained porosity values affects the entire simulation, leading to470

6The reason for selecting such a substantial gravitational load lies in the drastic reduction of simulation
time, especially in correspondence with low hydraulic conductivity values such as the one considered in
this example (see Table 1). As the difference between the modified and the original Hencky model con-
cerns the effective stress, the selected gravity accelerates the draining process of the sample, reducing the
computational time.
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(a) Porosity at the right-hand side of the column.
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(b) Hydraulic conductivity at the right-hand side of the
column.
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(c) Horizontal displacement at the left-hand side of the
column.
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(d) Fluid pressure at the left-hand side of the column.

Figure 5: Time-plots for different quantities calculated at the right-hand side (top row) and left-hand side
(bottom row) of the column under self-weight. Grey-shaded areas indicate the physically unfeasible regions.

very different behaviour even for those parts of the body where such constraints are not471

expected to be violated (such as the left-hand side of the column). This idea is further il-472

lustrated in Figures 5c and 6c: when the simulation continues even for the original Hencky473

material, it begins to swell to the left (in a direction opposite to gravity). It is rather474

surprising that the classic Hencky material can continue the simulation in correspondence475

with extremely low and negative values of hydraulic conductivity without failing. The loss476

of the positive-definitiveness of the bottom-right matrix of the linearised system comes477

with the loss of guarantee on the existence and the uniqueness of the solution (see Boffi478
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et al. [69], Proposition 4.3.1). However, the Newton-Raphson iterative algorithm can still479

find a solution, and this is likely due to the problem’s setup, mainly its simplicity and480

over-constrained nature (the problem is practically mono-dimensional). However, as can481

be appreciated from Figures 5c and 5d, the solution fields are notably unstable in several482

places, and, in the end, a solution cannot be reached at the 2948th pseudo time-step. On483

the contrary, the new model behaves in accordance with the bounded porosity values and484

results in smoother transitions on both sides of the column, as highlighted by all of the485

time-plots of the different quantities in Figure 5. A more uniform deformation state also486

emerges when comparing the Eulerian porosity values (and thus the Jacobian via Eq. (23))487

between Figures 6a-6b at the 157th pseudo time-step, and Figures 6c-6d at the end of the488

simulations.489

−0.10.00.10.20.30.40.5
n

(a) Eulerian porosity for the linear Hencky material, t̃ =
157th time-step.

−0.10.00.10.20.30.40.5
n

(b) Eulerian porosity for the improved Hencky material,
t̃ = 157th time-step.

−0.10.00.10.20.30.40.5
n

(c) Eulerian porosity for the linear Hencky material, final
time-step.

−0.10.00.10.20.30.40.5
n

(d) Eulerian porosity for the improved Hencky material,
final time-step.

Figure 6: Deflection shapes of the columns at t̃ = 157th time-step and the end of each simulation.

4.3. 3D flexible footing490

This section considers a 3D flexible footing problem in the finite elasto-plastic regime.491

Computation of the yield function and direction of the plastic flow for the considered model492

and in compliance with hyper-plasticity are given in Appendix B.2 for the improved Hencky493

material. The same procedure can be trivially followed for the original Hencky material,494

which results in associated flow rule.495

Since the problem presents two symmetry planes, only a quarter of the whole setup496

(as represented in Figure 7) is considered. All planes defining the soil boundaries have497
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Table 2: Summary of the shared paramet-
ers considered in the analyses of the elasto-
plastic flexible footing under large deform-
ations.

