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Abstract 

The now-classic goal gradient hypothesis posits that organisms increase effort expenditure as a 

function of their proximity to a goal. Despite nearly a century having passed since its original 

formulation, goal gradient-like behaviour in human cognitive performance remains poorly 

understood: are we more willing to engage in costly cognitive processing when we are near, 

versus far from a goal state? Moreover, the computational mechanisms underpinning these 

potential goal gradient effects—for example, whether goal proximity affects fidelity of stimulus 

encoding, response caution, or other identifiable mechanisms governing speed and accuracy—

are unclear. Here, in two experiments, we examine the effect of goal proximity, operationalized 

as progress towards completion of a rewarded task block, upon task performance in an 

attentionally demanding oddball task. Supporting the goal gradient hypothesis, we found that 

participants responded more quickly, but not less accurately, when rewards were proximal than 

when they were distal. Critically, this effect was only observed when participants were given 

information about goal proximity. Using hierarchical Drift Diffusion Modeling, we found that 

these apparent goal gradient performance effects were best explained by a collapsing bound 

model, in which proximity to a goal reduced response caution and increased information 

processing. Taken together, these results suggest that goal gradients could help explain the oft-

observed fluctuations in engagement of cognitively effortful processing, extending the scope of 

the goal-gradient hypothesis to the domain of cognitive tasks. 

  



PROXIMITY AND CONTROL   2
   

Public Significance Statement 

It is well-known that humans and animals alike tend to work harder as they near a goal. Whether 

it be a hungry rat moving closer to a food reward or a runner sprinting the final kilometer of a 

race, organisms appear to intensify their effort as a function of their proximity to a goal. But does 

the same principle apply in purely mental tasks—e.g., when writing an exam, or doing one’s 

taxes? And if so, how does behaviour change? In these studies, we examine whether proximity to 

a goal affects a person’s willingness to exert mental effort in a simple, but cognitively 

demanding task. Consistent with the established goal-gradient hypothesis, we find that 

participants intensified their level cognitive effort—as indexed by their response speed and 

ability to correctly respond—closer to a goal (versus further away). Using computational 

modeling, we found that while processed information more efficiently near a goal, but were also 

less cautious in their decision-making. Taken together, our results extend past findings about the 

effects of goal proximity on effort to the domain of purely cognitive tasks  
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Many goals in daily life require the sustained investment of cognitive effort to 

accomplish (e.g., working an 8-hour shift, filing one’s taxes, or writing a lengthy research paper). 

However, ample evidence suggests that people find it difficult to exert sustained cognitive effort 

over long periods of time (Inzlicht et al., 2014; Kurzban, 2016; Lin et al., 2020; Massar et al., 

2016; Shenhav et al., 2017; Umemoto et al., 2019; Wiehler et al., 2022) and that, all else being 

equal, people tend to avoid engagement in cognitively demanding behaviours (Hull, 1943; Kool 

et al., 2010; Shenhav et al., 2017; Vogel et al., 2020; Westbrook et al., 2013).  

Yet, while evidence suggests that the sensation of effort accrues over sustained exertion 

(Francis et al., 2018; Lorist et al., 2000; Wiehler et al., 2022; Ackerman, 2011), recent and 

classical work highlights the human and animal tendency to increase effort exertion near a goal. 

This idea was first formalized by Hull’s (1932) goal-gradient hypothesis, which posits that 

organisms increase (physical) effort expenditure as their distance to a goal decreases. Supporting 

this idea, Brown (1948) observed that the force (i.e., vigor) with which rats ran down a straight 

alley was proportional to their proximity to a reward, such that the animals exerted more force 

near a reward versus further away. Extending this idea to human behavior, swimmers and 

runners ‘sprint to finish’ in the final distances of a race (McGibbon et al., 2018; Tucker et al., 

2006),students study more at the end of the semester than the middle (Brahm et al., 2017), and 

laboratory participants take fewer breaks near the end of a long experiment (Katzir et al., 2020).  

However, despite nearly a century having passed since the goal gradient hypothesis was 

first postulated—which was originally concerned with physical (i.e., motor) effort—little work 

has examined potential goal gradient effects in the cognitive domain. Namely, do individuals 

intensify their cognitive effort investment as they approach a task goal—for example, the end of 

a block of trials? While many researchers have observed that a person’s exertion of flexible 
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control over behaviour fluctuates considerably over time (Braver et al., 2003; Kahneman, 1973), 

a heretofore overlooked, but potentially important determinant of momentary effort exertion is 

goal proximity. For example, Emanuel et al. (2022) recently demonstrated that people make 

more frequent button responses as they near a time limit during a computer game task. While the 

key outcome variable in this study was motor execution speed, it is noteworthy that the task itself 

involved a degree of cognitive effort (e.g., aiming and predicting a spaceship’s trajectory). These 

results thus hint that cognitive effort may follow a similar gradient-like pattern to motor effort, 

but importantly, the task used in this work was not designed to directly index cognitive effort 

exertion. 

Moreover, while past work has demonstrated that goal proximity invigorates responding 

(Emanuel et al., 2022; Hull, 1932), it is unclear how goal proximity affects cognitive task 

performance—i.e., the speed and fidelity of information processing. More specifically, is 

information processing fidelity enhanced near a goal—simultaneously resulting in faster and 

more accurate decisions—or do individuals shift their speed-accuracy trade-off to respond more 

quickly, but less accurately, near a goal? Here, we provide a direct examination of goal-gradient 

effects in cognitive task performance as individuals completed a simple cognitive task.  

