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Abstract

Standard models for longitudinal data ignore the stochastic nature of time-varying covariates and their

stochastic evolution over time by treating them as fixed variables. There have been recent methods for

modelling time-varying covariates, however those methods cannot be applied to analyse longitudinal data

when the longitudinal response and the time-varying covariates for each subject are measured at different

time points. Moreover, it is difficult to study the temporal effects of a time-varying covariate on the longitu-

dinal response and the temporal correlation between them. Motivated by data from an AIDS cohort study

conducted over 26 years at the University Hospitals Leuven in which the measurements on the CD4 cell

count and viral load for patients are not taken at the same time point, we present a framework to address

those challenges by using joint multivariate mixed models to jointly model time-varying covariates and a

longitudinal response, instead of including time-varying covariates in the response model. This approach

also has the advantage that one can study the association between the covariate at any time point and the

response at any other time point, without having to explicitly model the conditional distribution of the

response given the covariate. We use penalised spline functions of time to capture the evolutions of both

the response and time-varying covariates over time.

Keywords: AIDS cohort study; Joint mixed model; Longitudinal data; Temporal association; Time-varying

covariate.

1. Introduction

Longitudinal studies are common in medicine, psychology, sociology, economics and other fields, where they

allow researchers to study changes over time. They often produce data with both time-invariant (baseline)

and time-varying covariates. A time-varying covariate, similar in the design to the response variable, is

measured repeatedly over time. As a motivating case study described in Section 2, in AIDS cohort studies,

two biomarkers, the CD4 cell count and the viral load, are measured for HIV+ patients at repeated visits

before and after receiving treatment. It is difficult to simultaneously analyse them when the measurements

on CD4 cell count and viral load are taken at different time points. Common methods in the literature

are of an ad hoc nature, such as imputation methods for aligning all measurements temporally, or separate

modelling of outcomes. Those methods have their own limitations as shown in our results.

Similar to classical regression models, standard models for longitudinal data ignore the stochastic nature

of covariates and treat them as fixed variables. But, like the response variable, a time-varying covariate also

changes over time and its stochastic evolution, which provides important information, should be modelled
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as well. Ignoring the covariate process (i.e., the stochastic nature/measurement error) for time-varying

covariates is perilous and could lead to incorrect inference, which in turn may lead to wrong decisions.

There is a large literature on modelling the covariate process for time-varying covariates. The literature

can roughly be classified into two broad categories. The first category includes papers that develop models

for time-varying covariates while still including the time-varying covariates in the response model. We

briefly review some of the major papers in this category. To analyse multilevel binary longitudinal data,

Miglioretti and Heagerty (2004) proposed to model time-varying covariates and incorporate them in the

response model. Roy et al. (2006) suggested a model for time-varying covariates subject to missingness to

analyse incomplete count data. Roy and Lin (2005) and Ghosh and Tu (2009) used transition models to

take into account the covariate process to handle missing observations in time-varying covariates. Chen

et al. (2014) modelled the covariate process to account for censored time-varying covariates. Despite the

advantages of these methods, they cannot handle the situation where the longitudinal response and the

time-varying covariates for each subject are measured at different time points. It is problematic to include

a time-varying covariate into the response model while they are measured at different time points. This is

because the unequal time points immediately rule out that one can formulate a plausible conditional model

(e.g., outcome at time t conditional on covariate at t−1), and moreover it becomes more difficult to predict

an outcome conditional on a series of longitudinally measured covariate values. Also, endogeneity could be

an issue.

The second category includes papers that develop multivariate models to jointly model longitudinal

outcomes. Sy et al. (1997) proposed a stochastic model for analysing bivariate longitudinal AIDS data

with unequally spaced measurements, which is different than the situation where the longitudinal response

and time-varying covariates are measured at different time points. Their joint model mainly includes a

single random effect for each submodel and no penalised spline functions. Gueorguieva (2001) developed a

multivariate generalised linear mixed model for joint modelling of clustered outcomes. Ferrer and McArdle

(2003) suggested structural models for multivariate longitudinal data. Thiébaut et al. (2005) proposed a

parametric joint bivariate linear mixed model for two outcomes with a lognormal survival model for drop-

out time. Xiang et al. (2013) studied non-parametric models for multivariate longitudinal data. Lin and

Wang (2013) developed a multivariate skew-normal linear model for multi-outcome longitudinal study. Kim

and Albert (2016) presented a class of joint models for multivariate longitudinal measurements and a binary

event. Li et al. (2017) proposed a multivariate joint mixed model for analysing mixed types of responses.

Hui et al. (2018) introduced sparse pairwise likelihood estimation for multivariate longitudinal models.

Proudfoot et al. (2018) used a joint marginal-conditional approach for modelling longitudinal data. Kürüm

et al. (2018) suggested a copula model for joint modelling of longitudinal and time-varying outcomes. Zhao

et al. (2021) developed a joint penalised spline model for multivariate longitudinal data.

Despite the large literature, there are still some challenging problems that may not be addressed using

those methods. This paper, by advocating the second category of literature, aims to deal with two chal-

lenging problems. First, we aim to handle situations where the longitudinal response and the time-varying

covariates for each subject are not measured at the same time point, as in our motivating application in

Section 2. Second, unlike the current literature, we aim to study the temporal effects of a time-varying

covariate on the response variable as well as the temporal correlation between them. This is also important

in many applications. For example, in our AIDS case study, it is of interest to understand how the viral

load affects the CD4 cell count over time and how the association between both depends on the time-lag

between them. We want to avoid the assumption, sometimes encountered in the literature, that the re-

2



sponse variable measured at each time point depends on only the time-varying covariates measured at the

same time point or at an earlier fixed time point. Indeed, the response variable could also depend on a

series of previous measurements of time-varying covariates, and it may not be clear how long it takes for

a change in the covariate to affect the response, nor how long the effect lasts. Another limitation of the

existing methods relates to the fact that conditioning a variable on the other assumes a priori selection of

the time points, that is, the outcome at some time point would have to be conditioned on the covariate at

another time point, but which one?

To solve those problems, we follow the second category of literature and treat time-varying covariates as

outcomes. For this, we use a joint mixed model that includes a submodel for the longitudinal response and

a submodel for the time-varying covariate, but we do not include the time-varying covariate in the response

submodel. This allows to jointly model the longitudinal response and the time-varying covariate in situations

where they are measured at different time points. We link the two submodels through two sets of correlated

random effects, where the association between the response and the time-varying covariate is taken into

account via the correlation between random effects. We incorporate penalised spline functions of time to

capture the evolutions of both the longitudinal response and the time-varying covariate over time. This

approach also has the advantage that one can study the correlation between the covariate at any time point

and the response at any other time point, without having to explicitly model the conditional distribution

of the response conditional on the covariate. It allows, for example, to identify when this correlation is the

strongest. More beneficially, we can study the temporal association between the longitudinal response and

time-varying covariate. It also allows to predict the outcome at a future time conditional on a vector of

measurements or history of covariate. We will illustrate these advantages using our motivating case study.