Dimensions

Lx, Ly, Lz 10 m, 14 m, 10 m

hx, hy, hz 0.5 m, 0.5 m, 0.5 m

a 2.5 m

ly 10 m

Solid phase Fluid phase

G 28 · 106 Pa Kf 2.2 · 109 Pa

ρsk 2650 kg m−3 ρf0 1000 kg m−3

Porous material

κ0 1 · 10−2 m s−1

Plastic parameters

pc −250 · 105 Pa

α, γ 0.3, 0.9

M 0.964

Rol
lers

and
no-fl

ux

app
lied

Atm
osph

eric

pres
sure

app
lied

,

free
to m

ove

a
a

hz

hx

hy

y x

z

w

Lz

Lyly

Lx

Figure 7: Initial setup for the 3D flexible footing problem.

rollers and no-flux conditions applied, except for the top surface, which is free to move and498

with zero atmospheric pressure applied. The simulations are run considering quasi-static499

conditions, where the overburden w linearly ramps from zero to a value of 5 ·105 Pa during500

10 pseudo time-steps, while gravity effects are neglected. Eight material points per cell501

initially populate each mesh element.502

Four simulations have been run: two analyses consider the elastic part described by the503

original linear Hencky material, while the other two take the improved Hencky material504

defined by Eq. (33) into account. All of the shared parameters of the simulations are listed505

in Table 2. Different initial values of the Eulerian porosity and bulk modulus (or its tangent506

value) are enumerated in Table 3. The reason why initial values of these parameters are507

considered lies in the direct implication of the Eulerian porosity and the bulk modulus on508

the volumetric behaviour. Moreover, as reported in Table 2, the hydraulic conductivity509

value is relatively low to make the overburden quickly balanced by the effective stress. The510

parameters relative to the α− γ model are taken from Coombs and Crouch [70].511
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As can be seen from Figure 8, all analyses considering the original Hencky material fail512

within the 10th pseudo time-step, regardless of their initial value of Eulerian porosity or513

bulk modulus. Moreover, Figure 8 emphasises a strict correlation between negative values514

of the Eulerian porosity and failure of the analyses, with this latter phenomenon occurring515

a few time-steps after the former. The failure of the algorithm for this more complex516

situation adds confidence to the explanation provided for Example 4.2; that extremely517

simplistic situation represents a particular case in which the iterative method can find a518

solution even in adverse conditions. The improved Hencky material, conversely, permits519

all the considered simulations to be completed.520

Contours of the Eulerian porosity plotted in Figure 9 show where the negative values521

of the original Hencky material occur, i.e., in the proximity of the applied load. Excluding522

a load disturbance zone (corresponding to the upper rows of material points), the zone523

below the foundation is the area where, as expected, inequality (30a) is violated by the524

original Hencky material.525

Table 3: Summary of the different paramet-
ers considered in the analyses of the elasto-
plastic flexible footing under large deforma-
tions.

Case (A) Case (B)

Ke,tan
0 / K̄ [Pa] 30 · 106 50 · 106

n0 0.2 0.1

0 1 2 3 4 5 6 7 8 9 10

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t [s]

n

Original Hencky, (A)
Original Hencky, (B)
Improved Hencky, (A)
Improved Hencky, (B)

Figure 8: Time-plot of the porosity computed at the ma-
terial point initially located at (0.125, 9.625, 0.125) m for
all of the simulations.
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(a) Original Hencky, Analysis (A). (b) Improved Hencky, Analysis (A).

(c) Original Hencky, Analysis (B). (d) Improved Hencky, Analysis (B).

Figure 9: Contours of the Eulerian porosity values applied to the final deflection shapes of the flexible
footing problem.
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5. Conclusion and future perspectives526

This work emphasised that assuming Terzaghi effective stress decomposition comes with527

a specific cost in the context of finite strain mechanics. This particularly attractive stress528

decomposition, which stems from the assumption of solid matrix incompressibility, imposes529

a kinematic constraint on the material behaviour, this being ϵv ≥ ln(1− n0), implying the530

material becomes progressively incompressible when fluid mass is gradually expelled. When531

this constraint is not respected, negative values of the Eulerian are predicted, which are532

indicative of the violation of solid mass conservation. For those analyses not respecting533

such constraint, not only are the results questionable, but, as proven via Examples 4.2534

and 4.3, this makes simulations highly unstable.535

A way to respect this kinematic constraint has been proposed, modifying the free en-536

ergy function of a classical Hencky material. This was achieved by considering a material537

whose volumetric behaviour depends on the Eulerian porosity. Modifying the stress-strain538

relationship has the advantage of strongly (point-wisely) introducing solid mass conserva-539

tion. It was also demonstrated how this method can be incorporated into thermodynam-540

ically consistent treatments for elasticity (hyper-elasticity) and elasto-plasticity (hyper-541

plasticity), making it further appealing also for cyclic loading/displacements conditions.542