To do this, we employ an attentionally demanding oddball task (Beierholm et al., 2013; 

see Figure 1), which required participants to maintain active attention to make rapid (sub-second) 

and accurate judgements about which of three stimuli presented on the screen is the “odd one 

out”. Critically, on half of the trials, participants were presented with visual information about 

their progress with respect to a goal (Figure 1A)—i.e., the number of remaining correct 

responses needed to complete a block and receive a monetary reward—allowing us to measure 

subject-specific modulations in performance (response time and accuracy) as a function of goal 
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proximity and, in turn, to probe the specific computational mechanisms underpinning potential 

goal-gradient effects using a Drift Diffusion Model (Wiecki et al., 2013; da Silva Castanheira et 

al., 2022).  

 In an initial experiment (N=40) and a replication sample (N=42), we find that participants 

invested greater cognitive effort—manifesting in performance increases—when a goal state was 

proximal versus distant, and critically, these performance effects were only observed when 

participants had information about their progress through a block (i.e., a progress bar, see Figure 

1A, versus no progress information, Figure 1B).  

To test whether goal proximity enhances attentional processing manifesting as strength of 

evidence, or if it shifts response strategy via higher response caution—we used a Drift Diffusion 

Model (DDM; Ratcliff & McKoon, 2008; Wiecki et al., 2013). In brief, the DDM assumes that 

the internal evidence used to make a decision accumulates over time until a response threshold—

which controls the speed-accuracy trade-off—is reached. By jointly analyzing response accuracy 

and response times (RTs), fitting a DDM affords additional understanding of whether the effects 

of goal proximity on cognitive effort exertion are attributable to increases in the strength of 

evidence accumulation (i.e., a faster drift rate; which would result in more accurate and faster 

responses and indicate better information encoding), or by increases in response caution (i.e., 

elevated response thresholds; which would result in more accurate but slower responses and 

indicate a shift in response strategy near a goal). Critically then, the DDM allows us to dissociate 

between the cognitive mechanisms underpinning effortful control near a goal—is speeding 

driven by heightened drift rates, reflecting an uptick in the rate of information processing, and/or 

by reduced response caution, reflecting a shift along a speed-accuracy tradeoff? 

 



PROXIMITY AND CONTROL   6
   

Method 

Below, we describe the procedure for two experiments: an initial experiment (Experiment 

1) and a nearly identical replication study (Experiment 2). As described below, differences 

between these two experiments were minimal. Because these experiment designs and ensuing 

results were nearly identical, our Results section reports results from both experiments, though 

both datasets were analyzed separately.  

Participants 

To estimate an appropriate sample size, we conducted a simulation-based power analysis 

(Arend & Schäfer, 2019) in which participant behaviour that was consistent with our hypotheses 

was simulated on the Oddball task (described) below. Owing in part to the large number of 

repeated trials individual participants completed in a session (median = 1372 trials/participant), 

this a priori power analysis revealed that 25 participants would yield 80% power to detect effect 

sizes of minimal interest (see Supplemental Materials for full details of the power analysis). 

Expecting some participants to be excluded (see below), in Experiment 1, we recruited 40 

healthy adult participants (91% female; average age = 22.24, SD = 3.64) from McGill 

University's participant pool. All participants gave informed consent prior to testing and were 

compensated with course credit plus a cash bonus of $5 CAN. This procedure was approved by 

the McGill Research Ethics Board (REB #137-0816).  

To ensure participants achieved a minimum level of performance, we excluded 

participants who failed to meet the following criteria in the final analysis: more than 25% of 

responses were missing, participants responded incorrectly, on average, less than 43% of the 

time (10% more than chance performance), and average response times (RTs) were smaller than 

100ms. These exclusion criteria unexpectedly resulted in the exclusion of 17 participants, leaving 
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only 23 participants in the final analysis, falling short of our target sample size. Participant 

debriefings indicated that the lack of distinguishable boundaries between trials (i.e., inter-

stimulus intervals; ITIs; see Figure 1) may have contributed to some participants’ poor accuracy 

rates in Experiment 1. 

 In Experiment 2, we attempted to mitigate this issue, recruiting an additional 42 

participants (91% female; average age = 20.00, SD = 1.58) in a replication study that was 

identical to Experiment 1, except for the addition of a 100ms ITI (see below). This addition 

improved performance such that, using the same criteria as described above, only 5 participants 

were excluded, leaving 37 participants in the final analysis—well above the target sample size.  

Oddball Task 

Participants completed a fast-paced oddball task, which we adapted from a previously 

used paradigm (Beierholm et al., 2013; Guitart-Masip et al., 2011). The task was programmed 

using the PsychoPy library for Python (Peirce, 2007). Each trial, participants were shown three 

blue circles that were evenly spaced horizontally across the screen. Two of these circles were 

identical, containing an inner white circle at the top (bottom) of the blue circles, while the third 

was different, containing a white circle at the bottom (top) of the blue circles (see Figure 1). 

Participants were asked to identify which shape was the “odd one out”, using the Q (leftmost 

circle), W (middle circle), or E (rightmost circle) keys to indicate their choice. The position of 

the odd circle was randomized from trial to trial. Participants had 750ms to indicate which 

stimulus was the ‘odd one out’. If they did not respond in time, the shapes changed, and the trial 

was marked as a timeout. In other words, the experiment was self-paced, such that faster 

responses resulted in faster task completion. In Experiment 2, an ITI of 100ms was included 
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between each set of stimuli, such that a brief “flash” differentiated one set of three circles (i.e., 

one trial) from the next (the next trial).  

