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A B S T R A C T

Unmanned Aerial Vehicle (UAV) communication is a promising technology that provides swift and flexible on-
demand wireless connectivity for devices without infrastructure support. With recent developments in UAVs,
spectrum and energy efficient green UAV communication has become crucial. To deal with this issue, Spectrum
Sharing Policy (SSP) is introduced to support green UAV communication. Spectrum sensing in SSP must be
carefully formulated to control interference to the primary users and ground communications. In this paper, we
propose spectrum sensing for opportunistic spectrum access in green UAV communication to improve the spec-
trum utilization efficiency. Different from most existing works, we focus on the problem of spectrum sensing of
randomly arriving primary signals in the presence of non-Gaussian noise/interference. We propose a novel and
improved p-norm-based spectrum sensing scheme to improve the spectrum utilization efficiency in green UAV
communication. Firstly, we construct the p-norm decision statistic based on the assumption that the random
arrivals of signals follow a Poisson process. Then, we analyze and derive the approximate analytical expressions of
the false-alarm and detection probabilities by utilizing the central limit theorem. Simulation results illustrate the
validity and superiority of the proposed scheme when the primary signals are corrupted by additive non-Gaussian
noise and arrive randomly during spectrum sensing in the green UAV communication.
1. Introduction

Unmanned Aerial Vehicles (UAVs) are attracting increasing attention
to provide an on-demand flexible platform for deploying aerial base
stations or installing mobile access points [1,2]. UAV communication is
promising for many applications, such as surveillance, emergency
response, internet of things, public safety and transportation [3–5].
Recently, spectrum-efficient and energy-efficient green UAV communi-
cation has attracted much attention [6,7]. To improve the spectrum
efficient, spectrum sharing is introduced into UAV communications to
increase the UAVs’ available radio resources [8]. Moreover, spectrum
sharing can reduce the overhead and energy consumption of UAV as
relays. Spectrum sensing plays a critical role in spectrum sharing. It can
detect available spectrum resources to avoid interferences to the Primary
Users (PUs). Unlike previous communication networks, spectrum sensing
faces many new challenges in green UAV communication. One of the
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critical challenges is the highly dynamic characteristics of Air-To-Ground
(ATG) channels [9]. The propagation characteristics of ATG channels
depend on the UAV flight dynamics, including the altitude, distance and
elevation angle. Another challenge is the concern about sensing effi-
ciency when considering the impairment of various types of
non-Gaussian noise/interference, such as human-made impulsive noise
and co-channel interference. It is necessary to achieve a higher detection
rate, lower false alarm probability and lower missing detection proba-
bility in the presence of non-Gaussian noise/interference.

Spectrum sensing is one of the main components spectrum sharing. In
the literature, various spectrum sensing methods have been proposed for
impairment by Additive White Gaussian Noise (AWGN), which include
Matched Filter detector (MF) [10], the Energy Detector (ED) [11],
Cyclostationarity-based Detector (CD) [12], Eigenvalue-based Detector
(EVD) [13] and Covariance-based Detector (CVD) [14], etc. These
methods have advantages and disadvantages. MF and ED could achieve
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Fig. 1. System model of spectrum sensing for green UAV communication.
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optimal performance while requiring perfect knowledge of primary sig-
nals. CD provides high accuracy, but it has high computational
complexity. EVD and CVD could achieve relatively outstanding perfor-
mance without any prior information, but their performance could not be
guaranteed in a complex channel environment. Moreover, several
methods have been presented to ameliorate the performance of spectrum
sensing in the presence of non-Gaussian, such as Fractional Lower Order
Moment (FLOM) based detector [15], p-norm detector [16,17] and
Polarity-Coincidence-Array (PCA) detector [18,19]. FLOM-based detec-
tor could achieve a significant performance enhancement in the α-stable
distributed noise, but this detector required knowledge of the power of
the primary signals. The p-norm detector could achieve lower false alarm
probability and false dismissal probability in generalized Gaussian noise
and Gaussian mixture noise. This detector required statistical informa-
tion about the primary signal and channel. PCA detector could outper-
form the ED scheme for generalized Gaussian noise, but its performance
was dependent on the parameters of softness. Most of these works assume
that primary signals maintain constant occupancy during the sensing
period. In practical scenarios, primary signals may arrive anytime during
the frame when PUs traffic is heavy or Secondary User (SU) frame
duration is long, which will lead to high miss detection probability.
Spectrum sensing methods under the condition of random arrivals of PU
have been addressed by several researchers recently. Beaulieu et al.
proposed the Generalized Likelihood Ratio Test (GLRT) detector for
randomly arriving PUs [20]. In Ref. [21], a new weighted scheme based
on cumulative sum was presented for detecting primary signals when
primary signals arrive randomly during the sensing period.In Ref. [22],
Chin et al. proposed a low-complexity GLRT based on the energy method
to improve the detection performance under the condition of random
arrivals of PUs. Deng et al. designed an adaptive weighted energy
detection based on power function in the dynamic PU traffic environment
[23]. In Ref. [24], Wang et al. adopted the Poisson model to characterize
the random arrival process of primary signals and proposed
Multiple-Antenna Linearly Weighted (MALW) method. The method
constructed the total test statistic by linearly combining a weighted local
test statistics.

