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A fresh look at mean-shift based modal

clustering

Abstract

Modal clustering is an unsupervised learning technique where cluster
centers are identified as the local maxima of nonparametric probabil-
ity density estimates. A natural algorithmic engine for the computation
of these maxima is the mean shift procedure, which is essentially an
iteratively computed chain of local means. We revisit this technique,
focusing on its link to kernel density gradient estimation, in this course
proposing a novel concept for bandwidth selection based on the concept
of a critical bandwidth. Furthermore, in the one-dimensional case, an
inverse version of the mean shift is developed to provide a novel approach
for the estimation of antimodes, which is then used to identify cluster
boundaries. A simulation study is provided which assesses, in the uni-
variate case, the classification accuracy of the mean-shift based clustering
approach. Three (univariate and multivariate) examples from the fields
of philately, engineering, and imaging, illustrate how modal clusterings
identified through mean shift based methods relate directly and natu-
rally to physical properties of the data-generating system. Solutions are
proposed to deal computationally efficiently with large data sets.

Keywords: multimodality; mode detection; kernel density estimation; modal
testing; critical bandwidth.

MSC Classification: 62G07 , 62H12

1 Introduction

We begin this exposition with a thought experiment. Assume some population
is distributed into some loosely scattered clusters over some area; think for
instance of animals dispersed into small herds, or partygoers at some event.
Assume also that conditions are such that for each element only a specific,
fixed, radius around itself is visible, which is large enough to permit view on
some neighboring elements but no overall view over the distribution of the full
population.

Now, pick one element of this population, and assume this element intends
to approach the next cluster center (say, in case of the animals, to protect from
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potential predators). What would be the best strategy for the element to go
about this, given that they have no overall view over the distribution, nor do
they know where the next cluster is centered?

A reasonable strategy could be as follows. While no information over the
overall pattern is available, the element is aware of its local neighborhood and
the distribution of other elements within. So, there does exist a notion of where
the elements are denser in its close vicinity. Hence, the element could compute
the average of all elements in its vicinity, which could be described as a local
center of mass or gravity, and move to that point. Being there, the view has
slightly shifted. The element now sees a slightly different neighborhood, albeit
overlapping with the previous one. It is now able to compute an updated local
average, and move to this point, enabling yet another view on its vicinity. It
is intuitively clear that by iterating this procedure, the element will move into
increasingly dense regions of the population, and eventually be drawn to the
center of one of the clusters (which is probably, but not necessarily, the nearest
center to its original position).

The fable given above can be seen as a qualitative description of the mean
shift procedure, which computes an iterated sequence of local means which
can be shown to converge to a local mode of its distribution; that is to a
local maximum of its density. The mean shift can be traced back to a 1975
paper by Fukanaga and Hostetler [33] (and its conceptual origins even beyond
that), gaining significant traction in the computer science literature in the late
nineties and early 2000’s [18, 22, 23]. It has struggled so far, in our view rather
surprisingly, to gain significant foothold in Statistics. Its most immediate fields
of application are, clearly, mode detection and clustering, on which we fur-
ther elaborate in Section 2, though it has also been used for other statistical
problems such as regression [7, 16] or the estimation of principal curves and
manifolds [30].

As motivated above, the mean shift is closely related to the problem of
density estimation. While it has been applied in the context of several density
estimators including mixture models [6, 11], we focus in this work on the
kernel density estimator (KDE), which we therefore introduce in Subsection
2.2. Section 2 continues with a brief introduction to modal clustering as well
as an illustrative data example to which we will return lateron — the Hildago
stamp data. Section 3 derives, starting from the the KDE, the mean shift
procedure for modal estimation, and discusses some of its properties including
the relation to the Expectation-Maximization algorithm. Section 4 focuses
on univariate data, discussing modal testing, the estimation of modes and
antimodes, as well as aspects of bandwidth selection for modal clustering.
Section 5 contributes a simulation study and three real data examples (one of
which revisiting the Hidalgo stamp data and the other ones being multivariate),
before the paper finishes in Section 6 with a Discussion. Some theoretical
considerations, as well as explicit code to reproduce the application studies, in
form of R Markdown documents, are provided in supplementary material.
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2 Preliminaries

Consider a random vector X = (X1, . . . , Xd)
T , with probability density func-

tion f : Rd −→ R, and overall mean µ = (µ1, . . . , µd)
T . We are given n

realizations of X, denoted by xi = (xi1, . . . , xid)
T , i = 1, . . . , n.

2.1 Introduction to modal clustering

To identify the clusters and determine which observations belong to each clus-
ter, several methods have been proposed in the literature. A comprehensive
review of different clustering methods is provided in [39]. Among the various
approaches to clustering, there is a wide category of methods based on statis-
tical modelling, where clusters are associated with features of the underlying
density function, f , of the data. These methods can be grouped into paramet-
ric methods, where cluster centres are linked to distributional parameters, or
nonparametric methods, which rely on the modes of X to identify the clus-
ter centers. This latter group of methods is commonly referred to as modal
clustering.

When performing modal clustering there are three key points. Firstly, some
methodology is needed to estimate the modes of X from a given data set; i.e.
the (local) maxima of the underlying density f of X. While a wide range of
approaches, including model-based ones (see e.g. [9]), can be pursued for this
purpose, our interest is on methods which estimate the modes based on kernel
density estimation (KDE), which we briefly introduce in Section 2.2. A second
point is to decide on the degree of smoothing, in the KDE context expressed
by the value of a bandwidth matrix, possibly in conjunction with a method to
discard modes that are not significant. This point is highly related to assessing
the number of clusters or, equivalently, the number of modes (see Section 4.1).
Then, in order to classify observations, the third point would be a principled
mechanism to associate observations with clusters (modes).

A traditional approach to this problem are the λ-level sets (see, e.g., [54]),
where clusters are defined using the disjoint connected sets of values of x for
which the estimated probability density function, f̂(x), is larger or equal than
a given value λ. Identifying the connected sets in the multivariate case is not
straightforward and solutions depend on the value of λ. Techniques to examine
level sets over ranges of levels have been developed; see e.g. [62]’s cluster tree.
In the univariate case, such approaches naturally lead to a population-based
view where clusters are defined as connected subsets of the real line separated
by local minima [10].