 Participants completed two types of oddball task blocks, each of which required 60 

correct responses to complete: Progress blocks and No-Progress blocks (Figure 1). In Progress 

blocks, a green progress bar was presented above the oddball stimuli (378px ⨉ 25px). Every 

time participants correctly identified the odd stimulus, the progress bar would increment by 

1/60th of its total size. In No-Progress blocks, this progress bar was not shown. For each block, 

regardless of progress information, participants were informed that if they responded correctly 

and within the response deadline of 75% of trials during a block, they would receive a reward. 

The reward was indicated as either High ($0.20) or Low ($0.02) and was displayed either beside 

the progress bar on progress blocks or in the centre of the screen above the stimuli in no progress 

blocks (Figure 1). At the end of each block, a screen appeared reading “You won $X.XX” if 

participants met the performance criterion or “You made too many mistakes this round. No extra 

money” if they did not, for 1000 ms.  

 Participants completed 16 blocks (~1350 trials per participant) of the oddball task in a 2 

(progress, no progress) ⨉ 2 (low reward, high reward) design repeated 4 times for each 

participant in a pseudo-randomized order.  

Inferential Statistics 

To examine performance, we estimated mixed-effects regressions predicting participants 

(log) RTs on correct trials, and accuracy (using a logistic model) from progress information 

condition (deviance-coded, -0.5 = No Progress, 0.5 = Progress), goal proximity (distance to the 

end a block, mean-centered), and reward magnitude (deviance-coded, -0.5 = Low Reward, 0.5 = 

High Reward). Importantly, the goal-gradient hypothesis predicts that performance should uptick 
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sharply near a reward (Emanuel et al., 2022; Hull, 1932) and other work has suggested that this 

uptick near the end of task may be accompanied by a parallel decrease in performance near the 

start (Bonezzi et al., 2011). To capture this hypothesis in our model, we also included a quadratic 

term for proximity (hereafter, proximity2), which is computed as the square of the goal proximity 

term. Larger coefficients on this term thus reflect a steeper increase in performance near the end 

of a task. All main effects and interactions were modeled.  

Supporting classical goal-gradient-like behaviour, we hypothesized that there would be a 

statistically significant interaction between progress condition and proximity and/or proximity2 

to a reward, such that participants’ response speeds and accuracy would vary when they were 

aware that they were near a reward. Secondarily, we predicted that the strength of the goal 

gradient would differ between reward conditions (high vs. low), manifesting in a significant 

interaction between reward magnitude, reward proximity, and reward condition, such that (high 

vs. low).  

These models were estimated using the lme4 package for R (Bates et al., 2014). 

Likelihood-ratio tests were used to assess relative model fit and reported confidence intervals are 

based on the likelihood profile (a.k.a., profile confidence intervals). Random slopes were 

included unless they caused convergence issues. To better convey the observed goal-gradient 

effects—and because reward effects were inconsistent across analyses and experiments—Figures 

2 and 3 depict behaviour collapsed across reward levels.  

Hierarchical Drift-Diffusion Modeling 

To better understand how goal gradients might modulate strategies of cognitive effort 

exertion, we fit a drift diffusion model (DDM) to participants responses and response times 

across both experiments (Ratcliff & McKoon, 2008; Wiecki et al., 2013). The DDM is one of a 
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family of sequential-sampling models which assume that people’s decisions are the results of an 

iterative, noisy evidence accumulation process over time (Ratcliff & McKoon, 2008). The 

process begins at some starting point z and accumulates evidence over time to one of two 

decision boundaries at a constant rate v, known as the drift rate. This accumulation process is 

subject to random perturbations at each time step and continues until one of two boundaries are 

crossed, which corresponds to either option in the task: here, correct vs. incorrect. The separation 

between these boundaries is defined by the parameter a, such that more evidence is required to 

reach a decision when a is larger. The direction the evidence accumulation process heads 

towards (correct/incorrect) depends on the sign of the drift rate, v, where positive values 

of v indicate evidence heading for one boundary (here correct responding) and negative values 

indicate evidence heading towards the other (incorrect responding). Once a boundary is crossed, 

a response is initiated, which takes some nonzero amount of time to encode and execute (t0; 

“non-decision time”). 

While the traditional DDM assumes that decision boundaries, 𝑎𝑎, other classes of DDMs 

allow for boundaries to vary dynamically over the course of a trial. For example, the collapsing 

bounds DDM assumes that decision boundaries get progressively narrower over the course of a 

trial, reflecting increased urgency, and reduced caution, as one spends more time on a task 

(Hawkins et al., 2015; Smith & Ratcliff, 2022). In these variants, the rate at which decision 

bounds linearly collapse is given by an additional parameter, 𝜃𝜃. When 𝜃𝜃 is large, decision 

bounds collapse more quickly leading to reduced caution at longer response times (i.e., a larger 𝜃𝜃 

corresponds to a greater deviation from 90°, which would reflect stable bounds as in the standard 
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DDM). Since the predictions of a collapsing bounds model are consistent with our predictions 

about goal-gradients in cognitive effort exertion, we also consider this model in our analyses1.  