2. Motivating case study

Regular monitoring of disease, facilitated by technological advances, gives rise to multiple clinical measures

whose inter-relation and stochastic evolutions over time could provide important insights into disease pro-

gression. A difficulty arises when some of those measures are taken at different time points. As a motivating

application, we introduce a real data set obtained from an AIDS cohort study conducted over 26 years at

the University Hospitals Leuven, Belgium, where the measurements on the CD4 cell count and the viral

load are not taken at the same time point due to medical considerations and risks of successive tests on

patients.

The study was performed at the AIDS Reference Center of Leuven in the University Hospitals Leuven,

Belgium. In this study, 1257 HIV-infected patients were followed between 07 April 1987 and 16 October

2013. Although the patients were followed from the time HIV was detected, the treatment was started only

later. The visits were prescheduled during the study, so there is no implicit assumption about the visit

process and whether or not it is informative of the outcomes. The patients received antiretroviral treatments

either non-nucleoside reverse transcriptase inhibitors (NNRTI) (about 35.8%) or protease inhibitors (PI)

(about 64.2%) as their best first line treatment as approved by the Food and Drug Administration (FDA).

The treatment was randomised and no patients switched from NNRTI to PI or vice versa. At each visit,

the CD4 cell count as the primary outcome was measured for each patient during the study. Also, copies of

viral load (viral RNA copy numbers) were measured repeatedly for each patient. In the study, the CD4 cell

counts and the copies of viral load for each patient were not measured at the same time point due to medical

considerations and risks of successive tests on patients. The number of repeated measurements was different
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among the patients during the study. We present the frequency of the number of repeated measurements

in Figure 1a, which shows that some of the patients had even more than 100 repeated measurements. The

other variables quantified in the study were gender, the age of each patient at baseline, diagnosis year, best

first line therapy used and follow-up time, along with some other demographic variables. We present the

proportion of the treatments received by each of the female and male patient groups in Figure 1b. The

distribution of the two treatments looks similar for the female and male patients.

There were no observations below the limit of detection (LOD) for CD4 cell count, but there were several

for viral load. We replaced the observations below the LOD of viral load using the multiple imputation

technique, instead of replacing them with half the LOD or another constant. For this, we used a truncated

normal distribution, starting from the detection limit, and then applied multiple imputation to fill in the

values below the LOD. The advantage of using multiple imputation over replacing the observations below

the LOD with a constant such as half the LOD is that the latter would cause a point mass and hence a

mixture distribution on viral load, which is not desirable from a modelling point of view.

The individual profiles for all patients are presented in Figures 1c and 1d for the CD4 cell count and

the viral load respectively, where time 0 (i.e., t = 0) is the start time of the therapy. It can be seen that

there is a high variability between patients, which makes the analysis more complicated. Also, the plots

reveal that both the CD4 cell count and the viral load have complex evolutions over time. For this study,

it is of particular interest to answer the following questions:

1. What is the temporal effect of the viral load (a time-varying covariate) on the CD4 cell count (the

response variable) at different stages of the disease and particularly before and after the treatment

initiation?

2. What is the temporal correlation between the viral load and the CD4 cell count during the study

period? How does it change before and after the treatment initiation?

3. How can the CD4 cell count evolutions after the treatment initiation be predicted given the entire viral

load curve observed prior to the treatment and given that a particular treatment would be initiated?

Temporal effects refer to effects over time and temporal correlation refers to correlation over time. While

the two are related, temporal correlation shows the relation between outcomes over time and temporal effect

shows the effect of one outcome on another over time. In our analysis of the AIDS data in Section 4.2, we

provide answers to the above questions using the framework presented in the paper.

3. Methods

We emphasise that our objective is not to develop novel models but to provide a framework for handling

time-varying covariates to address some limitations of the existing methods particularly to handle situations

where the response and time-varying covariate are measured at different time points as well as to study

their temporal association. Consider a longitudinal study in which N subjects are followed over time. Let

Y be the outcome of interest, and further suppose that there are p covariates. For clarity of presentation, in

this section we assume that there is one time-varying covariate in the study and denote it by V , while the

other p − 1 covariates are all time-invariant. The case with more than one time-varying covariate will be

discussed in Section 5. Note that in line with our data application, we here assume the assessment process

is uninformative of outcomes post-baseline.

4



0

10

20

30

40

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Number of measurements

C
ou

nt

(a) Frequency of number of repeated measurements

0.0

0.2

0.4

0.6

female male
Gender

P
ro

po
rt

io
n

Treatment
PI
NNRTI

(b) Proportion of treatments received by gender group

(c) CD4 cell count (cells/µL) (d) Viral load (copies/mL)

Figure 1: (a) Frequency of the number of repeated measurements for patients, (b) Proportion of the
treatments received by each of the gender groups, (c) Evolution of the log CD4 cell count for the HIV+
patients, (d) Evolution of the log viral load for the HIV+ patients. Note that time 0, say t = 0, is the start
of the treatment.

Let Yi(tij) and Vi(sij) denote, respectively, the response for subject i measured at time tij and the time-

varying covariate for subject i measured at time sij . Since the two processes may be measured at different

time points at the j-th follow-up (i.e., tij ̸= sij), we do not include the time-varying covariate Vi(sij) in

the model for longitudinal response Yi(tij). Also in line with the literature, we incorporate non-parametric

functions of time to have flexibility in capturing the stochastic evolutions of the response Yi(tij) and the

time-varying covariate Vi(sij). We thus propose to use a joint mixed model as follows:{
Yi(tij) = xT

1iβ1 + zT
1ib1i +m1(tij) + ε1i(tij)

Vi(sij) = xT
2iβ2 + zT

2ib2i +m2(sij) + ε2i(sij),
(1)

where x1i and x2i are two p − 1 and p∗ − 1 dimensional vectors of time-invariant covariates for subject i,

β1 and β2 are two p − 1 and p∗ − 1 dimensional vectors of fixed-effects parameters for the response and

time-varying covariate submodels respectively, and b1i and b2i are two q and q∗ dimensional vectors of

subject-specific random effects capturing the between-subject variability for the response and time-varying

covariate submodels respectively, with z1i and z2i being their corresponding q and q∗ dimensional vectors

of random-effects covariates. Also, m1 and m2 are two unknown smooth functions of time capturing the

evolutions of the response and time-varying covariate over time, respectively. Finally, ε1i(tij) and ε2i(sij)

are measurement errors associated with the response of subject i at time tij and the time-varying covariate

of subject i at time sij , respectively.
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In the joint mixed model (1), we let the two vectors of random effects b1i and b2i to be correlated.

This would link the two submodels, allowing us to account for the association between the response and

the time-varying covariate. We assume the combined vector of random effects bi = (bT1i, b
T
2i)

T follows a

multivariate normal distribution with mean 0 and covariance matrix Cov(bi) =

[
D11 D12

DT
12 D22

]
.

We assume (ε1i(tij), ε2i(sij))
T follows a bivariate normal distribution with mean 0 and covariance matrix

Cov(ε1i(tij), ε2i(sij)) =

[
σ2
1(tij) σ12(tij , sij)

σ12(tij , sij) σ2
2(sij)

]
. One can also allow potential serial correlation in the

residual covariance matrix by setting Cov(ε1i(tij), ε2i(sij)) =

[
σ2
1(tij) σ12(tij , sij)

σ12(tij , sij) σ2
2(sij)

]
⊗ρ|tij−sij |, where

⊗ is the Kronecker product and |ρ| < 1.