In this paper, we focus on the study of spectrum sensing for UAV
communication, which could detect available spectrum resources in UAV
communication and avoid interferences between secondary users and
nearby primary users. Few research works have been conducted on
spectrum sensing for UAV communication. In Ref. [25], Xu et al. pro-
posed a new compressive signal processing-based algorithm for wide-
band spectrum sensing in UAV communication. In Ref. [26], Shen et al.
presented a three-dimensional spatiotemporal sensing framework for
joint spatio-temporal spectrum sensing by using the flexibility of UAV
spectrum sensors. Liu et al. in Ref. [27] developed a UAV-aided detector
to improve spectrum sensing performance in the LOS channel. Moreover,
in Refs. [28–30], spectrum sensing was employed to protect the PU from
harmful interference in the UAV communications.

To the best of our knowledge, no work has yet considered the issue of
spectrum sensing with random arrivals of primary signals in the presence
of impulsive noise for UAV communication. This motivates us to improve
the performance of spectrum sensing for UAV communication by
designing a novel p-norm-based detector for the detection of primary
signals when primary signals are corrupted by additive non-Gaussian
noise and arrive randomly during the spectrum sensing period over
mixed LoS/non LoS (NLoS) channel. The main contributions of this paper
are summarized as follows:

� We investigate the application of spectrum sharing in UAV commu-
nication, focusing on the spectrum sensing. A novel p-norm-based
detector is proposed for UAV communication, which can efficiently
detect primary signals with random arrivals in the presence of non-
Gaussian noise.

� Different from most existing works, we study the spectrum sensing
with random arrivals of primary signals in the presence of non-
847
Gaussian noise for UAV communication. We adopt Poisson model
to characterize the random arrival process of primary signals and
employ three models of non-Gaussian noise, which include the alpha-
stable distribution, the Generalized Gaussian Distribution (GGD) and
the Gaussian Mixture Distribution (GMD).

� We analyze and derive asymptotic expressions of the detection and
false alarm probabilities for the proposed p-norm-based detector in
the presence of non-Gaussian noise in UAV communication.

The rest of the paper is organized as follows. Section 2 presents the
detailed description of system model, channel model and noise model. In
Section 3, the p-norm-based sensing scheme is introduced for UAV
communication. The theoretical performance of the proposed detector is
analyzed in Section 4. Our numerical results are provided in Section 5 for
verifying our analysis. Finally, the concluding remarks are presented in
Section 6.

2. System model

In this section, we present the systemmodel for the proposed scheme.
2.1. System structure

As shown in Fig. 1, we consider a system where secondary users need
to share the same frequency resource of green UAV communication with
PUs. The system consists of a Primary Transmitter (PT), a Primary
Receiver (PR), a multi-antenna UAV and an SU. The UAV is deployed to
provide wireless connections for PUs without reliable direct communi-
cation links on the ground. When the primary communication is per-
formed, the data are transmitted from the PT to PR in two steps. In the
first step, the PT sends data directly to the multi-antenna UAV. In the
second step, the data are received by the multi-antenna UAV, which is
retransmitted to the PR through UAV. The PUs, i.e., PT and PR, have the
priority to use the licensed spectrum of UAV communication. The SU is
allowed to access the licensed spectrum with the help of UAV only if the
licensed spectrum is idle. In order to reduce the communication inter-
ference caused by the SU, the SU should perform spectrum sensing to
acquire the state of licensed spectrum, i.e., idle or busy. In this paper, we
assume that the direct communication link between the SU and the PT
does not exist. The SU needs to determine the signal from the UAV to
detect the state of the licensed spectrum. Assume that the UAV's coverage
is circular with a radius of R, and the UAV is located at the center of the
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disc. The height of UAV is ℓ, and the horizontal distance between SU and
UAV projection is r.

In the spectrum sensing, the SU needs to detect if the signal from UAV
exists or not, so as to determine whether the licensed spectrum is idle or
busy. We consider the UAV with Q antennas and an SU with K antennas.
The problem of spectrum sensing with random arrivals of primary signal
can be formulated as8>>>>>>>><>>>>>>>>:

xkðnÞ ¼ wkðnÞ n ¼ 1; 2;⋯N H0

xkðnÞ ¼

8>><>>:
wkðnÞ n ¼ 1; 2;⋯JXQ

q¼1
gkqsqðnÞ þ wkðnÞ n ¼ J þ 1;⋯N

H1

(1)

where xkðnÞ denotes the n-th received sample from the k-th receiving
antenna and sqðnÞ represents the n-th samples of the primary signals from
the q-th transmitting antenna of the UAV. gkq denotes the channel coef-
ficient between the q-th antenna of the UAV and the k-th antenna of SU,
wkðnÞ stands for the additive non-Gaussian noise, N is the number of
samples, Jþ 1 denotes the arrival time of the UAV signal and the value of
J is between 0 and N � 1. Poisson Process (PP) is widely used for
modeling the arrival process of the signal. Therefore, we adopt a PP with
the arrival rate λ to model the UAV signal.
2.2. Channel model