We performed hierarchical Bayesian estimation of DDM parameters using the HDDM 

package for Python (version 0.9.9, Fengler et al., 2022). We fit two broad classes of HDDMs to 

the present data: a standard DDM, and the collapsing bounds model described above. Posterior 

distributions for decision thresholds (a), drift rates (v), nondecision times (t0), and, in the case of 

the collapsing bounds model, collapse rate 𝜃𝜃, were estimated on a trial-by-trial basis as a linear 

combination of progress condition and proximity to reward, with random intercepts taken per 

participant. All other parameters were assumed to be fixed to default values set by HDDM (see 

(Fengler et al., 2022; Wiecki et al., 2013).  

While analyses of task performance (described below) suggested a quadratic relationship 

between goal proximity and RTs, it was unclear which parameters of the HDDM would reflect 

this quadratic relationship. Moreover, multiple combinations of model structure (standard versus 

collapsing bounds) and parameter values may readily capture the general pattern observed in the 

data. As such, it was important to explore the full parameterization space of these regression-

based DDMs. Accordingly, we fit 2744 separate HDDMs to the data, which covered the full 

model and parameter space, and compared model fit for each model using the deviance 

information criterion (DIC; Gelman et al., 2014). The specification of each model is included in 

the Supplemental Materials, and goodness-of-fit for each model is visualized in Figure S4.   

Five-thousand samples were drawn from the posterior for each parameter, discarding the 

first 2000 samples for burn-in and no thinning was applied. Convergence for winning models 

 

1 We thank an anonymous reviewer for suggesting we consider collapsing bounds variants of the DDM to the 
present dataset.  
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was assessed via visual inspection of trace-plots, Geweke’s statistics (Geweke, 2005; reported in 

Table 3), and posterior predictive checking, presented in Figure S5. Geweke’s statistic test for 

equality of the means of the first (10%) and last part of a Markov chain (50%). If samples are 

drawn from a stationary distribution, the two means are statistically equivalent, and the 

associated absolute Z-score (known as Geweke’s statistic) is below 1.96, which indicates that a 

chain has converged successfully. We also conducted a parameter recovery, which demonstrated 

that parameters from the winning model recovered well (Figure S6). 

 All reported coefficient estimates (b values) for the HDDM are mean posterior values, 

and 95% highest posterior-density (HPD) intervals. Bayesian p values (P) represent one minus 

the proportion of the posterior that falls above or below zero (depending on the sign of the 

median posterior value: below zero if b < 0 and above if b > 0).  

Transparency and Openness 

 All task code, materials, raw data, analysis scripts, results, and computational models are 

openly available at https://github.com/seandamiandevine/EffortProgress2.   

Results 

Task Performance 

Overall, participants’ RTs were fast (Experiment 1: M = 534.46), taking on average 71% 

of the allotted time (750ms) to respond as well as accurate (P(Correct) = 0.86). Critically, in the 

progress information condition (“Progress” blocks), participants had a visual cue indicating their 

proximity to a reward whereas in “No Progress” blocks this information was absent. In 

accordance with goal-gradient hypothesis, we hypothesized that participants would exhibit 

speeded responses near a goal (i.e., the reward at the end of a block), but only when participants 

had information about task progress.  

https://github.com/seandamiandevine/EffortProgress2
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Figures 2A and C depict participants’ RTs as a function of the proportion of correct 

responses made relative to the total number of correct responses needed to obtain a reward (60 

per block) in Experiments 1 and 2 respectively. Consistent with classic goal-gradient effects—

characterized by increased vigour near a reward (Brown, 1948; Hull, 1932)—participants’ RTs 

hastened as they neared a reward, but only when information about their block progress was 

presented. In the absence of progress information, participants’ RTs progressively slowed over 

the course of a block, consistent with an accruing mental fatigue or task disengagement (Lorist et 

al., 2005).    

Examining (log) RTs with mixed-effect regressions, the best-fitting model in both 

experiments included both a linear and quadratic term representing proximity to reward 

(Experiment 1: χ2(2) = 13.56, p = .001; Experiment 2: χ2(2) = 103.12, p < .0001; see Table 1 for 

coefficient estimates). More importantly, we found a significant interaction between progress 

condition and (linear) goal proximity (Experiment 1: b = -0.08, CI = [-0.12, -0.04], p < .0001; 

Experiment 2: b = -0.08, CI = [-0.10, -0.05], p < .0001) as well as an interaction between 

progress condition and (quadratic) goal proximity (Experiment 1: b = 0.26, CI = [-0.43, -0.09], p 

= .002; Experiment 2: b = -0.37, CI = [-0.47, -0.28], p < .0001). These effects are visualized in 

Figures 3A and C.  

 Figure 3B and D depict response accuracy as a function of block progress. Again, we 

found that the best-fitting logistic regression model for both experiments included a linear and 

quadratic term for reward proximity (Experiment 1: χ2(2) = 47.26, p < .0001; Experiment 2: χ2(2) 

= 28.10, p < .0001). Overall, in both experiments, we observed that accuracy declined linearly 

over the course of a block (Experiment 1: b = -0.83, CI = [-0.96, -0.69], p < .0001; Experiment 2: 

b = -0.37, CI = [-0.50, -0.24], p < .0001). In Experiment 2, we found a slight improvement of 
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accuracy as participants neared a reward, as reflected in an interaction between progress 

condition and (quadratic) reward proximity (b = 1.02, CI = [0.00, 2.04], p = .049; see Table 2 for 

full coefficient estimates). This effect was not statistically significant in Experiment 1 (b = 0.50, 

CI = [-0.50, 1.53], p = .339), though its positive directionality suggests against the possibility 

that accuracy worsened near a reward (Figures 2B and 2D).  