Owing to the setting of the new material into the elasto-plastic regime, the range of applic-543

ability of the improved Hencky material can span wildly, with intriguing applications in544

geomechanics (seismic or wind/wave loads applied to structures) to biomechanics (titanium545

implants in the human body).546

Moreover, making the material’s bulk modulus depending on the Eulerian porosity547

permits extending the kinematic constraint to all materials showing an additive decompos-548

ition between volumetric and deviatoric behaviour. For those materials which do not offer549

this decomposition, the constraint should be enforced through other methods, such as the550

penalty method or the Lagrange multiplier. However, this type of techniques implements551

the constraint weakly (in an integral sense) and, in addition, requires adding terms to the552
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weak form.553

It must be noticed that the further the strains are from the incompressible limit, the554

more the modified Hencky material is similar to its original form. In other words, the555

improvement introduced to the Hencky material does not alter the type of material when556

it is far from that limit but, as the examples show, plays a crucial role in the proximity of557

that constraint.558

Natural extensions of this model could evaluate the inclusion of the porosity-dependent559

volumetric behaviour in anisotropic media or understand the implications stemming from560

this assumption (i.e., porosity-dependent bulk modulus) when considering visco-elasto-561

plastic porous materials.562
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Appendix A. Notes on the implementation of the modified Hencky model573

As this appendix focuses more on the implementation, the Voigt notation, exploiting574

the symmetry of (both) τ and ϵ, is used.575

Before moving to the computation of the non-linear stress-strain relationship, it can be576

35

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/R004900/1
https://collections.durham.ac.uk/


convenient to compute the following derivatives577

∂ϵv
∂ϵ

= I(2); (A.1)

∂ϵq
∂ϵ

=
2

3 ϵq
ē; (A.2)

∂n

∂ϵv
=

1− n0
exp (ϵv)

= 1− n, (A.3)

with the quantity ē being578

ē =

[
exx, eyy, ezz, 2 exy, 2 exz, 2 eyz

]T
. (A.4)

Appendix A.1. The elastic case579

The step-by-step derivation of the Kirchhoff effective stress given by Eq. (34) is as580

follows581

τ ′ =
∂Ψ̂sk

inc

∂ϵe
=
K

2

∂

∂ϵev

(
(ϵev)

2

n

)
I(2) +

3

2
G

∂

∂ϵeq

((
ϵeq
)2) 2

3 ϵeq
ē =

=
K ϵev
n

(
1 +

ϵev
2n

(n− 1)

)
I(2) + 2G ēe, (A.5)

where derivatives (A.1)- (A.4) are particularised to the elastic case. As the value of the582

Eulerian porosity n is computed based on the Jacobian J via Eq. (23), it can be seen that583

the calculation of the effective stress (A.5) is straightforward once the decomposition of584

the elastic strain into a volumetric and a deviatoric part is performed.585

The step-by-step linearisation of the effective stress-strain matrix given by Eq. (35) is586

De :=
∂2Ψ̂sk

inc

∂ϵe ⊗ ∂ϵe
=
∂τ ′

∂ϵe
=

=
∂

∂ϵev

(
K ϵev
n

(
1 +

ϵev
2n

(n− 1)

))
I(2) ⊗ I(2) + 2G

∂ēe

∂ϵe
=

= Ke, tan I(2) ⊗ I(2) + 2G I(4), dev, (A.6)
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where the full expression of I(4), dev in Voigt notation is587