We use d-th degree and r-th degree penalised spline functions to approximate the unknown smooth

functions m1(tij) and m2(sij), respectively, as follows

m1(tij) = α0 + α1tij + ...+ αdt
d
ij +

K∑
k=1

uk(tij − κk)
d
+

m2(sij) = γ0 + γ1sij + ...+ γrs
r
ij +

L∑
l=1

u∗
l (sij − λl)

r
+,

(2)

where {κ1, ..., κK} and {λ1, ..., λL} are two sets of fixed knots in the range of tij and sij respectively, the uk

and the u∗
l are spline coefficients for the response and time-varying covariate trajectories respectively, and

a+ = max(0, a). Penalised splines do not use all the time points as knots and usually require a moderate

number of knots (e.g., 10 to 30) depending on the number of time points. A common approach is to

specify equally-spaced knots, and the smoothness penalty helps to avert overfitting. To further reduce the

risk of overfitting, it is common practice to utilise lower degree penalised spline functions, mainly linear

or quadratic splines. This is the main advantage of low-degree penalised spline functions over high-degree

polynomial functions, as the latter involves a lot of parameters which can increase the risk of overfitting.

Considering (2) and using the connection between penalised spline models and mixed-effects models

(see, e.g., Brumback et al., 1999; Currie and Durban, 2002; Wand, 2003; Ruppert et al., 2003), we can

equivalently write the spline-based joint mixed model (1) as the following joint parametric mixed model{
Yi(tij) = xT

1iβ1 + zT
1ib1i + T T

ijα+KT
iju+ ε1i(tij)

Vi(sij) = xT
2iβ2 + zT

2ib2i + ST
ijγ +ΛT

iju
∗ + ε2i(sij),

(3)

where T ij = (1, tij , ..., t
d
ij)

T , Sij = (1, sij , ..., s
r
ij)

T , α = (α0, ..., αd)
T , γ = (γ0, ..., γr)

T , Kij = ((tij −

κ1)
d
+, ..., (tij−κK)d+)

T , Λij = ((sij−λ1)
r
+, ..., (sij−λL)

r
+)

T , u = (u1, ..., uK)T , and u∗ = (u∗
1, ..., u

∗
L)

T . The

two vectors of spline coefficients u and u∗ in (3), which are treated as random effects, are not correlated

with the subject-specific random effects b1i and b2i. We assume u ∼ N
(
0, σ2

uIK

)
and u∗ ∼ N

(
0, σ2

u∗IL

)
,

where σ2
u and σ2

u∗ are variance components of the random spline coefficients. The assumption of finite

variance components σ2
u and σ2

u∗ would shrink u and u∗, leading to a smooth fit (e.g., Ruppert et al., 2003,

p. 63). In fact, σ2
u and σ2

u∗ are smoothing parameters which control the smoothness of the fit. Unlike the

subject-specific random effects b1i and b2i, the random spline coefficients u and u∗ are not subject-specific,

so they are constant across subjects.

After transforming the spline-based joint mixed model (1) into the equivalent joint parametric mixed

model (3) using penalised splines, we use the restricted maximum likelihood (REML) approach for pa-

rameter estimation as we now have a fully parametric mixed model. It is known that the REML method

produces less biased estimates for variance parameters compared to the usual maximum likelihood method

(e.g., Verbeke and Molenberghs, 2009). For estimation purpose, the joint mixed model (3) can be repre-

sented as a unified linear mixed model Y ∗
i = X∗

iβ
∗
i +Z∗

i b
∗
i +W ∗

iU
∗ + ε∗i , where Y ∗

i =
[
Y i
V i

]
, ε∗i =

[
ε1i
ε2i

]
,
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X∗
i =

[
X1i 0 T i 0
0 X2i 0 Si

]
, Z∗

i =
[
Z1i 0
0 Z2i

]
, W ∗

i =
[
Ki 0
0 Λi

]
, β∗ =

β1
β2
α
γ

, b∗i =
[
b1i
b2i

]
andU∗ =

[
u
u∗

]
,

in which

Y i =

 Yi(ti1)
...

Yi(tini)

 , V i =

 Vi(si1)
...

Vi(sini)

 , ε1i =

 ε1i(ti1)
...

ε1i(tini)

 , ε2i =

 ε2i(si1)
...

ε2i(sini)

 ,

X1i =

xT
1i
...

xT
1i

 , X2i =

xT
2i
...

xT
2i

 , T i =

 T T
i1
...

T T
ini

 , Si =

ST
i1
...

ST
ini

 ,

Z1i =

zT
1i
...

zT
1i

 , Z2i =

zT
2i
...

zT
2i

 , Ki =

KT
i1
...

KT
ini

 , Λi =

ΛT
i1
...

ΛT
ini

 .

Recall that, unlike the random effects b∗i , the random spline coefficients U∗ are not subject-specific. It

is straightforward to show that the marginal distribution of Y ∗
i =

[
Y i
V i

]
, after integrating out the random

effects b∗i and U∗, is

Y ∗
i ∼ N (X∗

iβ
∗,Σi) ,

Σi = Z∗
iCov(b

∗
i )Z

∗
i
T
+W ∗

iCov(U
∗)W ∗

i
T
+Cov(ε∗i ),

(4)

in which

Cov(b∗i ) =

[
D11 D12

DT
12 D22

]
, Cov(U∗) =

[
σ2
uIK 0
0 σ2

u∗IL

]
, Cov(ε∗i ) =

[
σ2
1(tij)Ini

σ12(tij , sij)Ini

σ12(tij , sij)Ini
σ2
2(sij)Ini

]
.

Hence, the marginal log-likelihood function of the model would be as follows

l(β∗,ϕ) = c− 1

2

N∑
i=1

log (|Σi|)−
1

2

N∑
i=1

(Y ∗
i −X∗

iβ
∗)TΣi

−1(Y ∗
i −X∗

iβ
∗), (5)

where c is a constant and ϕ represents all the variance parameters in the model. We employ an iterative

procedure to obtain the restricted maximum likelihood estimates of the parameters, which is explained in

the online Appendix A. We provide a SAS programme using PROC HPMIXED and PROC MIXED to

calculate the parameter estimates β̂
∗
and ϕ̂. Our SAS code can be found in the online Appendix D.

3.1. The temporal correlation between the response variable and the time-

varying covariate

The joint mixed model (3) enables us to study and understand the temporal effects of the time-varying

covariate on the response variable as well as the temporal correlation between them. These two measures,

which we study in this and the next subsections, can be useful in real applications, and we will use them

to answer the first two questions related to our motivating application in Section 2.

From the joint mixed model (3), it is straightforward to find that

Cov
(
Yi(tij), Vi(sij)

)
= zT

1iD12z2i + σ12(tij , sij).