As we manipulated reward amount in a blockwise fashion, holding goal proximity 

constant, reward incentives did not reliably shift task performance across experiments (Table 1 

and 2): accuracy was higher in Experiment 1, and RTs were faster in Experiment 2, on high (vs. 

low) reward blocks, but these effects were not consistent across experiments. This is consistent 

with past work, showing that performance on the oddball task is particularly sensitive to trial-by-

trial fluctuations in reward magnitudes (Beierholm et al., 2013; Guitart-Masip et al., 2011), but 

perhaps less sensitive to the blockwise manipulation used here, which was a necessary by-

product of the goal proximity manipulation.   

Finally, we examined whether the apparent goal-gradient effects differed across reward 

magnitudes, finding small and inconsistent effects of available reward for each block upon RTs 

across experiments. Specifically, we observed a three-way interaction between progress 

condition, proximity2, and reward condition in both experiments. However, these observed 

effects were in the opposite direction across experiments: in Experiment 1, low-reward blocks 

engendered enhanced RT speeding when participants had block progress information (b = 0.47, 

CI = 0.14 – 0.81, p = .005; Figure S2; see Table 1 and 2), whereas in Experiment 2, we found 

enhanced speeding in high-reward blocks when progress information was present (b = -0.22, CI 

= -0.42 - -0.02, p = .03; Figure S3). Similarly inconsistent and weak reward effects on goal 

gradients have recently been reported in the literature (Emanuel, 2022; Emanuel et al., 2022).  
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Drift-Diffusion Model (DDM) Fits 

To examine whether the observed effects of goal proximity upon task performance are 

explained by an increased quality of sensory information from the stimuli (which would manifest 

as a goal proximity-induced changes in drift rate), a change in response caution (manifesting as 

proximity-induced changes in response thresholds), or a change in response execution time 

(manifesting as changes in non-decision time), we jointly modeled participants’ RTs and 

accuracies using two variants of a hierarchical DDM (HDDM; Fengler et al., 2022; Wiecki et al., 

2013): a standard three-parameter DDM (thresholds, drift rate, and non-decision times) and a 

collapsing bounds DDM  (includes an additional linear threshold collapse parameter). Owing to 

the similarity in behavioural results between experiments, we fit a single model to the data from 

both experiments. Further, given the observed quadratic relationship between reward proximity 

and RTs in the Progress condition (Figures 2A and C), we intuited that some combination of 

trial-by-trial DDM parameters (drift rate, threshold, non-decision time, and, possibly, collapse 

rate) would depend on a quadratic term representing goal proximity (proximity2).  

As we did not have strong intuitions about how potential goal proximity effects might 

manifest in DDM parameters, we compared the goodness of fit of 2,477 different HDDM 

specifications—which exhaustively covered the space of possible combinations of linear and 

quadratic relationships between goal proximity and the DDM parameters of interest—to 

participants’ behavior. Overall, we found that a collapsing bounds variant of the DDM fit the 

present data markedly better than a standard (fixed bounds) DDM (Difference in Median DICs = 

22719.63; Figure S4). The best-fitting model assumed that decision thresholds and drift rates 

depended (quadratically) on progress condition and goal proximity, where non-decision times 

and boundary collapse rate changed (linearly) over the course of a block. This model captured 



PROXIMITY AND CONTROL   16
   

behaviour well in both experiments, as evidenced by the posterior predictive checks visualized in 

Figure S5. Mean posterior values, credibility intervals, Bayesian P-values, and Geweke’s 

statistics are presented in Table 3 for both experiments. 

Figures 3 depicts predicted trial-to-trial parameter values of the winning collapsing 

bounds model over the course of a block, as a function of simulated values of progress condition 

(Progress or No Progress) and reward proximity. With respect to decision thresholds, we 

observed a robust interaction between progress condition and goal proximity (b = -0.09, CI = [-

0.11, -0.06], P = 0) and proximity2 (b = -0.19, CI = [-0.22, -0.16], P = 0), such that participants 

exhibited reduced decision thresholds as they approached a reward, when progress information 

was present compared to when it was not. In other words, when participants were aware of their 

proximity to a reward, participants responded less cautiously near a reward than when they were 

unaware. Moreover, boundaries collapsed more quickly (larger boundary collapse angle) overall 

during Progress blocks as compared to No Progress blocks (b = 0.002, CI = [0.0003, 0.003], P = 

.01), further suggesting reduced caution when progress information was available.  

With respect to trial-to-trial drift rates, we observed an interaction between progress 

condition and proximity2 (b = 0.18, CI = [0.13, 0.25], P = 0), suggesting that drift rates initially 

decreased over the course of a block, but increased sharply near the end—and importantly, this 

uptick was more not present when progress information was not present (Figure 3B).  

Finally, we did not observe any modulation of non-decision times by progress condition 

(see Table 3). 

Taken together, the results of the HDDM analysis suggest that goal-proximity induced 

task performance shifts were best explained by two mechanisms: while the fidelity with which 

participants processed information (drift rates) increased near a reward, response caution 
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diminished suggesting a shift from a slower, but accuracy-oriented, strategy in the middle of a 

task block to a faster, but incautious, response style during and near the end of a task block when 

progress information was known.  

Discussion 

Exerting sustained cognitive effort is taxing and aversive, and these effort costs are 

exacerbated with continued exertion (Kool et al., 2010; Shenhav et al., 2017). However, it has 

also long been observed that the investment of cognitive resources into a demanding task 

fluctuates considerably over time (Braver et al., 2003; Kahneman, 1973; Otto & Daw, 2019). In 

line with this view, both recent (Emanuel et al., 2022; Katzir et al., 2020) and classical (Hull, 

1932) work on goal gradients posit that effort exertion should uptick near the end of a task—

when the rewards associated with the successful completion of that task are proximal. Yet, 

empirical evidence for this claim in cognitive effort is scant and the computational mechanisms 

underpinning proximity-induced effort modulations of this type have not been investigated. 