A more general approach, which is grounded in Morse theory and applicable
in the multivariate case, would use the notion of the domain of attraction (see
[10]), where the clusters’ regions are the unstable manifolds of the negative
gradient flow corresponding to each mode, in order to identify a partitioning
of the data space according to the identified cluster centres. The main issue,
in that case, is the need for some strong smoothness assumptions over f .
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As pointed out in [3], and similarly observed by [11], the two clustering
approaches in the previous paragraphs are fundamentally equivalent. In the
univariate setting, when the true density is assumed to be bounded and con-
tinuous, the problem can be phrased as that of identifying the antimodes as
boundaries of the clusters. This leads to the question of how to estimate the
antimodes. An obvious approach is to identify the relative minima of the KDE,
f̂ , which we will pursue in Section 4.3.

A more direct strategy is to connect each observation with its “correspond-
ing” mode. In that case, the most natural approach, which will be discussed
in Section 3, is to employ a gradient ascent algorithm, the mean shift. This
technique will work well in both the univariate and the multivariate setting.
Commonly, this approach is only formulated for the observed sample. How-
ever, as a referee pointed out, the mean shift paths approximate, by means of
the sample, the gradient lines, and these gradient lines do exist, and can be
estimated, even for unobserved data points.

2.2 Kernel density estimation

Kernel density estimation works by redistributing the point mass of each obser-
vation around its vicinity and then summing over the contributions from all
data points. Specifically, Let H = diag(h2

1, . . . , h
2
d) denote a matrix with

squares of positive bandwidths hj on the diagonal, implying positive defi-
niteness of H. For a point x ∈ Rd, let ||x|| denote its Euclidean norm; i.e.
||x||2 = x2

1 + . . . + x2
d, and k : R −→ R a non-negative function such that∫

Rd k(||x||2)dx = 1. The function K(x) = k(||x||2) is often referred to as a ker-
nel function, and k as its profile. For instance, for the multivariate Gaussian
kernel, one has

k(u) = (2π)
−d/2

e−u/2 (1)

and so K(x) = (2π)
−d/2

e−||x||2/2.

A kernel density estimator (KDE) f̂ of f is then given by

f̂(x) =
1

n|H|1/2
n∑

i=1

k
(
||H−1/2(xi − x)||2

)
. (2)

If the main interest is the estimation of modes, one could do this, in prin-
ciple, directly based on (2). Simplistically, one can define some grid spanning
the domain of X, and then identify the modes based on a grid search (which is
not entirely trivial if d > 1). However, this methodology suffers from the obvi-
ous drawback that it depends on the specification of the grid, and so modes
may be missed if they fall ‘between the cracks’. Also, this approach can be
computationally costly if d is large. Furthermore, the possibility to obtain an
overall density estimate may not always be available; for instance for our ‘ele-
ment’ in Section 1, it is not. The approaches discussed in this work aim at
identifying the maxima of (2) (and so, estimating the modes of X) without
actually requiring the estimation of the density itself.



Springer Nature 2022 LATEX template

A fresh look at mean-shift based modal clustering 5

Thickness (in mm)

0
1

0
2

0
3

0
4

0
5

0
6

0

0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

KDE

Histogram

Modes

Antimode

Papel Sellado

LA+−F

Thickness (in mm)

0
1

0
2

0
3

0
4

0
5

0
6

0

0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

KDE

Histogram

Modes

Antimodes

Papel Sellado

LA+−F

Thickness (in mm)

0
1

0
2

0
3

0
4

0
5

0
6

0

0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

KDE

Histogram

Modes

Antimodes

Papel Sellado

LA+−F

Fig. 1 Histogram and KDE for the 485 stamps data set from the 1872 Hidalgo Issue of
Mexico, for different binwidths and bandwidths according to [64] (left), [1] (center) and
[42] (right). From the KDE, for each bandwidth value, the estimated modes (dashed) and
antimodes (dotted) are identified by vertical lines. The points in the x-axis represent the
thickness of stamps watermarked with LA+-F (circles) and Papel sellado (triangles).

2.3 Hidalgo stamp example

In order to illustrate concepts, we introduce the data known as the 1872
Hidalgo issue of Mexico (see [42]). This dataset contains the thickness of 485
stamps that were printed in a mixture of paper types in Mexico between 1872
and 1874. The objective here is to determine to which sub-collection each
stamp belongs according to its thickness. The problem is that there is not a
standard rule in catalogues for classifying this particular stamps issue. The
difficulty arises from two sides, first, it is known that the handmade paper
presents a lot of variability in the thickness of the paper. Second, since of
scarcity of ordinary white wove paper, other types of paper were used (some
of them watermarked), such us Papel Sellado or La Croix–Freres of France
(LA+-F ).

The previous situation creates three questions, related to modal clustering,
that we will try to solve in Section 5.2. 1) How many subgroups (clusters/-
modes) are there? 2) Where are the modes and antimodes located? 3) What
cluster does each stamp belong to? A preliminary hint for solving these ques-
tions is presented in Figure 1. There, we provide the histogram and the KDE for
different bin- and band-widths for the 1872 Hidalgo issue of Mexico, where we
also indicate the 29 stamps where a watermark was present. The three graphs
are associated with three historical nonparametric solutions of the previous
questions: [64], [1] and [42]. The solutions for some of the previous questions
from a parametric perspective were reviewed in [49, Ch. 6].

3 The mean shift

Rather than building ad-hoc solutions for modal estimation as outlined towards
the end of Section 2.2, it appears more natural to go back to first principles and
identify density modes through their mathematical properties, being points
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with vanishing density gradients. This section will demonstrate that this line
of reasoning leads us directly to the definition of the mean shift.