So, the temporal correlation between the response variable Yi(tij) and the time-varying covariate Vi(sij) at

the j-th follow-up can be obtained as

Corr
(
Yi(tij), Vi(sij)

)
=

zT
1iD12z2i + σ12(tij , sij)√

zT
1iD11z1i + σ2

1(tij)
√
zT
2iD22z2i + σ2

2(sij)
. (6)

Expression (6) can be used to answer practical questions such as when the association between Y and V is

the strongest.
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As a special case, when the joint mixed model (3) contains only random intercepts and random slopes

(i.e., z1i = (1, tij)
T and z2i = (1, sij)

T ), we get

Corr
(
Yi(tij), Vi(sij)

)
=

d13 + d23tij + d14sij + d24tijsij + σ12(tij , sij)√
d11 + 2d12tij + d22t2ij + σ2

1(tij)
√

d33 + 2d34sij + d44s2ij + σ2
2(sij)

,

where we defined D11 =
[
d11 d12
d12 d22

]
, D22 =

[
d33 d34
d34 d44

]
, D12 =

[
d13 d14
d23 d24

]
.

From the above, it can be seen that the correlation between the response variable Yi(tij) and the time-

varying covariate Vi(sij) is not constant and it depends on the time points tij and sij . We will illustrate

this in our analysis of the AIDS data in Section 4.2.

3.2. The temporal effects of the time-varying covariate on the response variable

As discussed in the introduction, when the response variable Y and the time-varying covariate V are mea-

sured at different times, it would be problematic to regress Y on V by including the time-varying covariate

V into the response Y model. The suggested framework avoids such an issue by jointly modelling the

response Yi(tij) and the time-varying covariate Vi(sij), which enables us to find the conditional distribution

of Yi(tij) given Vi(sij) at any points tij and sij in time, especially for situations when the response and

the time-varying covariate are not measured at the same time point. So we can obtain the conditional

expectation of Yi(tij) given Vi(sij) to assess the temporal effect of the time-varying covariate V on the

longitudinal response Y at the j-th follow-up. Since the joint distribution of Yi(tij) and Vi(sij) is bivariate

normal, it is straightforward to show that

E
(
Yi(tij)|Vi(sij)

)
=

(
xT
i β1 + T T

ijα+KT
iju

)
+ θij

(
Vi(sij)− xT

i β2 − ST
ijγ −ΛT

iju
∗),

where

θij =

√
zT
1iD11z1i + σ2

1(tij)

zT
2iD22z2i + σ2

2(sij)
Corr

(
Yi(tij), Vi(sij)

)
.

The above conditional expectation can be represented as

E
(
Yi(tij)|Vi(sij)

)
= aij + θijVi(sij), (7)

where aij =
(
xT
i β1 + T T

ijα +KT
iju

)
− θij

(
xT
i β2 + ST

ijγ + ΛT
iju

∗). From (7), we can use the estimate of

θij as the estimated temporal effect of the time-varying covariate V on the longitudinal response Y at the

j-th follow-up, which would be as follows

θ̂ij =

√
zT
1iD̂11z1i + σ̂2

1(tij)

zT
2iD̂22z2i + σ̂2

2(sij)
Ĉorr

(
Yi(tij), Vi(sij)

)
. (8)

Clearly, when Ĉorr
(
Yi(tij), Vi(sij)

)
→ 0, the time-varying covariate V will have no effect on the longitu-

dinal response Y . Reversely, the longitudinal response will be more affected by the time-varying covariate

when the temporal correlation between them gets stronger over time. We will investigate this in our analysis

of the AIDS data in Section 4.2.

It should be noted that the joint model is symmetrical in the sense that if one is interested in investigating

E
(
Vi(sij)|Yi(tij)

)
, it can be similarly done too.

3.3. Prediction of the response evolutions given the history of the time-varying

covariate

In many applications, it is of interest to predict the longitudinal response given the history of the time-

varying covariate rather than just conditioning on a single observed value of the time-varying covariate. For
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instance, in our case study (the third question), it is very helpful for clinicians to predict the CD4 evolutions

after the treatment initiation (i.e., after t = 0) given the entire viral load curve observed prior to the

treatment as well as the prior CD4 measurements, and given that a particular treatment would be initiated.

When the treatment is randomised, such predictions would allow clinicians to pick the treatment with the

most favourable outcome profile. Since the joint mixed model (3) can model the longitudinal response and

the time-varying covariate observed at different times, it enables us to calculate such predictions.

To predict the longitudinal response Yi for subject i at the (j+1)-th follow-up given the entire history of

the time-varying covariate Vi prior to that follow-up, we use the conditional expectation of Yi at time ti,j+1

given the entire history of Vi up to the j-th follow-up, that is, E
(
Yi(ti,j+1)|Vi(si1), . . . , Vi(sij)

)
. Similarly,

we predict the longitudinal response evolutions in the next M follow-ups given the entire history of Vi up

to the j-th follow-up by

E
(
Yi(ti,j+1), . . . , Yi(ti,j+M)|Vi(si1), . . . , Vi(sij)

)
. (9)

To calculate (9), first define Y M
i =

(
Yi(ti,j+1), . . . , Yi(ti,j+M)

)T
and V i =

(
Vi(si1), . . . , Vi(sij)

)T
. Then,

since the joint distribution of Y i and V i is a multivariate normal distribution as shown in Section 3, we

can calculate the conditional expectation (9) as follows

E
(
Yi(ti,j+1), . . . , Yi(ti,j+M)|Vi(si1), . . . , Vi(sij)

)
= E

(
Y M

i |V i

)
= E(Y M

i ) +ΣY M
i V i

Σ−1
V i

(
V i − E(V i)

)
,

in which E(Y M
i ) = X1iβ1+T iα and E(V i) = X2iβ2+Siγ. Also, ΣV i is the covariance matrix of V i for

subject i and ΣY iV i is the covariance matrix of Y M
i and V i for subject i. More generally, we can predict

the response evolutions in the next M follow-ups by also conditioning on the prior response measurements

Y i =
(
Yi(ti1), . . . , Yi(tij)

)T
. For this, denoting Y ∗

i =
[
Y i
V i

]
as before, we obtain

E
(
Yi(ti,j+1), . . . , Yi(ti,j+M)|Vi(si1), . . . , Vi(sij), Yi(ti1), . . . , Yi(tij)

)
= E

(
Y M

i |V i,Y i

)
= E(Y M

i ) +ΣY M
i Y ∗

i
Σ−1

Y ∗
i

(
Y ∗

i − E(Y ∗
i )
)
,

(10)

The covariance matrices ΣY M
i Y ∗

i
and ΣY ∗

i
are submatrices of the full covariance matrix in (4), which can

be directly calculated using PROC MIXED (the code is provided in the online Appendix D). Furthermore,

E(Y M
i ) and E(Y ∗

i ) can be calculated using PROC MIXED for each subject (see the online Appendix D).

In Section 4.2, we will use formula (10) to predict the CD4 evolutions after the treatment initiation given

the entire viral load curve observed prior to the treatment period as well as the prior CD4 measurements.