Here—first in a novel experiment and then again in a replication sample—we examined goal-

gradient-like behaviour in a demanding attentional oddball task.  

We found that participants engaged in speeded, but nevertheless accurate, responding as a 

function of goal state proximity and that this behaviour was 1) present only when participants 

were aware of their proximity to a goal, and 2) consistent across levels of rewards on offer. Thus, 

participants were not only faster, but also equally—or even slightly more—accurate near the end 

of a block. Notably, the relationship between response speed and goal-proximity was quadratic 

in nature, owing to slower performance in the middle of a block. This finding is consistent with 

past work demonstrating a negative relationship between time on task and sustained attention 

and motivation (Fortenbaugh et al., 2017) and highlights the relative nature of goal-gradients as a 
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means of enhancing effort exertion from motivational low-points (e.g., during late-block trials in 

the no progress condition in these experiments) (Bonezzi et al., 2011), as well as rules out simple 

learning effects as an explanation for goal gradients. In this regard then, these results hint that 

goal gradients in the current task acted to restore motivation near a goal state, rather than to 

enhance it beyond a pre-established control point. Together, these shifts in performance reflect 

key indicators of increased cognitive effort exertion. Moreover, they extend past work on goal-

gradients which simultaneously measured effort exertion in both cognitive and physical domains 

(Rauch et al., 2013), and suggest that motor response vigor closer to the end of the task might be 

explained by a combination of adaptations of response strategy (above and beyond solely 

response speed).  

In this respect, these results suggest a shift in cognitive strategies that cannot be 

explained by a simple speed-accuracy trade-off (Heitz, 2014). Supporting this view, we 

demonstrate that these goal-gradient effects are well-characterized by a collapsing decision 

bounds variant of the DDM (Figures S4 and S5). Specifically, we find that decision thresholds 

decreased, but concurrently, drift rates rapidly upticked in proximity to a reward.  

 How might this constellation of DDM parameter changes be interpreted, 

psychologically? Previous research suggests that narrowing decision-thresholds may be 

associated with reduced response caution, reflecting a failure, or disinclination to incorporate 

additional evidence into one’s decision (Lin et al., 2020; Voss et al., 2004). At the same time, 

heightened drift rates have been interpreted as an increase in fidelity of stimulus encoding which 

manifests in an increased rate of information uptake per unit time (Voss et al., 2004), motivation 

to perform a task correctly (Bottemanne & Dreher, 2019), and increased cognitive control 

deployment (Otto & Daw, 2019; Cavanagh et al., 2014). More parsimoniously then, drift rates 
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here should be understood to reflect a modulation in proximal cognitive control allocation—e.g., 

momentary attention to the current task—which in turn can be up- and down-regulated by 

motivation factors (Cavanagh et al., 2014; Leng et al., 2021; cf. Kahneman, 1973). In line with 

the goal-gradient hypothesis, increased drift rates have also been theorized to reflect increased 

effort costs (Drugowitsch et al., 2012).  Taken together, the pattern of DDM parameter changes 

observed here—and their contingent change over the course of a block based on the presence vs. 

absence of progress information—suggests that proximity to rewards may reflect a global 

“urgency” signal, signaling a shift in behavioural strategy, from a slow and cautious approach to 

the task to a faster, completion-focused, but nevertheless cognitive effortful, one.   

 Connecting this account to our computational results more directly, recent work has 

highlighted how joint changes to drift rates and thresholds might reflect a simultaneous 

reconfiguration across control strategies in favor of maximizing reward rate. For example, Leng 

et al. (2021) observed that participants dynamically allocated cognitive control to a task to 

optimize the trial-by-trial reward rate in the task—captured by simultaneous drift rate increases 

and threshold decreases—suggesting an adaptive shift in response to shifts in task incentives 

(Ritz et al, 2022). Similarly,  Otto & Daw (2019) found that moment-to-moment shifts in the 

environmental average reward rate engendered simultaneous decreases in drift rates and 

thresholds, interpreted as a withdrawal of cognitive effort with a concomitant reduction in 

response caution. While the present task was not specifically calibrated to detect nuanced 

changes in control parameters in response to changes in incentive (as rewards were fixed within 

a block of trials), participants here may have simply used goal proximity as a cue to reconfigure 

control strategies to favour reward rate maximization, without external change in the incentive 

structure of the task.  
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Finally, and in line with a growing body of evidence suggesting that such urgency signals 

guide neuronal activity and behaviour within the course of a single trial (Cisek et al., 2009), one 

interpretation of the current results is that requirements on evidence accumulation over the 

course of a longer time period are modulated when rewards are proximal versus distal. 

Consistent with classical work on goal-gradients in rats (Brown, 1948; Hull, 1932), similar 

urgency signals have been observed to guide low-level behaviour in animals as well as humans 

at the trial-level (Hanks & Summerfield, 2017; Hernández-Navarro et al., 2021; Thura & Cisek, 

2017). Analogously then, goal-gradients in this context seem to reflect a larger manifestation of 

urgency signals, governing behaviour not only at the trial-level, but also within the local context 

(here a block, or elsewhere an entire experiment (Katzir et al., 2020), a foot race (Tucker et al., 

2006), a semester (Brahm et al., 2017), in consumer decisions (Zhu et al., 2018)).  