The ATG propagation channel experiences both path loss and small-
scale fading. The LoS link between UAV and ground receiver may be
blocked by potential obstacles, such as buildings. The ATG channel is
composite LoS/Non-LoS (NLoS) channel model [31,32]. The probabi-
listic LoS and NLoS model is expressed as

ξðdÞ ¼
(

ψLd
�ΔL
su LoS link with prob:

ψNd
�ΔN
su NLoS link with prob:

(2)

where ψL and ψN are the path loss exponents of the LoS link and NLoS
link, respectively. dsu stands for the distance between the UAV and SU

with dsu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ2 þ r2

p
pL and pN are LoS probability and NLoS probability

of the G2A channels, respectively, and pN ¼ 1 � pL. The probability of
having LoS is given by

pLðdsu;ℓÞ ¼
�
1þ Ae�Bðζ�AÞ ��1

(3)

where ς denotes an elevation angle of the SU with respect to the UAV and

ζ ¼ arcsin
�

ℓ
dsu

�
. A and B are environment (rural, urban, dense urban, etc.)

dependent constants. For the small-scale fading, the Nakagami-m dis-
tribution is applied to the random multipath fading [33]. The small-scale
fading matrix from the UAV to SU can be defined as

H ¼

24 h11 ⋯ h1Q
⋮ ⋱ ⋮
hK1 ⋯ hKQ

35 (4)

where H is the channel matrix containing K � Q elements. The envelope
of h follows the Nakagami-m distribution and the phase is known to be
non-uniformly distributed. The density function of the channel gain jhj2

is fjhj2 ðyÞ ¼ mm

ΩmΓðmÞy
m�1e�

my
Ω , where Γð �Þ denotes the gamma function, and

m and Ω are shape and scale parameters, respectively.
2.3. Noise model

In practical systems, there are many situations for which the under-
lying noise model does not fit a Gaussian model, such as man-made
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impulsive noise, co-channel interference, out-of-band spectral leakage,
and interference from ultra-wideband systems. In particular, the non-
Gaussian noise is caused by the co-channel interference which occurs
within UAV communications or between ground communication with
the lack of a dedicated spectrum. Currently, several models are consid-
ered to fit the non-Gaussian noise or interference in the literature. The
most popular models for the non-Gaussian noise are GMD, GGD and
alpha-stable distribution.

2.3.1. Gaussian mixture noise (GMN) model
GMN is often used to describe the man-made impulsive and atmo-

spheric interference [34]. The tail of the Probability Density Function
(P.D.F.) of GMN is heavier than the Gaussian distribution, and a heavier
tail usually represents a larger degree of impulsive. The P.D.F. of the
GMN can be expressed as

f ðwkÞ ¼
XU

i¼1

biffiffiffiffiffiffiffiffiffiffi
2πσ2i

p exp
�
� w2

k

2σ2
i

�
(5)

where bi > 0 is the mixing weight of GMN and
PU

i¼1bi ¼ 1. σ2i is the
variance of the noise component and U is the number of the components
in the GMN. When U ¼ 1, GMN stands for a Gaussian noise. The variance
of the GMN is σ2w ¼

PU
i¼1buσ

2
i .

2.3.2. Generalized Gaussian noise (GGN) model
GGN model is also used to characterize the non-Gaussian noise [35].

The P.D.F. of which can be given by

f ðwkÞ ¼
1

2Γ
�
1
β

�
Aðβ; σwÞ

exp

 
�
				 wk

Aðβ; σwÞ

				 β
!

(6)

where

Aðβ; σwÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
wΓð1=βÞ



Γð3=βÞ

q
and β is the shape parameter, which can be used to control the heaviness
of the tails of non-Gaussian. Laplacian noise and Gaussian noise are
contained in GGN as special cases when β ¼ 1 and β ¼ 2, respectively.

2.3.3. Alpha-stable noise (ASN) model
The ASN model has no closed-form expression of the P.D.F., and can

be described by its characteristic function as

φðςÞ ¼ expðjeς� γjςjα½1þ jηsgnðςÞωðς; αÞ � Þ (7)

where

ωðς; αÞ ¼
� tan ðπα=2 Þ α 6¼ 1

ð2=π Þlog jςj α ¼ 1
(8)

sgn ðςÞ ¼

8<: 1 ς > 0

0 ς ¼ 0

�1 ς < 0

(9)

and α represents the characteristic exponent, e denotes the location
parameter, γ is the dispersion parameter and η stands for the index of
skewness. When the stable distribution is symmetric with η ¼ 0, the
characteristic function φðtÞ is reduced to φðςÞ ¼ expfjeς� γjujα g. Two
well-known special distributions are Cauchy distribution ðα ¼ 1Þ and
Gaussian distribution ðα ¼ 2Þ [15].
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3. Improved p-norm-based spectrum sensing scheme

In this section, we propose a novel p-norm-based spectrum sensing
scheme for randomly arriving primary signals under non-Gaussian noise
in UAV communications.