3.4. Testing for a polynomial fit versus a penalised spline smoother

In the joint mixed model (3), it is useful to develop a test for choosing between a simpler polynomial

fit and a general alternative described by penalised splines. This would help us to decide whether we can

remove the truncated polynomial functions, resulting in a simpler joint mixed model without random spline

coefficients. This is equivalent to testing whether or not all coefficients of the truncated power functions,

which account for departures from a polynomial, are identically 0. This testing problem can be expressed

as follows: {
H0 : σ2

u = σ2
u∗ = 0

HA : {σ2
u > 0} ∪ {σ2

u∗ > 0}.
(11)

To perform the above hypothesis test, a main challenge is that the null hypothesis places the variance

components on the boundary of parameter space. As a consequence, there is no open set containing the true

variance components under the null hypothesis. Therefore, the classical asymptotic chi-squared distribution
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of the likelihood ratio (LR) or restricted LR test statistic is not valid (see, for example, Stram and Lee, 1994;

Drikvandi et al., 2012, 2013; Drikvandi and Noorian, 2019). For testing zero variance components, it is

shown that the correct asymptotic distribution of the LR or restricted LR statistic is a mixture of chi-squared

distributions, provided that the response variable can be partitioned into independent subvectors and the

number of subvectors tends to infinity (e.g., Stram and Lee, 1994). However, this assumption does not hold

under the alternative hypothesis above because the spline coefficients u and u∗ are at the population level

and not at the subject level. Therefore, the mixture of chi-squared distributions is not applicable either.

One alternative approach would be to simulate the null distribution of the LR statistic using bootstrap or

permutation; however, this may be unfeasible as it is not clear how bootstrap or permutation samples can

be obtained under the null hypothesis in (11).

To avoid the above issues for testing H0 versus HA in (11), we use the Bayesian test proposed by Rao

et al. (2019), which does not suffer the boundary issues. Their suggested Bayesian test can be used for

testing multiple random effects. For this, we first implement the Monte Carlo simulation to calculate their

proposed formula for the Bayes factor according to the procedure in Rao et al. (2019) and using their

recommended prior distributions for the parameters. We then interpret the simulated Bayes factor using

the popular scales in Jeffreys (1961) and Wasserman (2000) to conduct the test. If H0 is not rejected, one

can remove the truncated polynomial functions from m1 and m2 in (2), resulting in a simpler joint mixed

model without random spline coefficients. Rao et al. (2019) showed that the Bayesian test has a high power

for testing multiple random effects. We will apply this test to our case study in the next section.

4. Results

In this section, we first conduct simulations to examine the performance of the joint mixed model (1) on

simulated data and compare it with three other methods. We then focus on analysing our motivating AIDS

data application using the presented framework.

4.1. Simulations

In the simulations, we generate 100 random simulated data sets according to the joint mixed model (12) used

for the AIDS data in next section, where we set the true parameter values based on the estimates obtained

in Table 1 for the real data using the joint model. We also use the same number of repeated measurements

for subjects as in the AIDS data. We fit the joint mixed model (12) to each simulated data set (using

the codes in the online Appendix D) and calculate the estimation bias for all parameters. For comparison

purposes, to the best of our knowledge, the recent methods in the literature cannot be applied when the

longitudinal response and the time-varying covariate are measured at different time points. However, there

are some common ad hoc methods that can be used for this purpose. A sensible approach is to impute the

covariate values to temporally align the measurements with the response measurements, and then apply

the standard longitudinal analysis. For this, we use the time-varying submodel to estimate those covariate

values based on multiple imputation accounting for the uncertainty of estimation. In addition to this

method, we also apply a linear mixed model fitted using the REML method to each outcome separately

and calculate the bias of parameter estimates from each model accordingly. Additionally, we similarly

apply separate Bayesian linear mixed models fitted using the MCMC estimation algorithm (available in

R package MCMCglmm). Figures 2 and 3 show the bias of fixed-effects parameter estimates from all the
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four methods for the CD4 cell count and viral load submodels, respectively. Also, Figures 4 and 5 show

the bias of variance parameter estimates from all the four methods for the CD4 cell count and viral load

submodels, respectively. The box plots indicate that the estimation bias from the joint mixed model is

generally very small for all the parameters. The imputation-based method and the two separate modelling

methods show relatively small biases for fixed-effects parameter estimates, while the estimation bias for

variance parameters of these methods is substantially larger compared to the joint mixed model. We note

that the separate modelling ignores the dependence and association between the response and time-varying

covariate, and the imputation-based method tends to improve on this as it conditions on the viral load by

incorporating the imputed covariate values. As one expects, the fixed-effects parameter estimates do not

show very large biases, but the large bias of the variance parameter estimates would affect the inferences

(e.g., hypothesis tests) regarding the fixed-effects parameters, as shown in our data analysis in the next

subsection. Unlike the joint mixed model, the separate models do not allow us to investigate the association

and temporal correlation between the response and time-varying covariate.

We also evaluate the prediction performance of the methods on 30 new simulated data sets, where the

predictions of CD4 cell counts are calculated by conditioning on the previous measurements of the viral load

and the CD4 cell count, as in formula (10). The mean squared prediction error of the joint mixed model

is 0.09 (the unit is log scale) and it is 0.15 for the imputation-based method, while the two methods with

separate mixed models and separate Bayesian mixed models produce relatively larger prediction errors

of 0.22 and 0.21, respectively. Additional simulation results, including simulations when the normality

assumptions in the joint model do not hold, are deferred to the online Appendix C due to space limitations.

4.2. Analysis of the AIDS data

We analyse the AIDS data described in Section 2 using the suggested framework and provide answers to

the questions raised in this case study. For this, we jointly model the log CD4 cell count and the log viral

load using a spline-based joint mixed model in accordance with the joint mixed model (1). Note that for the

viral load there is an immediate drop at time 0 because the start of the treatment immediately suppresses

the virus in the body. This suggests that the regression function may not be smooth around 0 in the viral

load submodel. For the CD4 cell count there is a V-shaped behaviour in the observed profile (see Figure

6a), which is expected from a clinical perspective, however there seems to be more smoothness around 0

for the CD4 cell count. The qualitative different nature of CD4 jump and viral load jump is biologically

understandable, yet it is subtle from a modelling point of view. Therefore, to account for such behaviour,

we consider two separate regression functions before and after 0 in each submodel. Our joint mixed model

for the AIDS data is then as follows:

CD4i(tij) = m1,before(tij) +m1,after(tij) + β1Agei + β2Genderi + β3I
trt
i tijI(tij > 0)

+ b1i,beforeI(tij ≤ 0) + b2i,beforetijI(tij ≤ 0) + b3i,afterI(tij > 0)

+ b4i,aftertijI(tij > 0) + ε1i(tij),

V Li(sij) = m2,before(sij) +m2,after(sij) + β4Agei + β5Genderi + β6I
trt
i sijI(sij > 0)

+ b5i,beforeI(sij ≤ 0) + b6i,beforesijI(sij ≤ 0) + b7i,afterI(sij > 0)