 It is important to remark on limitations of the present results and future directions that 

they may suggest. First, the effects of reward on offer on goal gradient behaviour in the present 

data were inconsistent between experiments and, contrary to our initial hypothesis, goal gradient 

behaviour was largely invariant to changes in reward magnitude. On the one hand, it is possible 

that reward magnitudes were too low in the present set of experiments to evince larger 

differences in task performance, as evidenced by the relative lack of incentive effects, holding 

goal proximity constant. This would be consistent with past work, in which reward incentive 

effects can be highly variable and context-dependent (e.g., Otto & Daw, 2019). On the other 

hand, this finding is also consistent with recent work (Emanuel, 2022), showing that the effects 

of monetary reward on proximity-induced (motor) effort exertion were heterogenous and, 

elsewhere (Emanuel et al., 2022), that changes in motor vigour may be less sensitive to goal 

proximity when a goal is based on performance-based metrics success.  
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Second, the present set of experiments only used rewards as a motivating stimulus. This 

is notable, as a key tenet of classical work is that goal  gradients should be steeper for avoidance 

behaviours (Heilizer, 1977). Future work should therefore endeavour to test whether this 

hypothesis holds in the domain of cognitive effort. This could be accomplished by extending the 

present work to the avoidance domain, using, for instance, painful stimulation instead of (or in 

addition to) monetary reward.  

Third, the present study was principally concerned with how goal gradients manifest in 

cognitive effort exertion, and the computational mechanisms that underpin these effects. Another 

important question is why these effects occur. In this respect, Emanuel et al. (2022) recently 

argued that goal-gradient effects in motivation can be explained by diminishing opportunity costs 

(of the to-be completed task) near a goal (see also Beierholm et al., 2013; Dora et al., 2022; 

Kurzban et al., 2013) . On this view, as an individual nears a goal, their motivation to complete 

the task increases because the value of engaging in an alternative activity (e.g., mind-wandering, 

adjusting one’s chair) decreases, since these activities can be postponed until after a task is 

completed at a lower cost. We believe the present results support this interpretation, and also, 

importantly, shed light on the question of whether individuals are more motivated to “get it 

done” (Bonezzi et al., 2011) versus “to do it well” (Touré-Tillery & Fishbach, 2012) near the end 

of a task. Here, our results support both views, such that as opportunity costs decrease near the 

end of a task, participants invest increased attentional control into the task (as reflected by an 

uptick in drift rates), but also aim to finish the task quickly, by reducing evidentiary demands. 

Taken together, our results extend past work on goal gradient on physical (motor) effort 

to the cognitive domain using a simple attentional task. Moreover, they highlight an important, 

but previously unconsidered, feature of goal gradients: while effort exertion increases near a goal 
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(reflected here by heightened drift rates), caution tends to decrease (reflected by reduced, and 

collapsing, decision thresholds). This finding is informative not only for theories of goal-

gradients—relating them, in particular, to the concept of urgency—but also bears practical 

importance. Interventions utilizing progress indicators to boost performance have become 

increasingly commonplace in educational and workplace settings (Amabile & Kramer, 2011). 

These interventions rest on the view that information about one’s progress will incrementally 

increase performance. Insofar as this higher-order performance depends on constituent 

components of cognitive control—here, attention and inhibition—our results call for nuance, as 

gains in effort exertion should be weighed against potential losses in caution and deliberation.  

 
Constrains on Generality 

 The current sample consisted principally of English-speaking Western students, recruited 

at a Large Canadian Research University. While we have no theoretical reason to suspect that the 

current results do not generalize to other cultures and demographic groups, this is an assumption 

which should be tested in future replication work.    
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Tables 

Table 1. Best-fitting mixed-effects linear regressions predicting (log) response times in 
Experiments 1 and 2. 

 Experiment 1 Experiment 2 

 b CI (95%) p b CI (95%) p 

Intercept 6.23 6.20 – 6.26 <0.001 6.23 6.21 – 6.25 <0.001 

Prog Cond. -0.00 -0.02 – 0.02 0.979 0.02 0.01 – 0.03 <0.001 

Reward -0.00 -0.02 – 0.02 0.761 -0.02 -0.03 – -0.00 0.007 

Proximity 0.01 -0.01 – 0.04 0.21 0.01 0.00 – 0.03 0.047 

Proximity2 -0.09 -0.17 – -0.00 0.04 -0.18 -0.23 – -0.13 <0.001 

Prog Cond ⨉ 
Reward 

-0.02 -0.06 – 0.01 0.235 0.04 0.02 – 0.06 0.001 

Prog Cond ⨉ 
Proximity 

-0.08 -0.12 – -0.04 <0.001 -0.08 -0.10 – -0.05 <0.001 

Prog Cond ⨉ 
Proximity2 

-0.26 -0.43 – -0.09 0.002 -0.37 -0.47 – -0.27 <0.001 

Reward ⨉ 
Proximity 

-0.03 -0.07 – 0.02 0.25 0.01 -0.02 – 0.03 0.666 

Reward ⨉ 
Proximity2 

0.1 -0.06 – 0.27 0.232 0.09 -0.01 – 0.18 0.088 

Prog Cond ⨉ 
Reward ⨉ 
Proximity 

-0.07 -0.15 – 0.02 0.134 0.03 -0.02 – 0.08 0.292 

Prog Cond ⨉ 
Reward ⨉ 
Proximity2 

0.47 0.14 – 0.81 0.005 -0.22 -0.42 - -0.02 0.03 
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Table 2. Best-fitting mixed-effects logistic regressions predicting correct responses in 
Experiments 1 and 2.  
 Experiment 1 Experiment 2 