When the state of PU does not change during spectrum sensing, the
optimal decision statistic can be expressed as

ΛOP ¼ log
fxHðxjH1j Þ
fxHðxjH0j Þ

¼ log

0BB@YK
k¼1

YN
n¼1

fwk

�
xkðnÞ � s

�
kðnÞ

�
fwk ðxkðnÞ Þ

1CCA (10)

where x ¼ ½x1ðnÞ;…; xMðnÞ �T is a vector of observations xkðnÞ and
fxHðxjHij Þ represents the probability density function of x conditioned on
Hi for i ¼ 0, 1. For AWGN, the corresponding locally optimum detector
can be expressed as

ΛLOP ¼
XK
k¼1

XN
n¼1

jxkðnÞ j2 (11)

As mentioned in Section 2, the primary signals may arrive randomly
during the sensing period. An efficient strategy for detecting randomly
arriving primary signals is to model the arrival as a PP and takes it into
account [20]. Based on [24], the test statistic of random arrivals of pri-
mary signals can be expressed as

ΛLOP ¼
XK
k¼1

 XN
n¼1

�
1� e�λn

�
jxkðnÞ j 2

!
(12)

From (12), we can observe that the test statistic of the random arrivals
of primary signals is the improved energy detector under the Gaussian
noise assumption. Unfortunately, the presence of heavy-tailed impulsive
noise degrades the performance of the energy detector. According to
Ref. [15], p-norm metric ensures that the heavy-tailed impulsive noise
exhibits finite absolute moments. The p-norm detector has a vast per-
formance gain over the energy detector in both heavy-tailed and
short-tailed noise [16]. Adopting p-norm metric in the proposed scheme,
the improved p-norm-based test statistic can be derived as

T SO ¼
XK
k¼1

ϖkexp

 
� 1
Nc

XN
n¼1

�
1� e�λn

�
jxkðnÞ jp

!
(13)

where p> 0 is an arbitrary constant, c> 0 is an arbitrary constant andϖk
is the weight factor.

When H0 holds, or the primary signals are not present, the test sta-
tistic T SO approximately follows Gaussian distribution for sufficiently
large N. Thus, given false alarm probability Pf , the test threshold of the
proposed improved p-norm-based detection scheme in non-Gaussian
noise can be set as

Ψ ¼ ℚ�1
�
1� P f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VfT SOjH0 g

p
þ EfT SOjH0 g (14)

where Q�1ð �Þ is the inverse function of Qð �Þ, QðtÞ ¼�
1

 ffiffiffiffiffiffi

2π
p � R∞

t eð�u2=2 Þdu. VfT SOjH0 g and EfT SOjH0 g represent the
variance and mean of the test statistic T SO under the H0 hypothesis,
respectively.

Therefore, we can compare the test statistic T SO with the detection
threshold Ψ to determine if the primary signals exist or not. If T SO < Ψ,
we make the decision that the primary signals are present; otherwise, the
primary signals are absent. The decision rule can be given by
849
H0 : T SO � Ψ
H1 : T SO < Ψ (15)
�
The detailed algorithm steps of the improved p-norm-based detection

algorithm are summarized in Algorithm 1.
4. Spectrum sensing performance analysis

In this section, we evaluate the performance of the proposed
improved p-norm-based detection algorithm for non-Gaussian noise. An
approximate analytical expression for the false alarm probability Pf and
detector probability Pd is derived by providing the moment of the
improved p-norm-based test statistic T SO in the presence of GMN, GGN
and ASN.

4.1. False alarm probability and test threshold

To make the problem analytically tractable, we assume that the
number of samples is sufficiently large so that the central limit theorem
holds. As a result, we model the decision statistic T SO as a Gaussian
random variable under H0 hypothesis. Let

T SOjH0 ¼
XK
k¼1

ϖkexp

 
� 1
Nc

XN
n¼1

�
1� e�λn

�
jwkðnÞ jp

!
¼
XK
k¼1

ϖkT kH0

(16)

where T kH0 ¼ exp
�
� 1

Nc

PN
n¼1

�
1� e�λn

�
jwkðnÞ jp

�
.

We first derive the mean and variance of the test statistic T kjH0j
under H0. Let jT kjH0 ¼ 1

N

PN
n¼1

�
1� e�λn

�
jwkðnÞ jp, EfT kjH0j g and

VfT kjH0j g can be expressed as

EfT k jH0g ¼ E

(
exp

 
� 1
Nc

XN
n¼1

�
1� e�λn

�
jjwkðnÞ j p

!)