3.1 Derivation

A natural estimator for the maxima of f is given by the maxima of f̂ , which
we can find by equating its gradient

∇f̂(x) = − 2

n|H|1/2
H−1

n∑
i=1

k′
(
||H−1/2(xi − x)||2

)
(xi − x) (3)

to zero, yielding the equation

x =

∑n
i=1 k

′ (||H−1/2(xi − x)||2
)
xi∑n

i=1 k
′
(
||H−1/2(xi − x)||2

) ≡ µ(x). (4)

We see that in (4) x is equated to its local mean, µ(x), that is, the (weighted)
mean of all points in a local neighborhood of x. This equation, which can
be considered as a localized form of the self-consistency property [63], does
not have an analytical solution, but given some starting point x(0) one can
iteratively compute the sequence

x(ℓ) = µ(x(ℓ−1)), ℓ = 1, 2, . . . (5)

which converges to its fixed point x = µ(x) which is just the solution of (4).
This is, in a nutshell, the idea of the mean shift procedure [18, 22]. The fixed

point solution x▲ = µ(x▲) of (5) corresponds to a local maximum of f̂ , with
x▲ serving as our estimate1 of the (local) mode of X. It is worth highlighting
that, while conceptually being based on the KDE, the mean shift procedure
does not require the explicit computation of the estimated density f̂ . Also, it is
worth noting that if one estimates the density with some parametric model, the
idea of using a fixed-point algorithm connects the mean shift with fixed-point
cluster analysis (see [38]).

3.2 The mean shift vector

For the Gaussian profile (1), one has k′(u) = − 1
2k(u) and so in (4) one can

replace k′ by k. It is then also clear by dividing (3) by (2) that ∇f̂(x)/f̂(x) =
H−1(µ(x)− x), or equivalently,

s(x) ≡ µ(x)− x = H
∇f̂(x)

f̂(x)
. (6)

1Conceptually, one could point out here that the maxima of f̂ constitute the estimates of the
(local) modes, while the iterative solutions entailed by equation (5) act as approximations to
these estimates. For all practical purposes, x▲ will still serve as ‘the estimate’ of a local mode of
X; therefore we do not make further efforts to distinguish this conceptual nuance further in this
exposition.
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The expression s(x) is the mean shift vector. For isotropic bandwidth matrices

H = h2Id, s(x) points exactly into the direction of the gradient of f̂ , and
otherwise, into a bandwidth-rotated version of the latter. In either case, it
takes larger steps for larger gradients and smaller densities. Thus, one can
reformulate the update step of the mean shift procedure as

x(ℓ) = x(ℓ−1) + s(x(ℓ−1)) (7)

where the additions s(x(ℓ−1)) guarantee a hill-climbing process (a proof of this
property covering the non-isotropic bandwidth case was provided in [14]). In
particular, when initialized far from the mode, the first steps are usually large
with quick progress towards the mode [7]. When the latter is reached, at the
fixed point x▲, one has s(x▲) = 0.

We will restrict to the use of the Gaussian profile (1) for the remainder of
this exposition.

3.3 Blurring and non-blurring mean shift

At this point it is worth looking back at the ‘element’ in our fable. One can
distinguish two scenarios: Firstly, if one takes the view that the element itself
is part of the data, then by moving along its trajectory into denser regions it
is changing the data. Assuming all population elements do one step forward
simultaneously (jointly forming a ‘wave’), one can think of this as a process
in which the data condense themselves with each iteration towards the local
centers. This concept is known (perhaps rather misleadingly) as blurring mean
shift in the literature [18]. On the contrary, we can imagine a situation in which
the element takes a superior position where, while sailing along its trajectory,
it remembers its original position, and sticks with that position as far as all
computations are concerned. That is, in such a non-blurring mean shift, cluster
centers are found without modifying the data. The blurring mean shift is a
technique which is mainly relevant from a computer science perspective (see,
e.g., [7, 65]). We do not discuss blurring mean shift in this paper; i.e. in all our
considerations the data themselves are not moving.

3.4 Mean shift and EM

It is insightful to very slightly reformulate the expression for the local mean
µ(x) defined in (4). In the case of a Gaussian profile, this reads as

µ(x) =

n∑
i=1

k
(
||H−1/2(xi − x)||2

)∑n
j=1 k

(
||H−1/2(xj − x)||2

)xi ≡
n∑

i=1

wixi, (8)

with wi = k
(
||H−1/2(xi − x)||2

)
/
∑n

j=1 k
(
||H−1/2(xj − x)||2

)
. Now, assum-

ing for a moment that x represents the realization of a random variable which
is a mixture of n multivariate Gaussians centered at the original observa-
tions xi, each with variance matrix H, and that all of these possess a prior
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probability of 1/n, it is clear from Bayes’ theorem that wi is just the poste-
rior probability that observation x is generated from the component centered
at xi, and so the computation of wi mirrors the E-step well known from
the Expectation-Maximization (EM) algorithm for finite Gaussian mixtures.
A rigorous formulation of the equivalence of procedure (5) (in the case of a
Gaussian profile) to an EM algorithm requires a more elaborate argument [6];
we recall this argument, adapted to our notational framework, in the sup-
plementary material (S2). This result is of importance in two ways: Firstly,
inferential methodology and theoretical results known for the EM algorithm
may be applicable to the mean shift. Secondly, the link between mean shift
and EM allows inferring convergence properties of the latter. A discussion of
convergence properties of the mean shift algorithm from that perspective is
delegated to the supplementary material (S3).

Other EM-style algorithms, albeit not equivalent to the mean shift proce-
dure, have been proposed in the literature for modal estimation. [47] develop
the Modal EM (MEM) algorithm which finds hill-climbing paths from each
data point to the local density maxima, as well as the ridgelines between clus-
ters, relying on explicit mixture density estimates for their identification. [46]
proposed an extension of the EM algorithm, called MM (Minorize/Maximize)
algorithm, where a a convex objective function is iteratively minorized by
easily-maximizable surrogate functions. [66] applied first the MEM algorithm
using Gaussian kernels, and then the MM algorithm allowing for more efficient
maximization when using non-Gaussian kernels, for modal linear regression.