Ī(4), dev :=



2/3 −1/3 −1/3 0 0 0

−1/3 2/3 −1/3 0 0 0

−1/3 −1/3 2/3 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2



. (A.7)

Appendix A.2. Elasto-plastic subroutine588

This section details the computation of the effective stress in correspondence of elasto-589

plastic strains, as well as the computation of the consistent tangent matrix Dalg := ∂τ ′

∂ϵe, tr to590

provide optimal convergence of Newton’s global process for implicit solvers is also outlined.591

For this purpose, System (49) can be expressed as a linear form as592

I4, sym +∆γ ∂2g
∂τ ′⊗∂τ ′ : Ϙ : De,

(
I4, sym +∆γ ∂2g

∂τ ′⊗∂τ ′ : Ϙ : Dp
)
: ∂g
∂τ ′

∂Φτ ′

∂τ ′ : Ϙ : De, ∂Φτ ′

∂τ ′ : Ϙ : Dp : ∂g
∂τ ′


 dϵe
d∆γ

 =

dϵe,tr
0

 .
(A.8)

Eq. (A.8) can be rewritten with dτ ′ being the unknown in lieu of dϵe via Eq. (48), resulting593

in594 (De)−1 : Ϙ−1 +∆γ ∂2g
∂τ ′⊗∂τ ′ ,

(
I4, sym − (De)−1 : Dp

)
: ∂g
∂τ ′

∂Φτ ′

∂τ ′ 0


 dτ ′

d∆γ

 =

dϵe,tr
0

 .
(A.9)
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The inversion of (A.9) leads to595

 dτ ′

d∆γ

 =

D11 D12

D21 D22


dϵe,tr

0

 , (A.10)

where Dalg = dτ ′

dϵe,tr = D11.596

Appendix B. Notes on hyper-plasticity597

Appendix B.1 expands hyper-plasticity within the context of finite strain mechanics598

(firstly proposed by Oliynyk and Tamagnini [71]) to isotropic coupled materials. Ap-599

pendix B.2 shows how to compute the yield function and the flow rule used in Example 4.3600

for the improved Hencky material and the dissipation function proposed by Collins and601

Hilder [43].602

Owing to the use of unsymmetrical tensors, this section makes use of Einstein index603

notation for repeated indices.604

Appendix B.1. Hyper-plastic formulation in finite strain605

Clausius-Planck inequality (29) provides the basis for hyper-plastic formulations. This606

can be written in a more compact form as follows607

τ ′ij dij = J Dsk +
˙̂
Ψsk

inc. (B.1)

Let us, without any loss of generality, consider the case where the free energy function608

Eq. (33) do not include further hardening, i.e., Ψ̃sk
inc (α) = 0. In this case, the isotropic609

free energy function is a function of the left Cauchy-Green strain tensor, i.e., Ψ̂sk
inc (b

e, bp),610
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which implies611

˙̂
Ψsk

inc (b
e, bp) =

∂Ψ̂sk
inc

∂beij
ḃeij +

∂Ψ̂sk
inc

∂bpij
ḃpij = 2

∂Ψ̂sk
inc

∂beij
bejk d

e
ki︸ ︷︷ ︸

=ḃeij

+2
∂Ψ̂sk

inc

∂bpij
bpjk (F

e)−1
il dplm F

e
mk︸ ︷︷ ︸

=ḃpij

, (B.2)

where the right-hand side of the above equation uses the kinematic relationships ḃp =612

L̄pbp + bp
(
L̄p
)T

, with L̄p := Ḟ p (F p)−1 and lp := F eL̄p (F e)−1.613

Eq. (31a) gives what is referred to as the true stresses in the context of hyper-plasticity,614

which, in this work, matches the definition of effective stresses. Two other kinds of stresses615

are usually provided in the context of hyper-plasticity, these being the shift stress and the616

dissipative stress, defined as617

χ′
lm := 2

∂Ψ̂sk
inc

∂bpij
bpjk (F

e)−1
il F e

mk; (B.3)