¼ exp
�
VfT k jH0g

2c2
� EfT k jH0g

c

�
(17)

VfT k jH0 g¼E
�
ðT kjH0 Þ2


�ðEfT kjH0 gÞ2

¼ exp
�
VfT kjH0 g

c2
�2EfT kjH0 g

c

�
�
�
exp
�
VfT k jH0 g

c2

�
�1
� (18)

Proposition 1. Denote the first and second order moment of the random
variables jwkðnÞ jp by MwðpÞ and Mwð2pÞ. Then, the mean and variance of
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T kjH0j can be given by

EfT kjH0j g ¼ 1
N

�
N � e�λ � e�λðNþ1Þ

1� e�λ

�
MwðpÞ (19)

VfT kjH0 g ¼ 1
N2

�
N þ e�2λ � e�2λðNþ1Þ

1� e�2λ � 2
e�λ � e�λðNþ1Þ

1� e�λ

�
�
�
Mwð2pÞ �M2

wðpÞ
� (20)

Proof.
According to the system model and the test statistic, the mean of T k can be

computed as

EfT k jH0 g ¼ E

(
1
N

XN
n¼1

�
1� e�λn

�
jwkðnÞ j p

)

¼ 1
N

�
N � e�λ � e�λðNþ1Þ

1� e�λ

�
EfjwkðnÞ j p g

¼ 1
N

�
N � e�λ � e�λðNþ1Þ

1� e�λ

�
MwðpÞ

(21)

where MwðpÞ ¼ EfjwkðnÞ j p g. The variance of T k can be calculated as

VfT k jH0 g ¼ V

(
1
N

XN
n¼1

�
1� e�λn

�
jxkðnÞ j p

)

¼ 1
N2

�
N þ e�2λ � e�2λðNþ1Þ

1� e�2λ � 2
e�λ � e�λðNþ1Þ

1� e�λ

�
�VfjxkðnÞ j p g

¼ 1
N2

�
N þ e�2λ � e�2λðNþ1Þ

1� e�2λ � 2
e�λ � e�λðNþ1Þ

1� e�λ

�
�
�
Mwð2pÞ �M2

wðpÞ
�

(22)

□

Lemma 1 provides the mean and the variance of T k under H0. The first
and second moments of jwkðnÞ j p are required in (19) and (20) in the presence
of non-Gaussian noise. MwðpÞ and Mwð2pÞ are provided in Lemma 1 -
Lemma 3 for GMN, GGN and ASN.

Lemma 1. When wkðnÞ are i.i.d. Gaussian mixture random variables,
MwðpÞ and Mwð2pÞ can be provided as

MwðpÞ ¼
XU

i¼1

biffiffiffi
π

p Γ
�
pþ 1
2

�� ffiffiffiffiffiffiffi
2σ2

i

q �p

(23)

Mwð2pÞ ¼
XU

i¼1

biffiffiffi
π

p Γ
�
2pþ 1

2

�� ffiffiffiffiffiffiffi
2σ2i

q �2p

(24)

Proof. See Appendix 7. □

Lemma 2. When wkðnÞ follows generalized Gaussian distribution, MwðpÞ
and Mwð2pÞ can be expressed as

MwðpÞ ¼
jAðβ; σzÞ jpΓ

�
pþ1
β

�
Γ
�
1
β

� (25)

Mwð2pÞ ¼
jAðβ; σzÞ j 2pΓ

�
2pþ1
β

�
Γ
�
1
β

� (26)

Proof. See Appendix 8. □

Lemma 3. When wkðnÞ is characterized by alpha-stable distribution,
MwðpÞ and Mwð2pÞ can be given by
850
MwðpÞ ¼
2pþ1Γ pþ1

2 Γð � p=α Þ
α
ffiffiffi
π

p
Γð � p=2 Þ γp=α (27)
� �

Mwð2pÞ ¼
22pþ1Γ

�2pþ1
2

�
Γð � 2p=α Þ

α
ffiffiffi
π

p
Γð � 2p=2 Þ γ2p=α (28)

Proof. See Appendix 9. □
Based on these results, the mean and variance of T SO under H0 can be

provided as

EfT SOjH0 g ¼
XK
k¼1

ϖkexp
�
VfT k jH0 g

2c2
� EfT k jH0 g

c

�
(29)

VfT SOH0 g ¼
XK
k¼1

ϖ2
kexp

�
VfT k jH0 g

c2
� 2EfT kjH0 g

c

�

�
�
exp
�
VfT kjH0 g

c2

�
� 1

� (30)

Based on the Central Limit Theorem (CLT) for sufficiently large N, T SO

approximately follows Gaussian distribution. Therefore, the false alarm
probability Pf can be given by

P f ¼ 1� ℚ

 
Ψ� EfT SOjH0 gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VfT SOjH0 g
p !

(31)

Therefore, the detection threshold for a given Pf can be given as

Ψ ¼ ℚ�1
�
1� Pf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VfT SOjH0 g

p
þ EfT SOjH0 g (32)

From (32), the detection threshold Ψ is simply a function of Pf and the
parameters N, K and MwðpÞ. The first two moments of wkðnÞ under H0, i.e.
MwðpÞ and Mwð2pÞ depend on the parameters of the noise distribution [36,
37].

4.2. Detection probability

Similar to false alarm probability, the distribution of T SO under the
H1 hypotheses can be approximated by a Gaussian distribution. Under
the hypothesis H1, we let

T kjH1 ¼
1
N

XN
n¼1

�
1� e�λn

�
jxkðnÞ j p (33)

and then

T SOjH1 ¼
XK
k¼1

ϖkexp
�
� T k jH1

c

�
(34)

Let us now study the mean and variance of T k under H1 in Propo-
sition 2.