4 Mode detection for univariate data

Let us now consider univariate data; i.e. d = 1 and hence H = h2 with a
positive bandwidth value h. We also still work with the conceptually simpler
case of a Gaussian kernel, i.e. we can use k instead of k′ in (4) and so the mean
shift can be expressed as

s(x) =

∑n
i=1 k((xi − x)/h)xi∑n
i=1 k((xi − x)/h)

− x =

∑n
i=1 k((xi − x)/h)(xi − x)∑n

i=1 k((xi − x)/h)
. (9)

4.1 Modal testing

In the clustering analysis, there is always a key point which is to decide on the
number of clusters. In the modal clustering case, this decision is equivalent to
assessing the number of modes. In the multivariate literature, this problem has
been initially solved by using automatic bandwidth rules (see, e.g., [27]), from
which the modes are estimated. The main problem of automatic rules is that,
in general, they do not search for the correct number of modes and spurious
modes may appear. Other approaches try to identify the “true” modes, for
example by testing if a mode is significant or not [34]. But, these methods still
rely on the initial choice of candidates for modes.
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At least in the univariate case, an alternative to those methods is testing
the number of modes to decide on the number of clusters. The problem of
nonparametrically assessing the number of modes has been studied during the
last decades, mainly using two approaches, the critical bandwidth [61] and the
excess mass [53]. A review of different techniques for testing the number of
modes in the univariate setting can be found in [1]. As mentioned before, a
well-calibrated test of multimodality, such as the test proposed by [1], could
be used before performing the modal clustering to determine the the number
of underlying clusters.

Up to the authors’ knowledge, for the multivariate case, there is a lack of
formal tests for testing the number of modes. Thus, it is not straightforward
to extend this idea to the scenario where d > 1. An interesting alternative
would be to explore the number of modes similarly as done for the SiZer in
the univariate case [15]. This can be done by testing for significant modes
for different values of the matrix bandwidth H (see [24]). Then, the number
of modes (clusters) could be chosen by the practitioner by summarizing the
results obtained for a grid of matrices H.

4.2 Mode estimation

We have already established that the iterative execution of (7) defines a trajec-
tory of points converging to the mode. To detect all modes of a random vector
X given n realizations x1, . . . , xn of X, we execute the following algorithm:

Algorithm 1
Denote M an empty list of modes.

1. Decide on
(a) a suitable bandwidth h (see Section 4.4);
(b) a criterion C1 for the convergence of the mean shift procedure (see

Remark 1);
(c) a criterion C2 for merging modes (see Remark 2).

2. For i = 1, . . . , n,
(i) Set x(0) = xi.
(ii) Iterate equation (7), using equation (9) for s(·), until C1 is fulfilled,

yielding the mode estimate x▲.
(iii) Attempt merging this mode with all other modes already present in M .

If the mode can be merged, do nothing. Otherwise, add x▲ to M .

Remark 1. Suitable choices of criterion C1 will indicate convergence at itera-
tion ℓ if ||s(x(ℓ))||, or a normalized version of it, falls below a certain threshold.
In the implementation of function ms in R package LPCM [29], this criterion
takes the form

||s(x(ℓ))||
||xℓ − µ||

< t1 ≪ 1
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where the positive constant t1 is by default set to 0.0001; i.e. convergence is
taken to be achieved when the mean shift from a point incurs a move of less
than 1

10000 of its Euclidean distance to the overall mean.
Remark 2. The criterion C2 for merging modes will check whether, once a
new mode m is found, its distance to any existing mode m′ is sufficiently small
so that the two modes are deemed identical. In the implementation in function
ms in R package LPCM [29], when

||m′ −m||
||m′ − µ||

< t2 < 1

for any m′ ∈ M then the two modes m and m′ are merged. The default setting
for the positive constant t2 is t2 =

√
t1; i.e. less approximation is required for

mode-merging than for establishing convergence.

4.3 Antimode estimation

Antimodes of X are defined as the minima of f ; i.e. points where the likelihood
of observing a realization of X increases in any direction when moving away
from it. This is equivalent to saying that the density f of X attains a local
minimum at the antimode, and so a natural strategy is to identify these as the
local minima of f̂ .

We have already presented an efficient way of identifying the maxima of f
through a gradient ascent algorithm, the mean shift. Can an ‘inverse’ version
of this algorithm be used to identify density minima, and hence antimodes?
To see this, recall firstly that s(x) = µ(x) − x = h2∇f̂(x)/f̂(x) which clearly
implies

−s(x) = −h2∇f̂(x)/f̂(x) = −h2∇ log(f̂(x))

so that a step from x into the direction −s(x) will lead to gradient descent
(Proposition 3 in [67] ensures that such a step downhill is well-defined under

a Lipschitz condition on the gradient of f̂). This suggests that the iterative,
inverse mean shift procedure

x(ℓ) = x(ℓ−1) − s(x(ℓ−1)) = 2x(ℓ−1) − µ(x(l−1)) (10)

will descend towards an antimode x▼, which is attained when s(x▼) = 0 =

∇f̂(x▼). Summarizing, this gives rise to the following algorithm.

Algorithm 2
Denote A an empty list of antimodes.

1. Decide on
(a) a suitable bandwidth h (see Section 4.4);
(b) a criterion C1 for stopping the inverse mean shift procedure;
(c) a criterion C2 for merging antimodes.

2. For i = 1, . . . , n,
(i) Set x(0) = xi.
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(ii) Iterate equation (10), using equation (9) for s(·), until C1 is fulfilled,
yielding an estimate of the antimode, x▼.

(iii) Attempt merging this antimode with all other antimodes already present
in A. If the antimode can be merged, do nothing. Otherwise, add x▼ to
A.

Remark 3. For the choice of C1 and C2, we use the same settings as for modal
estimation in Algorithm 1, but with constant t1 = 10−6.
Remark 4. Convergence of Algorithm 2 is not mathematically guaranteed,
and may be violated if the antimode is associated with a very small value
f̂(x▼). For, instance if one considers the estimation of the antimode between
two standard Gaussian distributions, then such convergence problems (typi-
cally expressed as oscillating behavior of x(ℓ) around the true antimode) begin
to arise when the means of these distributions are more than six standard
deviations apart. While such problems can be addressed algorithmically in
principle, the application studies provided in this manuscript do not require,
and hence do not make, any such adjustments. It is furthermore clear that, if
the starting point of the procedure lies below the smallest or beyond the largest
mode, then Algorithm 2 cannot converge, but will instead diverge to infinity.
We will see such behavior in the application studies. The occurrence of such
an event is still meaningful, as it indicates that there is no antimode located
between that starting point and the respective boundary. In practice, the rec-
ommended way of assessing this question is to look at the whole trajectory of
points x(ℓ) (does it converge, diverge, or oscillate). The function ms.rep.min

in R package LPCM [29] provides this full trajectory as an output component.