+ b8i,aftersijI(sij > 0) + ε2i(sij),

(12)

where CD4i(tij) and V Li(sij) are the log-transformed values of CD4 for patient i at time tij and vi-

ral load for patient i at time sij respectively, m1,before and m1,after are two separate smooth functions

of time capturing the evolution of the CD4 before and after the treatment respectively, m2,before and

m2,after are two separate smooth functions of time capturing the evolution of the viral load before and
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Figure 2: Estimation bias for fixed-effects parameters in the CD4 cell count submodel using the joint
mixed model (denoted by JMM), as well as the method with two separate mixed models (denoted by
SMM), the method with two separate Bayesian mixed models (denoted by BMM), and the imputation-
based mixed model (denoted by IMM) over 100 simulation replications.
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Figure 3: Estimation bias for fixed-effects parameters in the viral load submodel using the joint mixed
model (denoted by JMM), as well as the method with two separate mixed models (denoted by SMM), the
method with two separate Bayesian mixed models (denoted by BMM), and the imputation-based mixed
model (denoted by IMM) over 100 simulation replications.
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Figure 4: Estimation bias for variance parameters in the CD4 cell count submodel using the joint mixed
model (denoted by JMM), as well as the method with two separate mixed models (denoted by SMM), the
method with two separate Bayesian mixed models (denoted by BMM), and the imputation-based mixed
model (denoted by IMM) over 100 simulation replications.
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Figure 5: Estimation bias for variance parameters in the viral load submodel using the joint mixed model
(denoted by JMM), as well as the method with two separate mixed models (denoted by SMM), the method
with two separate Bayesian mixed models (denoted by BMM), and the imputation-based mixed model
(denoted by IMM) over 100 simulation replications.
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after the treatment respectively, Agei and Genderi are the age and gender for patient i, and Itrti is the

treatment indicator for patient i which is 1 if the patient received NNTRI and 0 if the patient received

PI. Also, (β1, β2, β3)
T and (β4, β5, β6)

′ are the fixed-effects parameters associated with the baseline covari-

ates for the CD4 and viral load submodels, respectively. Moreover, (b1i,before, b2i,before, b3i,after, b4i,after)
T

and (b5i,before, b6i,before, b7i,after, b8i,after)
T are two vectors of subject-specific random effects capturing the

between-patient variability for the CD4 and viral load submodels respectively, where we allow different

random intercepts and slopes before and after the treatment. Finally, ε1i(tij) and ε2i(sij) are, respectively,

measurement errors for the CD4 measured at time tij and the viral load measured at time sij .

As discussed in Section 3, to minimise the risk of overfitting, we here use the first degree penalised

spline functions for the temporal evolutions of the CD4 and the viral load before and after the treatment,

as specified below:

m1,before(tij) = α0,beforeI(tij ≤ 0) + α1,beforetijI(tij ≤ 0) +
10∑
k=1

uk(tij − κk)+I(tij ≤ 0)

m1,after(tij) = α0,afterI(tij > 0) + α1,aftertijI(tij > 0) +
10∑
k=1

uk(tij − κk)+I(tij > 0)

m2,before(sij) = γ0,beforeI(sij ≤ 0) + γ1,beforesijI(sij ≤ 0) +
10∑
l=1

u∗
l (sij − λl)+I(sij ≤ 0)

m2,after(sij) = γ0,afterI(sij > 0) + γ1,aftersijI(sij > 0) +
10∑
l=1

u∗
l (sij − λl)+I(sij > 0),

where we recall that the random spline coefficients uk’s and u∗
l ’s are not subject-specific, so they are constant

across patients.

It is important to note that parameter β3 in the CD4 submodel is not interpretable as a treatment effect,

and one should not conclude causality regarding an effect of treatment from this analysis; see Hernán et al.

(2002) for a discussion on this. We emphasise that our aim here is to study how the trend changes once

the treatment is initiated and whether or not such changes are different between groups. For this purpose,

we add the indicator variable I(tij > 0) in the CD4 submodel to adjust for time after treatment initiation.

Similarly, the indicator variable I(sij > 0) is added in the viral load submodel for parameter β6.

As mentioned in Section 3, we use PROC HPMIXED and PROC MIXED in SAS to fit the joint mixed

model (12) to the AIDS data (see the SAS code in the online Appendix D). We consider unstructured

covariance matrices for the random effects in the joint mixed model (12). We assume the measurements

errors of the CD4 cell count and viral load are uncorrelated (i.e., σ12(tij , sij) = 0) because the repeated

measurements of the CD4 cell count and viral load are taken at different time points. Note that this is

not because of any computational limitation as the joint model can be similarly fitted allowing a non-zero

σ12(tij , sij). We model the error variance as an exponential function of time by setting LOCAL=EXP(time)

in the SAS REPEATED statement. The estimate of the exponential local effect is 0.0035, which is significant

based on a p-value of 0.0015. The estimates of the fixed-effects parameters and their associated standard

errors are shown in Table 1, along with those of the imputation-based method and the two methods with

separate mixed models and separate Bayesian mixed models. In line with our simulation results, the fixed-

effects parameter estimates from the two separate modelling methods and the imputation-based method are

not substantially different in comparison with the joint mixed model. The restricted maximum likelihood

estimates of the covariances parameters from the joint mixed model are reported in Table 2, along with

those of the other methods. As in our simulation results, the variance estimates from the separate modelling

methods are different than the joint mixed model, and moreover only the joint mixed model provides

covariances between the CD4 cell count and viral load. Despite the fixed-effects parameter estimates are

not much different, the two separate models produce different inferences for three of the parameters, which
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Table 1: The estimates of the fixed-effects parameters and associated standard errors obtained from fitting
the joint mixed model (12), denoted by JMM, to the AIDS data, along with the estimates obtained from
fitting the method with two separate mixed models, denoted by SMM, and the method with two separate
Bayesian mixed models, denoted by BMM, as well as the imputation-based mixed model, denoted by IMM.
Note that the significant coefficients at significance level 5% or 10% are marked by ∗ or ∗∗.

Effect Parameter Estimate (s.e.)
JMM

Estimate (s.e.)
SMM

Estimate (pMCMC)
BMM

Estimate (s.e.)
IMM

CD4 model
intercept before treatment α0,before 5.8231 (0.1035)∗ 5.7200 (0.0833)∗ 5.7213 (0.001)∗ 5.7406 (0.0879)∗

intercept after treatment α0,after 6.0888 (0.1034)∗ 6.0525 (0.0864)∗ 6.0535 (0.001)∗ 6.0528 (0.0867)∗

age β1 −0.0025 (0.0021) −0.0005 (0.0017) −0.0005 (0.754) −0.0005 (0.0016)
gender (female) β2 −0.1136 (0.0529)∗ −0.0918 (0.0420)∗ −0.0920 (0.028)∗ −0.0919 (0.0400)∗

time before treatment α1,before −0.0062 (0.0014)∗ −0.0075 (0.0012)∗ −0.0074 (0.001)∗ −0.0074 (0.0011)∗

time after treatment α1,after 0.0547 (0.0031)∗ 0.0595 (0.0029)∗ 0.0595 (0.001)∗ 0.0592 (0.0030)∗

time∗treatment (PI) β3 −0.0002 (0.0007) −0.0003 (0.0004) −0.0003 (0.610) −0.0002 (0.0005)