Proposition 2. The mean and variance of T k underH1 can be provided as

EfT k jH1 g ¼ 1
N

�
N � e�λ � e�λðNþ1Þ

1� e�λ

�
�
�
MwðpÞ þ

pðp� 1Þ
2

σ2
s
�
k
Mwðp� 2Þ

� (35)

VfT k jH1 g ¼ 1
N2

�
N þ e�2λ � e�2λðNþ1Þ

1� e�2λ � 2
e�λ � e�λðNþ1Þ

1� e�λ

�
�
�
Mwð2pÞ �M2

wðpÞ þ pð2p� 1Þσ2
s
�
k
Mwð2p� 2Þ

� pðp� 1Þσ2
s
�
k
MwðpÞMwðp� 2Þ

�
(36)



Fig. 3. PTR curves for proposed scheme with different value of p.

Fig. 4. ROC curves for proposed scheme with different values of K.

Fig. 2. ROC curves for proposed scheme with different value of p.
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Proof. See Appendix 10. □
Next, the mean and variance of T SO under H1 can be provided as

EfT SOjH1g ¼
XK
k¼1

ϖkexp
�
VfT kjH1 g

2c2
� EfT kjH1 g

c

�
(37)

VfT SOjH1 g ¼
PK
k¼1

ϖ2
kexp

�
VfT k jH1 g

c2
� 2EfT kjH1 g

c

�

�
�
exp
�
VfT k jH1 g

c2

�
� 1

� (38)

We again approximate the distribution of T SO to be Gaussian with suffi-
ciently large N according to CLT, and have

Pd ¼ 1� ℚ

 
Ψ� EfT SOjH1 gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VfT SOjH1 g
p !

(39)

In (39), the approximate analytical expressions of the detection probability
can be obtained using the central limit theorem. From the formula, the Pd

increases linearly with the number of samples and receiver antenna. This is
because the test statistic is very similar to Gaussian processes for large N and K.
However, it is very difficult to find the exact Pd due to the complexity of the
function. Therefore, the detection probability will be obtained by approxima-
tion and Monte Carlo simulation.

5. Numerical results and discussion

In this section, we will evaluate the proposed scheme for randomly
arriving primary signals under non-Gaussian noise in UAV communica-
tion. The detection performance of the proposed scheme is examined in
terms of the Receiver Operating Characteristics (ROC) and the correct
detection probability versus transmit MSNR (PTR). The transmit MSNR is
defined by the ratio of the average transmit signal power to the average
noise power as EfksðnÞk2g =σ2w. The variance of noise σ2w is set to the
dispersion parameter γ in the ASNmodel. Based on the simulationmodel,
the main simulation parameters are considered as follows. For the large-
scale fading, the path loss exponents of the LoS and NLoS are ΔL ¼ 2 and
ΔN ¼ 4, respectively. Meanwhile, the path loss factors for the LoS and
NLoS are ψL¼ 0 dB and ψN¼�20 dB. The noise parameters are set to β ¼
1.1, b1 ¼ 0.999, σ22=σ

2
1 ¼ 60, α ¼ 1.7. In addition, the environment

constants are set as A ¼ 9.6 and B ¼ 0.16. The small-scale fading is
Nakagami-m fading withmL¼ 3,mN¼ 1. The height of the UAV is 200m,
and the radius of plan is 240 m. Each simulation result is based on 10000
trials.

Figs. 2–3 show the ROC curves and the PTR curves of the proposed
scheme based on p-norm for different values of p. We set Transmit MSNR
as 41 dB, 41 dB and 44 dB for GNN, GMN, ASN in Fig. 2. In Fig. 3, the
number of received samples N are set N ¼ 300, N ¼ 200 and N ¼ 300 for
GNN, GMN, ASN. From Figs. 2–3, it is clear that the detection perfor-
mance on the proposed scheme is dependent on the value of the
parameter p and that the proposed scheme performs better for different
values of p. We set the parameter p as 0.5, 1.0 and 0.2 for GNN, GMN,
ASN in the subsequent simulations.

In Fig. 4 and Fig. 5, we show the ROC curves and the PTR curves for
the number of antennas K, respectively. The curves are plotted for the
following parameters: N¼ 200, and transmit MSNR are 39 dB, 41 dB and
41 dB for GNN, GMN, ASN in Fig. 4. The number of received samples N
are set as N¼ 600, N¼ 300 andN¼ 200 for GNN, GMN, ASN in Fig. 5. In
Fig. 4, we can see that the detection performance of the proposed scheme
improves when the number of antennas K increases. For example, when
the additive noise is GNN, the probability of detection is nearly 90% at
Pf ¼ 0:1 and K ¼ 5, and the probability of detection is close to 80% at
Pf ¼ 0:1 and K ¼ 4. Correspondingly, the detection probability is
improved with the increase of K in Fig. 5. Furthermore, it can be clearly
851
seen in Fig. 5 that a significant improvement in the detection perfor-
mance results from increasing transmit MSNR.
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Fig. 8. ROC curves for the proposed scheme with different heights of the UAV.

Fig. 9. PTR curves for the proposed scheme with different heights of the UAV.

Fig. 5. PTR curves for proposed scheme with different values of K.

Fig. 6. ROC curves for proposed scheme with different values of N.

Fig. 7. PTR curves for proposed scheme with different values of N.