4.4 Clustering through modes and antimodes

Two approaches for clustering derive naturally from the methodologies given
in Sections 4.2 and 4.3. Firstly, fully in the spirit of the mean shift procedure,
one can allocate all observations to the cluster center to which their trajectory
has converged. In the univariate setting, a second, and perhaps more attractive
route, is to employ the antimodes as boundaries of the clusters’ regions, effec-
tively attaining a partition [10, 12] of the domain of X into a non-overlapping
sequence of intervals. While the two approaches are equivalent as far as the
cluster assignment of the actual data points are concerned, the second approach
is more general as it also implies a clustering of non-observed samples, giving
rise to a population- rather than sample-based view of the problem [10].

A crucial aspect in practice is then the estimation of the true antimodes
from the data. In Section 4.3, we provided an efficient algorithm for doing
that estimation, but results still depend on the value of the bandwidth h.
After determining the number of clusters (see Section 4.1), from a theoretical
perspective, an appealing choice would be to select as h the critical bandwidth
for that specific number of modes. Assume that the modes and antimodes lie
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in a known closed interval I, then the critical bandwidth of [36] for k modes2

is defined as,

hk = inf{h : f̂h has at most k modes in I}. (11)

The critical bandwidth of [61] is defined analogously replacing I by the
complete real line. When knowing the closed interval I, the theoretical justifi-
cation for employing the critical bandwidth of [36] to estimate the antimodes
can be found in [1]. In that paper, under some smoothness assumptions over

f , it is proven that the modes and antimodes of f̂hk
almost surely converge to

the true modes and antimodes of f , as n → ∞.
In practice, the main issue of employing the critical bandwidth as h is that

it always provides an almost-flat density region (see, e.g., the central panel
in Figure 1). Since, in that region, the estimated density derivative is almost
zero, the mean shift algorithm needs many iterations to find the modes. Thus,
for computational reasons, is better to choose another bandwidth still guar-
anteeing that it has the desired number of modes. Although one can think in
several choices satisfying that requirement, when k > 1, one alternative would
be to employ the geometric mean of hk and hk−1, i.e., to use the bandwidth
h′
k = (hkhk−1)

1/2. By using that bandwidth, which will be larger than hk (but
closer to hk than to hk−1), it is still guaranteed that the kernel density esti-
mation has k modes and the mean shift algorithm will converge faster to the
estimated modes and antimodes.

Collecting the results of this section our proposed modal clustering proce-
dure for the univariate case can be summarized in the following algorithm.

Algorithm 3

1. If the number of clusters is unknown, determine the number of modes for
a significance level α by using the test of [1].

2. Denote with k the number of modes.
(a) If k = 1, all the data points belong to the same cluster.
(b) If k > 1, compute h′

k, the geometric mean of the critical bandwidths hk

and hk−1.
3. If k > 1, estimate the location of the antimodes of f̂h′

k
(see Section 4.3).

Denote with x▼
j , j ∈ {1, . . . , k−1} the location of the estimated antimodes.

4. If k > 1, the data points can be associated with the clusters, which regions
are (−∞, x▼

1 ), [x
▼
1 , x

▼
2 ), . . . , [x

▼
k−1,∞).

2We have so far consistently spoken of the modes as a property of a random variable (or vector)
X, corresponding to the (local) maxima of the associated density f of X. In this subsection, for
ease of presentation and consistency with the source literature, we allow us to be a bit more lenient
and speak of modes and antimodes of a density f (rather than X), with the obvious meaning.
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5 Application studies

5.1 Simulation study

We first start with a brief simulation study to show the potential of the pro-
posed Algorithm 3 for clustering (see Section 4.4). We fixed the scenario where
the number of clusters is known as the correct behaviour of the test of [1] for
analysing the number of modes was already studied in their paper. Thus, we
performed steps 2-4 of Algorithm 3 by imposing the correct number of modes
(k) in 6 mixture models. Those models consist in: simple mixtures, where the
components are normal, N(µ, σ2), and their number coincides with the number
of modes (M1 and M4), Gaussian mixtures where the number of components
is greater than k (M2), and more complex mixtures where some components
are Beta(θ, ϕ) or Gamma(α, β) (M3, M5, and M6; the same notation as in
[43] is employed). These models, based on those employed in [1], are:

Bimodal models (k = 2):

• M1: 0.5 ·N(0.3, 0.0197) + 0.5 ·N(0.7, 0.0197).
• M2: 0.6 ·N(0.384, 0.01202) + 0.2 ·N(0.2, 0.05) + 0.2 ·N(0.9, 0.00272).
• M3: 0.3 ·N(0.13, 0.1)+0.3 ·N(0.81, 0.1)+0.2 ·Gamma(3, 9)+0.2 ·Beta(7, 2).

Trimodal models (k = 3):

• M4: 0.45 ·N(0.25, 0.015) + 0.45 ·N(0.6, 0.015) + 0.1 ·N(0.95222, 0.00049).
• M5: 0.3 ·N(0.2, 0.005) + 0.3 ·N(0.5, 0.005) + 0.4 · Beta(5, 2).
• M6: 0.3 ·N(0.2, 0.01)+0.3 ·N(0.5, 0.01)+0.2 ·Gamma(3, 9)+0.2 ·Beta(7, 2).

The “true” classification of the randomly generated data is assigned accord-
ing to the data point values following the ideas of [10] in its “population goal
of modal clustering”. The probability density functions and the cluster bor-
ders of Models M1–M6 are represented in Figure 2. Note that, for each model,
the cluster borders are always the same for all simulation runs. The “true”
classification of the data is done according to the interval (cluster) to which it
belongs. For each model, this is shown for one random sample of size n = 100
on the rug plots in Figure 2.