Viral load model
intercept before treatment γ0,before 4.5002 (0.1802)∗ 4.3931 (0.1664)∗ 4.4379 (0.001)∗ 4.4246 (0.0978)∗

intercept after treatment γ0,after 2.3058 (0.1861)∗ 2.2398 (0.1774)∗ 2.2821 (0.001)∗ 2.1857 (0.0961)∗

age β4 −0.0011 (0.0025) −0.0016 (0.0020) −0.0021 (0.318) −0.0024 (0.0022)
gender (female) β5 −0.1470 (0.0612)∗ −0.1674 (0.0489)∗ −0.1772 (0.001)∗ −0.2027 (0.0554)∗

time before treatment γ1,before 0.0033 (0.0034) 0.0063 (0.0027)∗ 0.0073 (0.001)∗ 0.0034 (0.0021)
time after treatment γ1,after −0.0188 (0.0097)∗ −0.0285 (0.0182) −0.0262 (0.166) −0.0284 (0.0009)∗

time∗treatment (PI) β6 0.0036 (0.0019)∗∗ 0.0017 (0.0012) 0.0013 (0.258) 0.0059 (0.0014)∗

−2 log-likelihood 30721.2 31416.03 · 30115.1

is due to the bias in standard errors of the fixed-effects parameter estimates caused by the large bias of the

variance parameter estimates. Also, the imputation-based method does not model the association between

the CD4 cell count and viral load, so it does not produce estimates for the covariance parameters between

the two outcomes. Consequently, we cannot use this method to investigate the temporal association between

the CD4 cell count and viral load.

Furthermore, from the results of the joint mixed model in Table 1, we can see that the time has a

significant positive effect on the CD4 cell count after the treatment initiation, while the time effect prior

to the treatment is negative. The time effects on the viral load before and after the treatment are reverse,

so the time has a significant negative effect on the viral load after the treatment initiation. These results

support the effectiveness of the treatments. Also, parameter β6 in the viral load submodel is significant,

which suggests a different trend over time between the treatments. The two methods with separate mixed

models do not capture this.

Figure 6a shows the smoothed mean profile of the CD4 cell count and the fitted line obtained from

fitting joint model (12) to the AIDS data. Similarly, Figure 6b shows the smoothed mean profile of the

viral load and the fitted line obtained from fitting joint model (12) to the AIDS data. Considering the high

variability between patients (recall Figure 1), the joint model performs very well in capturing the pattern

and evolutions of both the CD4 cell count and the viral load over time. Furthermore, no major issue can be

observed with the residuals of the CD4 cell count and viral load presented in Figures 6c and 6d respectively.

See further discussion on this in the online Appendix B, where we also provide additional model checking

results including checking the normality assumptions in the joint mixed model.

The theory in Sections 3.1 and 3.2 enables us to calculate the estimated temporal effects of the viral load

on the CD4 cell count before and after the treatment initiation. The surface plots are shown in Figures 7a

and 7b respectively. From these figures, it can be seen that the estimated temporal effects of the viral load

on the CD4 cell count is generally negative, and the temporal effects get weaker after treatment compared

to before treatment (see the colour bars). In particular, the temporal effects of the viral load on the CD4
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Table 2: The estimates of the covariance parameters obtained from fitting the joint mixed model (12),
denoted by JMM, to the AIDS data, along with the estimates obtained from fitting the method with two
separate mixed models, denoted by SMM, and the method with two separate Bayesian mixed models,
denoted by BMM, as well as the imputation-based mixed model, denoted by IMM.

Covariance parameter Estimate JMM Estimate SMM Estimate BMM Estimate IMM
Var(b1i,before) 0.84450 0.56227 0.56730 0.74985
Var(b2i,before) 0.00022 0.00013 0.00014 0.00014
Var(b3i,after) 0.82370 0.38334 0.38560 0.61917
Var(b4i,after) 0.00012 0.00004 0.00004 0.00005
Var(b5i,before) 0.61600 0.35336 0.35310 0.64571
Var(b6i,before) 0.00075 0.00003 0.00001 0.00064
Var(b7i,after) 0.77060 0.47170 0.47320 0.68430
Var(b8i,after) 0.00025 0.00005 0.00006 0.00023
Cov(b1i,before, b2i,before) 0.00507 0.00672 0.00671 0.08080
Cov(b1i,before, b3i,after) 0.26610 0.37509 0.37750 0.07680
Cov(b1i,before, b4i,after) −0.00267 −0.00293 −0.00295 −0.06000
Cov(b1i,before, b5i,before) −0.06252 · · ·
Cov(b1i,before, b6i,before) 0.01669 · · ·
Cov(b1i,before, b7i,after) 0.00298 · · ·
Cov(b1i,before, b8i,after) 0.00251 · · ·
Cov(b2i,before, b3i,after) 0.00514 0.00415 0.00413 0.05740
Cov(b2i,before, b4i,after) −0.00009 −0.00005 −0.00004 −0.05800
Cov(b2i,before, b5i,before) −0.00040 · · ·
Cov(b2i,before, b6i,before) −0.00009 · · ·
Cov(b2i,before, b7i,after) −0.00033 · · ·
Cov(b2i,before, b8i,after) 0.00006 · · ·
Cov(b3i,after, b4i,after) −0.00563 −0.00234 −0.00235 −0.05910
Cov(b3i,after, b5i,before) −0.01594 · · ·
Cov(b3i,after, b6i,before) −0.00339 · · ·
Cov(b3i,after, b7i,after) −0.04506 · · ·
Cov(b3i,after, b8i,after) −0.00076 · · ·
Cov(b4i,after, b5i,before) 0.00035 · · ·
Cov(b4i,after, b6i,before) 0.00001 · · ·
Cov(b4i,after, b7i,after) 0.00003 · · ·
Cov(b4i,after, b8i,after) −0.00005 · · ·
Cov(b5i,before, b6i,before) 0.00059 0.00085 0.00052 −0.04600
Cov(b5i,before, b7i,after) 0.01410 −0.00584 −0.01815 −0.06700
Cov(b5i,before, b8i,after) −0.00409 −0.00288 0.00369 0.10900
Cov(b6i,before, b7i,after) 0.00788 0.00151 0.00153 0.05500
Cov(b6i,before, b8i,after) 0.00001 −0.00001 −0.00001 0.02800
Cov(b7i,after, b8i,after) −0.00405 −0.00001 −0.00178 −0.11400
Var(uk) 0.00013 0.00027 0.00046 0.00028
Var(u∗

l ) 0.00006 0.00033 0.00050 0.00013
Var(ε1i) 0.09115 0.09320 0.09325 0.09321
Var(ε2i) 0.50490 0.56943 0.57620 0.49424
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cell count is weak (i.e., closer to 0) at the beginning of study (i.e., around tij = −250 and sij = −250),

but it then tends to get stronger (more negative) before the treatment is started. It gets weak again once

the treatment is initiated (i.e., around tij = 0 and sij = 0) which is because the viral load drops with the

start of treatment (recall the mean profile of viral load in Figure 6b). Figures 7c and 7d show the temporal

correlation between the CD4 cell count and the viral load before and after the treatment, respectively. From

these figures, the temporal correlation between the CD4 cell count and the viral load is negative especially

before the treatment period. The correlation is strongest (most negative) prior to the start of treatment,

and it gets weaker (i.e., very close to 0) once the treatment is started.