J. Zhang et al. Digital Communications and Networks 9 (2023) 846–855
To evaluate the effect of the number of received samples N, Figs. 6–7
present the ROC curves and the PTR curves for different sample values
of N under GMN, GGN and ASN, respectively. We set transmit MSNR as
852
41 dB, 40 dB and 43 dB for GNN, GMN, ASN in Fig. 6. In Fig. 7, the
number of antennas K are set to K ¼ 4, K ¼ 3 and K ¼ 3. From Figs. 6–7,
we can see that the performance of the proposed scheme is different for
the number of received samples N. The detection performance of the
proposed scheme is positively correlated to the number of signal
samples.

Figs. 8–9 give the ROC curves and PTR curves for different the height
of the UAV in the presence of non-Gaussian noise. We set transmit MSNR
as 40 dB, 41 dB and 43 dB for GNN, GMN, ASN in Fig. 8. In Fig. 9, the
number of samples N are N ¼ 550, N ¼ 200 and N ¼ 200 for GNN, GMN,
ASN. According to Figs. 8–9, we can see that the performance of the
proposed scheme is sensitive to the height of the UAV ℓ. The detection
performance degrades with the increase of the height of UAV ℓ. This is
mainly because the path loss increases with the increase of the height of
UAV, which leads to the degradation of the detection performance of the
proposed method.

In order to evaluate the performance of the proposed scheme in
comparison with Multiple-antenna Linearly Weighted detector in
Ref. [24], we depict the PTR curves for Pf ¼ 0:1 in Fig. 10. The remaining
parameters are set as follows: β ¼ 1.1, b1 ¼ 0.999, σ22=σ

2
1 ¼ 100 and α ¼

1.8. The number of received samples N are set as N¼ 300, N ¼ 200 and N
¼ 300 for GNN, GMN, ASN. It can be seen from Fig. 10 that the proposed
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Fig. 10. PTR curves for the proposed scheme, p-Norm and MALW detector.
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scheme outperforms the MALW detector in the presence of non-Gaussian
noise for the given false alarm probability. For example, when Pf is fixed
at 0.1, the detection probability gain of the proposed scheme is about 10%
for the MALW detectors with transmit MSNR ¼ 42 dB.

6. Conclusion

In this paper, we have investigated the detection of primary signals
853
when they are corrupted by additive non-Gaussian noise and arrive
randomly during the spectrum sensing period in green UAV communi-
cation. We have proposed an improved p-norm-based spectrum and
energy-efficient spectrum sensing scheme. The approximate analytical
expressions for false alarm probability, decision threshold, and detection
probability of the proposed scheme have been derived in the presence of
the GMD, GGD and ASN. Numerical simulation results have shown that
the proposed scheme achievedmuch better performance than the MALW.
In addition, we have observed that the detection performance of the
proposed scheme increases with the increase of transmit MSNR, the
number of samples and the number of receiver antennas.
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Appendix

7. Proof of Lemma 1

Under H0 hypothesis, assume that wkðnÞ are i.i.d. And Gaussian mixture random variables, the moments of jwkðnÞ jp can be expressed as

MwðpÞ ¼ EfjwkðnÞ j p g ¼
Z ∞

�∞
jwkðnÞ j pfzðwkðnÞ ÞdwkðnÞ ¼

Z ∞

�∞
jwkðnÞ j p

XU
i¼1

biffiffiffiffiffiffiffiffiffiffi
2πσ2

i

p exp

 
� jwkðnÞ j2

2σ2i

!
dwkðnÞ

¼
XU
i¼1

biffiffiffiffiffiffiffiffiffiffi
2πσ2

i

p Z ∞

�∞
jwkðnÞ jpexp

 
� jwkðnÞ j 2

2σ2i

!
dwkðnÞ ¼

XU
i¼1

biffiffiffi
π

p Γ
�
pþ 1
2

�� ffiffiffiffiffiffiffi
2σ2i

q �
p (40)

where Γð �Þ denotes the Gamma function.
Then, the moments of jwkðnÞ j 2p under H0 hypothesis can be obtained as

Mwð2pÞ ¼ E
�
jwkðnÞ j 2p


¼
Z ∞

�∞
jwkðnÞ j 2pfzðwkðnÞ ÞdwkðnÞ ¼

Z ∞

�∞
jwkðnÞ j 2p

XU
i¼1

biffiffiffiffiffiffiffiffiffiffi
2πσ2

i

p exp

 
� jwkðnÞ j 2

2σ2
i

!
dwkðnÞ

¼
XU
i¼1

biffiffiffiffiffiffiffiffiffiffi
2πσ2

i

p Z ∞

�∞
jwkðnÞ j2pexp

 
� jwkðnÞ j 2

2σ2
i

!
dwkðnÞ ¼

XU
i¼1

biffiffiffi
π

p Γ
�
2pþ 1

2

�� ffiffiffiffiffiffiffi
2σ2

i

q �
2p (41)

8. Proof of Lemma 2

Under H0 hypothesis, suppose that wkðnÞ are i.i.d. And generalized Gaussian random variables with P.D.F., i.e.

f ðwkÞ ¼
1

2Γ
�
1
β

�
Aðβ; σwÞ

exp

 
�
				 wk

Aðβ; σwÞ

				β
!