The objective is not only to show the correct performance of the proposed
algorithm but also to compare it with other density-based clustering methods.
More specifically, we will compare with:

• Clustering based on Gaussian mixture models. We have employed the
mclust [59] R package to fit the mixture model. The variance of each com-
ponent may be different. We imposed two scenarios: (i) the number of
components is equal to the known number of modes (“MC (k)”), and (ii) the
number of components is chosen between 1 and 9 according to BIC, default
option in mclust (“MC”). The classification is done following the mixture
model modal clustering proposed by [11].

• Nonparametric clustering based on level-set methods. We have employed
the pdfCluster [4] R package. The output of the clustering depends on the
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Fig. 2 Density functions of models M1–M6, dashed lines divide the different true clusters.
A rug plot (in colours along the x-axis) and the histogram (in grey) of 100 random data
generated from each model are also displayed. Each colour in the rug plot identifies one true
cluster.

bandwidth. We imposed two scenarios: (i) bandwidth by default (“PC”),
and (ii) h′

k (“PC (hg)”), the geometric mean of the critical bandwidths.
• Density based clustering DBSCAN (“DB”) introduced by Ester et al. [31].
We have employed the fpc [37] R package. Here the number of neighbours
(MinPts) within the radius ϵ (eps) need to be imposed. In [57] some ideas
are given of how to set these parameters. First, it is suggested to consider
MinPts= 2·dim. In our experimental results this choice created more clusters
than expected. For that reason, we considered the minimum value of MinPts,
between 2 and 10, from which the number of clusters is lower or equal to
the known number of modes (k); or MinPts=10, if the number of clusters
is always greater than k. Regarding eps, for one sample, it is suggested to
look at the l-distance plot and searching for a knee (see [31] or [57]). Since
we will have several samples, following [48], we will automatize the process
of searching for a knee in the MinPts-distance plot. This is done using the
“Kneedle” algorithm of [56].

We have generated 1000 samples of sizes n = 50, n = 100, and n =
200 from each model. For each sample, we have computed the dissimilarity
between the true cluster and the one obtained for each clustering method
with the Misclassification Error Distance (MED), see [50]. This index is com-
puted from the proportion of unmatched clusters. More precisely, MED=
1−1/nmaxπ

∑k
i=1 nk,π(k), where nk,j are the elements of the confusion matrix
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Model 3

Fig. 3 Boxplots associated with the MED of 1000 samples of size n, for the bimodal models
M1–M3. For each sample size, the horizontal dotted lines indicate the value of the lowest
quartile values among the analysed clustering methods.

obtained from the k and k′ classes of the two clustering methods, π is a map-
ping of {1, . . . , k} into {1, . . . , k′}, and k ≤ k′. The MED is between 0 and
1, and values close to zero indicate that the output of the clustering method
is close to the true cluster partition. For each model and each sample size,
the boxplots associated with the MED of the 1000 samples are represented in
Figures 3 and 4.

By looking at the results of applying Algorithm 3 (“MS”) to data gen-
erated by the 6 models, we can see that this algorithm performs well in the
sense that: (i) the median value of MED decreases with the sample size, being
close to zero for n = 200 (the median is between 0 and 0.065), the dispersion
(interquartile range) decreases with the sample size. When comparing with
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16 A fresh look at mean-shift based modal clustering
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Fig. 4 Boxplots associated with the MED of 1000 samples of size n, for the trimodal models
M4–M6. For each sample size, the horizontal dotted lines indicate the value of the lowest
quartile values among the analysed clustering methods.

other methods available in the literature, we can see that the proposed proce-
dure is (almost) always the one providing the lowest (quartile) MED values.
The only exceptions are the models well approximated by a mixture of k nor-
mal densities (Model 1 and 4), where the clustering based on the Gaussian
mixture model performs slightly better. This was expected as we are impos-
ing the true model in the parametric fitting. But, as we can see in Model 3,
the clustering based on Gaussian mixture model may be completely erratic if
the data is generated from a different distribution. pdfCluster also provides
a competitive clustering method, although, it is generally outperformed by
“MS”. The similar obtained results when using the same bandwidth, of “PC
(hg)” and “MS”, were as expected, given the earlier stated insight (Section
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k 1 2 3 4 5 6 7
hk 0.00673 0.00323 0.00301 0.00283 0.00263 0.00242 0.00149
h′
k 0.00467 0.00312 0.00292 0.00273 0.00252 0.00190

Table 1 Critical bandwidth (hk) and geometric mean of hk and hk−1 (h′
k) for the

Hidalgo stamp data. From left to right, the number of modes k is between 1 and 7.

Fig. 5 Histograms for the 485 stamps data set from the 1872 Hidalgo Issue of Mexico.
The vertical dimension is meaningless for the histograms in the displayed graphs, but of
course the histograms integrate to 1. The black rising lines shows the mean shift trajectories
(horizontal) as a function of iteration number (vertical). The detected modes are highlighted
through triangles on the horizontal axis, and the rugs below the axis indicate the induced
clustering via mean shift.

2.1) that the clustering approaches based on density level-sets and domains of
attraction are essentially equivalent.

In Figures 3 and 4, we show that our proposal of using the geometric
mean of the critical bandwidths can also help to improve the clustering results
achieved by pdfCluster. Thus, if pdfCluster is employed, when the number
of clusters (modes) is known, we also recommend employing our Step 2 in
Algorithm 3 to select the bandwidth (“PC (hg)”) instead of the normal rule
bandwidth employed by default (“PC”).

5.2 Hidalgo stamp data

We apply the techniques introduced in Section 4 on the Hidalgo stamp data
introduced in Subsection 2.3. There, in Figure 1, we represented the KDE with
the critical bandwidths for 2, 4, and 7 modes (h2, h4, and h7, see Table 1). In
Figure 5, we illustrate the application of Algorithm 1 onto this data set. Each
plot shows how the mean shift trajectories proceed as a function of the iteration
number (with the latter being displayed on the vertical axis). The three panels
in Figure 5 correspond to the scenarios with the same number of modes as
those illustrated in Figure 1. For computational reasons (see Section 4.4), in
this section, instead of using the critical bandwidths, the bandwidths h′

2, h
′
4,

and h′
7 (see Table 1) were employed. We see that convergence in these scenarios

is attained within 30 to 80 iterations. The precise values of the modes after
convergence are provided in Table 2.
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h Modes (Antimodes)

0.00467 0.0770 0.1012
(0.0926)

0.00292 0.0785 0.0907 0.1006 0.1081
(0.0882) (0.0938) (0.1067)

0.00190 0.0718 0.0792 0.0902 0.1005 0.1093 0.1201 0.1291
(0.0745) (0.0864) (0.0946) (0.1055) (0.1168) (0.1261)

Table 2 Modes (Antimodes) for the Hidalgo stamp data under different bandwidths. The
bandwidths given in the first column correspond, from top to bottom, to h′

2, h
′
4 and h′

7.