 b CI (95%) p b CI (95%) p 

Intercept 1.92 1.64 – 2.20 <0.001 2.47 2.31 – 2.63 <0.001 

Prog Cond. -0.09 -0.20 – 0.01 0.089 -0.15 -0.26 – -0.04 0.006 

Reward 0.17 0.07 – 0.28 0.002 -0.01 -0.12 – 0.10 0.882 

Proximity -0.83 -0.97 – -0.70 <0.001 -0.37 -0.50 – -0.24 <0.001 

Proximity2 1.75 1.23 – 2.26 <0.001 1.27 0.76 – 1.78 <0.001 

Prog Cond ⨉ 
Reward 

0.04 -0.17 – 0.25 0.714 0.15 -0.07 – 0.36 0.181 

Prog Cond ⨉ 
Proximity 

-0.16 -0.43 – 0.11 0.239 -0.28 -0.54 – -0.01 0.042 

Prog Cond ⨉ 
Proximity2 

0.5 -0.53 – 1.53 0.339 1.02 0.01 – 2.04 0.049 

Reward ⨉ 
Proximity 

-0.11 -0.38 – 0.16 0.437 0.1 -0.16 – 0.37 0.45 

Reward ⨉ 
Proximity2 

-1.21 -2.24 – -0.18 0.022 -0.07 -1.10 – 0.95 0.886 

Prog Cond ⨉ 
Reward ⨉ 
Proximity 

-0.16 -0.70 – 0.38 0.563 0.06 -0.47 – 0.60 0.819 

Prog Cond ⨉ 
Reward ⨉ 

Proximity2 

0.41 -1.66 – 2.48 0.700 -0.09 -2.09 – 1.91 0.931 
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Table 3. Parameter estimates for the best-fitting Drift-Diffusion Model (DDM).  

 Mean 95% CI P Geweke 
 

Decision Thresholds 

Intercept 2.151 [1.841,2.523] 0.000 -1.721 

Proximity 0.159 [0.137,0.179] 0.000 -12.334 

Proximity2 -0.097 [-0.122,-0.074] 0.000 9.411 

Prog. Cond. 0.008 [-0.002,0.018] 0.061 1.112 

Prog. Cond. ⨉ Proximity -0.086 [-0.11,-0.064] 0.000 1.169 

Prog. Cond. ⨉ Proximity2 -0.187 [-0.215,-0.16] 0.000 -2.707 
 

Drift Rate 

Intercept 2.983 [2.942,3.000] 0.000 -0.253 

Proximity -0.028 [-0.048,-0.009] 0.003 1.570 

Proximity2 0.108 [0.08,0.142] 0.000 -3.452 

Prog. Cond. -0.020 [-0.04,-0.001] 0.021 0.176 

Prog. Cond. ⨉ Proximity -0.004 [-0.014,0.005] 0.198 -0.881 

Prog. Cond. ⨉ Proximity2 0.181 [0.134,0.248] 0.000 -1.704 
 

Non-Decision Times 

Intercept 0.014 [0.001,0.043] 0.000 -0.318 

Proximity 0.000 [-0.001,0.001] 0.424 -0.676 

Proximity2 0.000 [-0.001,0.001] 0.282 1.610 

Prog. Cond. 0.000 [-0.001,0] 0.286 1.492 

Prog. Cond. ⨉ Proximity 0.000 [-0.002,0.001] 0.304 1.476 
 

Boundary Collapse Rate 

Intercept 1.285 [1.25,1.3] 0.000 -1.330 

Proximity 0.012 [0.008,0.017] 0.000 -9.691 

Proximity2 -0.010 [-0.017,-0.005] 0.000 8.178 

Prog. Cond. 0.002 [0,0.003] 0.012 -0.579 
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Figures 

 

Figure 1. Schematic of the oddball task. Participants were asked to judge which of three shapes 
was the “odd-one-out”, within 750ms. The left path depicts an example block in the Progress 
condition, with a green progress bar incrementing after each correct response, culminating in the 
advertised reward being won, assuming a minimum level of performance (at least 75% correct). 
The right path shows a no progress block, where the progress bar is not shown, but the same 
number of correct trials (60) are needed to obtain the reward and progress in the task. In 
Experiment 2, a 100 ms ISI was added between each judgement. Rewards remained on the screen 
for 1000 ms.  
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Figure 2.  Task performance over the course of a block in Experiments 1 (A and B) and 2 
(C and D).  Green lines represent performance during progress blocks and grey lines represent 
performance during no progress blocks. Each point represents an averaged bin of correct 
response times (A, C) or proportion of correct trials (C, D), represented on the y-axis. The x-axis 
shows the proportion that the progress bar was filled (i.e., proximity to the reward; whether 
(green) or not (gray) it was shown to participants). Ribbons represent standard error of the mean. 
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Figure 3. Predicted parameter values for the best-fitting Drift-Diffusion Model (DDM).  
The y-axis shows the posterior prediction for the parameter (referenced in each subfigures title) 
as a function of block progress. The x-axis shows the proportion that the progress bar was filled 
(i.e., proximity to the reward). Green lines represent predictions during progress blocks, where 
the progress bar was shown. Gray lines represent predictions during no progress blocks, where 
the progress bar was not shown.  
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