(42)

Then, the first and second moments of jwkðnÞ jp, under the H0 hypothesis, are given by
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MwðpÞ ¼ EfjwkðnÞ j p g ¼
Z ∞

jwkðnÞ j pfzðwkðnÞ ÞdwkðnÞ ¼
Z ∞

jwkðnÞ j p
1� � � exp �

				 wkðnÞ
				 β dwkðnÞ
�∞ �∞ 2Γ 1
β Aðβ; σwÞ

 
Aðβ; σwÞ

!

¼ 1

2Γ
�
1
β

�
Aðβ; σwÞ

Z ∞

�∞
jwkðnÞ j p � exp

 
�
				 wkðnÞ
Aðβ; σwÞ

				 β
!
dwkðnÞ ¼

jAðβ; σwÞ j pΓ
�
pþ1
β

�
Γ
�
1
β

� (43)

Mwð2pÞ ¼ E
�
jwkðnÞ j 2p


¼
Z ∞

�∞
jwkðnÞ j 2pfzðwkðnÞ ÞdwkðnÞ ¼

Z ∞

�∞
jwkðnÞ j 2p

1

Γ
�
1
β

�
Aðβ; σwÞ

� exp

 
�
				 wkðnÞ
Aðβ; σwÞ

				 β
!
dwkðnÞ

¼ 1

Γ
�
1
β

�
Aðβ; σwÞ

Z ∞

�∞
jwkðnÞ j 2p � exp

 
�
				 wkðnÞ
Aðβ; σwÞ

				 β
!
dwkðnÞ ¼

jAðβ; σwÞ j 2pΓ
�
2pþ1
β

�
Γ
�
1
β

� (44)

9. Proof of Lemma 3

According to Eq. (11) and Eq. (12) in Ref. [15], the first and second moments of jwkðnÞ j p, under the H0 hypothesis, are given as

MwðpÞ ¼ EfjwkðnÞ jp g ¼ Cðp; αÞγp=α ¼
2pþ1Γ

�
pþ 1
2

�
Γð � p=α Þ

α
ffiffiffi
π

p
Γð � p=2 Þ γp=α

(45)

Mwð2pÞ ¼ E
�
jwkðnÞ j 2p


¼ Cð2p; αÞγ2p=α ¼

22pþ1Γ
�
2pþ 1

2

�
Γð � 2p=α Þ

α
ffiffiffi
π

p
Γð � 2p=2 Þ γ2p=α

(46)

10. Proof of Proposition 2

By using Lemma 5, the mean of T k under H1 can be calculated as

EfT k jH1 g ¼ E

(XN
n¼1

�
1� e�λn

�		hqksqðnÞ þ wkðnÞ
		 p) ¼ 1

N

�
N � e�λ � e�λðNþ1Þ

1� e�λ

�
E
�		hqksqðnÞ þ wkðnÞ

		p  (47)

By using the generalized binomial theorem, E

(					PQ
q¼1hqksqðnÞ þ wkðnÞ

					
p)

can be approximately expressed as

E

(					XQ
q¼1

hqksqðnÞ þ wkðnÞ
					
p)

	 E

(
jwkðnÞ j p þ

pðp� 1Þ
2

					XQ
q¼1

hqksqðnÞ
					
2

jwkðnÞ j p�2

)
¼ EfjwkðnÞ j p g þ

pðp� 1Þ
2

σ2
s
�
k
E
�
jwkðnÞ jp�2 

¼ MwðpÞ þ
pðp� 1Þ

2
σ2
s
�
k
Mwðp� 2Þ (48)

where σ2
s
�
k
¼ E

8<:
					PQ

q¼1hqksqðnÞ
					
2
9=;.

Substituting (48) into (47), the mean of T k under H1 can be expressed as

EfT k jH1 g ¼ 1
N

�
N � e�λ � e�λðNþ1Þ

1� e�λ

�
�
�
MwðpÞ þ

pðp� 1Þ
2

σ2
s
�
k
Mwðp� 2Þ

�
(49)

The variance of T k under H1 can be expressed as

VfT kjH1 g ¼
�
N þ e�2λ � e�2λðNþ1Þ

1� e�2λ
� 2

e�λ � e�λðNþ1Þ

1� e�λ

�
� 1
N2

VfjxkðnÞ jp g

¼
�
N þ e�2λ � e�2λðNþ1Þ

1� e�2λ
� 2
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1� e�λ

�
� 1
N2

�
E
�
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� E2fjxkðnÞ j p g

�
(50)
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VfjxkðnÞ jp g ¼ E
�
jxkðnÞ j 2p


� E2fjxkðnÞ jp g ¼ E

(				XQ hqksqðnÞ þ wkðnÞ
				2p)� E2
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According to (50) and (51), the variance of T k under H1 can be expressed as

VfT kjH1j g ¼ 1
N2

�
Nþ e�2λ � e�2λðNþ1Þ

1� e�2λ
� 2

e�λ � e�λðNþ1Þ
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(52)
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