We then used the prediction formula (10) in Section 3.3 to calculate the predictions of the CD4 evolutions

after the treatment initiation (i.e., after t = 0) given the entire viral load curve observed prior to t = 0 and

the prior CD4 measurements. As the treatment was randomised, such predictions would allow clinicians

to pick the treatment with the most favourable outcome profile as discussed in Section 3.3. We calculated

the predictions for six randomly selected patients. The prediction plots, presented in Figure 8, show that

the joint mixed model produces good predictions of CD4 cell counts, considering the fact that predictions

at the individual level are generally more uncertain compared to predictions at the population level.

We also applied the Bayesian test of Rao et al. (2019) explained in Section 3.4 to test whether a simpler

polynomial fit can be used instead of the model with penalised spline functions. For this, we obtained

a simulated Bayes factor of 20.83, which is relatively large according to the scales in Jeffreys (1961) and

Wasserman (2000). This suggests that the spline functions are significant and therefore needed in the joint

mixed model (12) to adequately capture the evolutions of the CD4 cell count and the viral load over time.

5. Some extensions

5.1. Extension to more than one time-varying covariate

For simplicity of presentation and in line with the AIDS application, the proposed framework is first

demonstrated for the case of one time-varying covariate. The joint mixed model can similarly be extended

to situations with multiple time-varying covariates. This can be done by including a submodel for each

time-varying covariate. We explain this for the case when there are two time-varying covariates in the

study, denoted by V1 and V2. We write the corresponding joint mixed model as follows
Yi(tij) = xT

1iβ1 + zT
1ib1i +m1(tij) + ε1i(tij)

V1i(sij) = xT
2iβ2 + zT

2ib2i +m2(sij) + ε2i(sij)

V2i(rij) = xT
3iβ3 + zT

3ib3i +m3(rij) + ε3i(rij),

where the second time-varying covariate V2 is also allowed to be measured at different time points rij . The

calculation for the above model is similarly done using the estimation method we used in Section 3. We note

that if there are several time-varying covariates in a data application requiring several possible submodels,

we suggest to implement the pairwise model fitting approach of Fieuws and Verbeke (2006) which can

calculate the joint likelihood by evaluating each pair of submodels to find the parameter estimates of the

joint mixed model. Fieuws and Verbeke (2006) showed the effectiveness of this approach when jointly

modelling many variables.
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(a) Mean profile of the log CD4 cell count in blue (solid line)
and the smoothed fitted line in red (dashed line).

(b) Mean profile of the log viral load in blue (solid line) and
the smoothed fitted line in red (dashed line).

(c) Residuals of the CD4 cell count. (d) Residuals of the viral load.

Figure 6: Plots obtained from fitting the joint mixed model (12) to the AIDS data.
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(a) The temporal effects of the viral load on the CD4 cell
count before treatment.

(b) The temporal effects of the viral load on the CD4 cell
count after treatment.

(c) The temporal correlation between the viral load and
the CD4 cell count before treatment.

(d) The temporal correlation between the viral load and
the CD4 cell count after treatment.

Figure 7: Surface plots of the temporal effects of the viral load on the CD4 cell count as well as the
temporal correlation between them before and after treatment, obtained from fitting the joint mixed model
(12) to the AIDS data. As the colour bar shows, the darker colour the higher impact the viral load would
have on the CD4 cell count at that time.
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(a) Patient id 98. (b) Patient id 437.

(c) Patient id 492. (d) Patient id 503.

(e) Patient id 761.
(f) Patient id 884.

Figure 8: The predictions of the CD4 evolutions, along with lower and upper bounds, after the treatment
initiation (i.e., after t = 0) given the entire viral load curve observed prior to the treatment and the prior
CD4 measurements for six randomly selected patients.
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5.2. Extension to other types of time-varying covariate

Another extension relates to modelling other types of time-varying covariates which may be binary or

categorical etc., such as treatment indicators or whether currently infected with an infectious virus such

as COVID-19. Modelling such time-varying covariates will require an extension to the joint mixed model

(1) by incorporating a generalised linear mixed model for such time-varying covariate. We consider the

setting where there is a binary time-varying covariate, say Vi, taking the value 1 or 0. One may think of a

logistic submodel for Vi; however, it can be easier to use a latent variable formulation. For this, suppose

that there is a latent continuous variable V ∗
i so that Vi = 1 if V ∗

i > 0 and Vi = 0 if V ∗
i ≤ 0. Using

V ∗
i ∼ N

(
xT
2iβ2 + ST

ijγ, z
T
2iD22z2i + σ2

u∗ΛT
ijΛij + σ2

2(sij)
)
, the probabilities for outcomes of the binary

covariate are calculated as

P (Vi = 1) = P (V ∗
i > 0) = 1− Φ

(
−
(
xT
2iβ2 + ST

ijγ
)/√

zT
2iD22z2i + σ2

u∗ΛT
ijΛij + σ2

2(sij)
)
,

P (Vi = 0) = P (V ∗
i ≤ 0) = Φ

(
−
(
xT
2iβ2 + ST

ijγ
)/√

zT
2iD22z2i + σ2

u∗ΛT
ijΛij + σ2

2(sij)
)
,

where Φ(·) denotes the CDF of the standard normal distribution. The corresponding joint mixed model

based on the latent continuous variable V ∗
i is then as follows{

Yi(tij) = xT
1iβ1 + zT

1ib1i + T T
ijα+KT

iju+ ε1i(tij)

V ∗
i (sij) = xT

2iβ2 + zT
2ib2i + ST

ijγ +ΛT
iju

∗ + ε2i(sij).

The estimation method in Section 3 can be used to fit this joint mixed model. The latent variable formu-

lation can also be adopted to model a dichotomous time-varying covariate with more than two categories.

6. Conclusions

We have presented a framework for analysing longitudinal data involving time-varying covariates that

addresses some limitations of the existing methods. The main advantages of the proposed framework, while

capturing the covariate process for time-varying covariates, are its effectiveness in handling the situations

where the longitudinal response and time-varying covariates are measured at different time points, as

well as its flexibility in both selecting covariance structures and choosing functions for the evolutions of

variables over time (simple polynomial or general penalised spline functions). Also, this approach enables

us to study and find out the temporal association between a time-varying covariate and the outcome

of interest. Furthermore, it allows us to predict the response evolutions given the history of the time-

varying covariate rather than just conditioning on a single observed value of the time-varying covariate.

We have illustrated these advantages using a motivating data application from an AIDS cohort study

conducted in Belgium, where we also saw that the recent methods cannot be applied and moreover the

separate modelling of the outcomes would lead to misleading inferences for some parameters. This is

because separate modelling ignores the dependence and association between the response and time-varying

covariates. Separate modelling also would not easily allow predicting future outcomes conditional on a series

of longitudinally measured outcome values. In this paper, we have not discussed the problem of missing

data as there were no missing values in the AIDS data. Another advantage of the suggested framework is

that the response and the time-varying covariate are treated equally, implying that results are valid under

the assumption of missingness at random (MAR). In case this assumption would be believed to be violated,

standard techniques such as multiple imputation could be incorporated in this framework. Finally, we have

written a SAS programme for fitting the joint mixed model (12) to the AIDS data which can be found in

the online Appendix D, along with an R implementation in the online Appendix E.
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