φ′
ij :=

∂
(
J Dsk

)
∂dpij

. (B.4)

Owing to the simplification Ψ̃sk
inc (α) = 0, inequality (31b) suggests the dissipation618

J Dsk to be dependent only from the plastic stretching tensor dp. Having also excluded619

the viscosity effects (i.e., the material is rate-indipendent), it is possible to postulate (see, in620

this regards, Oliynyk and Tamagnini [71]) that the dissipation is homogenous of degree one621

in the plastic stretching tensor. According to Euler’s theorem for homogeneous functions,622

it then follows623

J Dsk =
∂
(
J Dsk

)
∂dpij

dpij = φ′
ij d

p
ij , (B.5)

where definition (B.4) has been used on the right-hand side of the above equation.624

Owing to Eqs. (B.2)-(B.5), Eq. (B.1) becomes625

τ ′ij dij = φ′
ij d

p
ij + τ ′ij d

e
ij + χ′

ij d
p
ij , (B.6)
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which provides the following relationship among stresses626

τ ′ij = φ′
ij + χ′

ij . (B.7)

Appendix B.2. Yield function and flow rule627

Considering the free energy function given by Eq. (33), the shift stress can be written628

χ′
lm = 2

∂Ψ̂sk
inc

∂bpij
bpjk (F

e)−1
il F e

mk =
∂Ψ̂sk

inc

∂ϵpv
δik (F

e)−1
il F e

mk =
K

2n2
(ϵev)

2 (n− 1)︸ ︷︷ ︸
:=pχ′

δlm, (B.8)

while the effective stress has been already given by (A.5).629

To compute the dissipative stress and provide a thermodynamically consistent yield630

function and flow rule, it is necessary to introduce a particular function for the dissipation631

JD(sk). This work takes the α − γ family of models proposed by Collins and Hilder [43]632

into account and adapts it to the case of finite strain. For these models, the dissipation633

function is given by634

J Dsk =

√
(dpv A)

2
+ (dpγ B)

2 ≥ 0, (B.9)

where dv := dijδij and dγ :=
√(

dij − dv
3 δij

)
:
(
dij − dv

3 δij
)
. Eq. (B.9) introduces also two635

pressure-dependent parameters A and B, these being636

A := (1− γ) p′ +
γ

2
pc B :=M

(
(1− α) p′ + α

γ

2
pc

)
. (B.10)

As further hardening has been excluded, pc is considered as constant in this work, but,637

generally speaking, it can vary (see Coombs and Crouch [70] in this regard).638

Eq. (B.9) permits calculating the dissipative stresses for this particular case of the639
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dissipation function, these being640

φ′
ij =

∂
(
J Dsk

)
∂dpij

=
∂
(
J Dsk

)
∂dpv︸ ︷︷ ︸
:=pφ′

δij +
∂
(
J Dsk

)
∂dpγ︸ ︷︷ ︸
:=qφ′

∂dpγ
∂dpij

, (B.11)

where, for the general symmetric stress tensor (•)ij , p(•) := 1
3 (•)ij δij , s

(•)
ij := (•)ij−p(•)δij ,641

and q(•) :=
√
s
(•)
ij s

(•)
ij . The one-to-one correspondence between power-conjugates allows to642

express the dissipative stress invariants as follows643

pφ
′
=

A2dpv
J Dsk

; (B.12)

qφ
′
=
B2dpγ
J Dsk

, (B.13)

or, inverting these relationships,644

dpv =
pφ

′
J Dsk

A2
; (B.14)

dpγ =
qφ

′
J Dsk

B2
. (B.15)

Substituting the above expression for stretching invariants in Eq. (B.9) and eliminating645

the dissipation results in646

1 =

(
pφ

′

A

)2

+

(
qφ

′

B

)2

, (B.16)

which, moving all of the components on one side of the equation, gives the dissipative yield647

condition648

Φφ′
=
(
Bpφ

′
)2

+
(
Aqφ

′
)2

−A2B2 = 0. (B.17)