Fig. 6 Histograms for the 485 stamps data set from the 1872 Hidalgo Issue of Mexico. The
vertical dimension is meaningless for the histograms in the displayed graphs, but of course
the histograms integrate to 1. The black rising lines shows the inverse mean shift trajectories
(horizontal) as a function of iteration number (vertical), for the computation of antimodes.
The positions of the antimodes are indicated by downfacing triangles.

For the estimation of antimodes via Algorithm 2, results are summarized in
Figures 6 and Table 2 (italic). We see that there are two types of trajectories:
Trajectories from starting points situated between two modes always converge
to an antimode between those modes. Trajectories which start to the left of
the left-most mode, or to the right of the right-most mode, will not converge
(rightly so; because there are no antimodes to detect here). In summary, we
find that 1, 3 and 6 antimodes have been identified in the respective scenarios,
consistent with the number of modes.

For determining the number of modes, we have applied the well-calibrated
multimodality test of [1], available in the R package multimode [2]. For a
significance level of α = 0.05, the null hypothesis of having k modes is rejected
until k = 3, and it is not for k ≥ 4 (see [2]). Thus, it can be assumed that
the number of clusters/modes is equal to 4. Following the Algorithm 3, for
our clustering method, we will employ as h the geometric mean of h4 and h3,
i.e., h′

4 (see Table 1). In Table 2, we provide the antimodes estimation for h′
4.

As mentioned in Section 4.4, the clusterings of observations obtained from the
partitioning of the real axis through the antimodes, and the one induced by
the mean shift trajectories, are equivalent. The clustering result is displayed,
for the bandwidth h′

4, in form of a colored rug plot in the central panel of Fig.
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5. According to this outcome and in the context of the historical explanations
of [42], we would obtain the clusters described below.

Cluster 1: the stamps with a thickness lower than 0.0882 (64.5% of the
stamps in the sample). This first cluster would correspond to stamps produced
with a medium paper, mainly printed in sheets of LA+-F. Cluster 2: the stamps
with a thickness between 0.0882 and 0.0938 (6.8% of the stamps in the sample).
Cluster 2 would correspond with the block of stamps produced with a thicker
paper of Papel Sellado. Cluster 3: the stamps with a thickness between 0.0938
and 0.1067 (15.5% of the stamps in the sample). Due to the lack of regular
paper in 1872, it is known that a temporary supply of much thicker Papel
Sellado paper was employed only in 1872. Cluster 3 would correspond to the
medium paper of that second block of stamps. Cluster 4: the stamps with a
thickness greater than 0.1067 (13.2% of the stamps in the sample). Cluster
4 would correspond to the thick paper of the second block of Papel Sellado
stamps produced in 1872.

5.3 Aircraft data

In the following example, we consider a dataset containing different characteris-
tics of aircraft technology throughout the years 1914–1984. This data example
was considered among others by [5], and it contains 709 models of aircraft
and different measures such as total engine power, wingspan, length, maxi-
mum take-off weight, maximum speed, and range. From the original measures,
[5] applied principal components analysis, based on the correlation matrix, to
reduce the complexity of the data. The two first components account for 92%
of the variation in the data. In Figure 7 (right), we reproduce the scatterplot
of the first two component scores. Dividing the data into three periods (1914–
1935, 1936–1955, and 1956–1984) and using the KDE (2), [5] concluded that
the first two periods were bimodal, while the third had three modes.

In this section our objective is, using those principal component scores, to
classify the different aircraft models. To do that, first, we need to establish the
number of clusters. Here, due to the lack of formal tests for testing the number
of modes in the multivariate case, and according to what is suggested at the
end of Section 4.1, we searched for significant features of the KDE by applying
the tools available in the R package feature [25]. For different matrix band-
widths, we first assessed for which locations the gradient of the smoothed curve
is different from zero for a significance level α = 0.05. When the norm of the
first partial derivatives is significantly different from zero for a given location,
in Figure 7 (left), we represent with an arrow the direction of the derivative.
Second, the black pixels represent the locations where both the second deriva-
tive norm is significantly different from zero and the first derivative is not. We
repeated those plots using different diagonal matrix bandwidths of the form
H = h2HRT, where HRT is the normal reference rule matrix bandwidth [58,
Section 6.3.1]. From the grid of considered values of h ranging from h = 0.1 to
h = 2, we represented in Figure 7 (left), four interesting cases: h = 1, h = 1.35,
h = 1.45 and h = 1.55. For all the considered matrix bandwidths, the largest
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Fig. 7 First two principal component scores of the aircraft data. Left: significant features of
the KDE, with Gaussian kernel and matrix bandwidth H = h2HRT. For each location, the
arrows indicate the direction of the significant derivative and the pixels the locations where
the second derivative norm is significant and the first derivative is not. Right: scatterplot of
the data. After applying the mean shift algorithm for h = 1.001, the different colors indicate
the mean shift trajectory and, therefore, which cluster each data-point belongs to. The black
squares indicate the mode locations.

amount of modes that we found was equal to 3 (see the panel with h = 1.35).
That number coincides with the findings of [5] of having at most 3 modes.

Since the critical bandwidth cannot be easily computed for the multivariate
case [58, Section 9.2.4.2], we will employ the smallest value of h we found for
which a trimodal estimation is obtained. That value coincides with h = 1.001.
Thus, using the Gaussian kernel and the matrix bandwidth H = 1.0012HRT,
we applied the mean shift algorithm described in Section 3 for clustering the
data.