Shifting the above condition to the effective stress space (i.e., using Eq. (B.7)) is necessary649
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to compute the yield function, this being650

Φτ ′ = B2
(
p′ − pχ

′
)2

+
(
Aqτ

′
)2

−A2B2 = 0 (B.18)

As required for coupled materials (see Collins and Houslby [41] and Collins [58]) the direc-651

tion of the flow rule is given by the normal to dissipative yield function in the dissipative652

stress space, i.e.,653

∂Φφ′

∂φ′
ij

= −2B2pφ
′ 1

3
δij + 2A2sφ

′

ij , (B.19)

where the sign of pressure have been changed from the geotechnical convention (where654

compression is considered positive) to that more commonly used in mechanics and adopted655

throughout this work. The direction of the plastic flow is given by shifting the above656

equation in the true stress spaces, this being657

∂g

∂τ ′ij
= −2B2

(
p′ − pχ

′
) 1

3
δij + 2A2sij . (B.20)

References

[1] N. Castelletto, G. Gambolati, P. Teatini, A coupled mfe poromechanical model of a

large-scale load experiment at the coastland of venice, Computational Geosciences 19

(2015) 17–29.

[2] A. Karrech, M. Attar, M. Elchalakani, H. Basarir, F. Abbassi, A. Seibi, The poromech-

anics of massive fluid injection in natural environments, in: ISRM 1st International

Conference on Advances in Rock Mechanics-TuniRock 2018, OnePetro, 2018, pp. 17–

22.

[3] M. Hettema, P. Schutjens, B. Verboom, H. Gussinklo, Production-induced compaction

of a sandstone reservoir: the strong influence of stress path, SPE Reservoir Evaluation

& Engineering 3 (04) (2000) 342–347.

42



[4] A. Karrech, T. Poulet, K. Regenauer-Lieb, Poromechanics of saturated media based

on the logarithmic finite strain, Mechanics of Materials 51 (2012) 118–136.

[5] O. C. Zienkiewicz, A. Chan, M. Pastor, B. Schrefler, T. Shiomi, Computational geo-

mechanics, Vol. 613, Citeseer, 1999.

[6] S. C. Cowin, Bone poroelasticity, Journal of biomechanics 32 (3) (1999) 217–238.

[7] M. A. Biot, General theory of three-dimensional consolidation, Journal of applied

physics 12 (2) (1941) 155–164.

[8] M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. ii.

higher frequency range, The Journal of the acoustical Society of america 28 (2) (1956)

179–191.

[9] M. A. Biot, Mechanics of deformation and acoustic propagation in porous media,

Journal of applied physics 33 (4) (1962) 1482–1498.

[10] R. De Boer, W. Ehlers, A historical review of the formulation of porous media theories,

Acta Mechanica 74 (1-4) (1988) 1–8.

[11] C. W. MacMinn, E. R. Dufresne, J. S. Wettlaufer, Large deformations of a soft porous

material, Physical Review Applied 5 (4) (2016) 044020.

[12] A. Selvadurai, A. Suvorov, Coupled hydro-mechanical effects in a poro-hyperelastic

material, Journal of the Mechanics and Physics of Solids 91 (2016) 311–333.

[13] Y. Zhang, Mechanics of adsorption–deformation coupling in porous media, Journal of

the Mechanics and Physics of Solids 114 (2018) 31–54.

[14] B. Nedjar, Formulation of a nonlinear porosity law for fully saturated porous media at

finite strains, Journal of the Mechanics and Physics of Solids 61 (2) (2013) 537–556.

43



[15] B. Nedjar, On finite strain poroplasticity with reversible and irreversible porosity laws.

formulation and computational aspects, Mechanics of Materials 68 (2014) 237–252.

[16] L. S. Bennethum, Compressibility moduli for porous materials incorporating volume

fraction, Journal of engineering mechanics 132 (11) (2006) 1205–1214.
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