The three obtained clusters are represented with different colors in Figure 7
(right). As we can see in Figure 7 (right), most of the aircraft models are part of
the same cluster (93.9%), which we could classify as belonging to the standard
category. The other two clusters represent, respectively, 5.6% and 0.4% of the
aircraft models. These last two clusters are composed of models produced in
the period 1954–1982. All except two aircraft models have a maximum speed
greater than 1450 km/h (the fastest aircraft can reach 3219 km/h), being this
quantity for the other two aircraft models belonging to these two clusters 1038
and 1186 km/h. While only two aircraft models belonging to the first cluster
reach that maximum speed, being their values 1509 and 1529 km/h. Thus,
it seems that maximum speed is the main characteristic distinguishing the
standard aircraft models from the other two modal clusters. Now, the three
aircraft models belonging to Cluster 3 (blue color) are “bigger”, in the sense of
presenting larger numbers in the remaining aircraft measures, than the models
of Cluster 2 (green color). In particular, two of these three aircraft models are
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the Concorde and its Soviet equivalent the Tupolev TU144, which according
to [5] are “unusual in combining high speed with large size”.

5.4 Image segmentation

Figure 8 (left) displays a bordered grey scale photography (256 × 256 pixels)
of the Cliffs of Moher, County Clare, Republic of Ireland. The photography
can be described by a few simple features: There is rock, sea, sky, with a few
contaminations of those (such as white spray in the sea), plus the black border.
It is a relevant task in Computer Vision, for instance for automated driving
and piloting systems [26], to segment an image into its key features.

It is probably fair to say that the first applied field where the mean shift
has really made an impact, and caught significant attention, is that of image
segmentation. This is mainly due to a sequence of papers by Dorin Comaniciu
and co-workers around the change of the millenium [21–23], with the second of
the listed papers exceeding 15000 citations on Google Scholar. The basic idea to
use clustering for image segmentation is considerably older, dating back to the
year 1979 [20]. That paper by Colemean and Andrews proposed, essentially, to
segment an image into homogeneous components by (i) identifying a suitable
space of features representing the image (these may include grey or 3-d color
scales, the original spatial coordinates, or ‘engineered’ variables representing
aspects such as texture or brightness); (ii) a ‘feature decorrelation’ step, using
principal component analysis; (iii) a cluster analysis in the decorrelated space,
for which [20] uses k-means; (iv) the actual segmentation step, where each
original pixel is replaced by the feature vector of the center of the cluster
to which it belongs. Comaniciu and Meer [22] recognized that this method
may perform poorly if the clusters have non-trivial shapes, where mean shift
clustering has a clear advantage compared to k-means or Gaussian mixtures.
Furthermore, they reduced the space of feature variables to spatial coordinates
and the color space, hence avoiding the need for step (ii).

We apply this technique now in the simplest possible form to the Cliffs of
Moher image. For ease of presentation, we work with a bivariate feature space,
which only contains the grey scale information (on a continuous scale between
0=black to 1=white), and the vertical coordinate information. This feature
space is displayed in Figure 8 (right). In the feature space representation, the
direction of the vertical axis is inverted in relation to the image representation,
that is the bottom part in the feature space corresponds to the sky region,
where we only have ‘black’ information (borders) and ‘white’ (sky), with the
latter being less pure than the former, and so the right-bottom stretch in
Figure 8 (right) being thicker than the former. It is further to be noted that
we have rescaled the coordinate information to the range [1/256, 1], hence
allowing us to use an isotropic kernel with bandwidth matrix H = h2I2, rather
than a product kernel with different bandwidths for the color and the spatial
component as in [22].

Having the feature space available, the task is now conceptually simple:
Run Algorithm 1 on the scatterplot depicted in Figure 8 (right). Then replace
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the grey scale of each point by that one of the mode to which its mean shift
trajectory has converged. Finally, reassemble and display the image. However,
this procedure has a bottleneck: For, say, a 256 × 256 pixel image, 65536 mean
shift trajectories have to be run until convergence! This is computationally
infeasible, and would take several days of computation on a standard laptop.
Therefore, we propose a simple but effective modification which solves this
problem. This modification is based on the trivial but important insight that
mean shift trajectories are ‘not simply anywhere’: They are, by construction,
close to where the bulk of the data are. Hence, a mean shift trajectory will,
on its journey towards a mode, pass close to (or, in the one-dimensional case,
through) many other observations, and it is intuitively clear that most of these
observations will not have much choice than joining the same trajectory, once
it is their turn. Hence, one can argue that there is no actual reason to run
step 2(ii) in Algorithm 1 for such observations; one can simply associate all
such ‘close’ observations with the mode of that trajectory. In the ‘mop-up’
mean shift algorithm, suggested in a Tutorial at CMStatistics 2019 [28], this
notion of closeness is defined by all points lying within a distance c×h around
any x(ℓ) (forming an approximate ‘tube’ of radius ch around the trajectory),
where c is a positive constant. In a somewhat similar scheme discussed in [7],
the image is discretized into cells, and all points within a cell are allocated
to the mode to which the trajectory, which visited that cell first, converged.
Yet another approach of relevance in this context could be the medoid shift
[60], where – returning to our introductory fable – the element would directly
move to the densest element in its vicinity (rather than a localized mean of
elements), hence “ticking it off” on its way through.

In Figure 9 we apply the mop-up technique on our feature space using
h = 0.1 and c = 2 (so, a quite crude allocation). The top left panel of this
figure displays all trajectories which need to be run until all points have been
allocated to a cluster, which are now only 19 instead of 65536! This compu-
tation took 110 seconds on a Intel (R) Core (TM) 2.40GHz 8GB laptop. The
induced clustering, with four clusters, is shown in the top right panel, with the
segmented image in the bottom left panel. We see that the segmentation is rea-
sonable, with however some impurities in all clusters (essentially representing
impurities of the raw image, as mentioned above), and some parts incorrectly
classified, such as the remote cliffs being incomplete, or water being mistaken
for sky. The impurities can be partially addressed through a mode filter [20];
see the bottom right panel for the outcome using the simplest possible such
filter which replaces each pixel by a majority vote of its immediate four neigh-
bors plus itself [28]. Overall, we see that a reasonable segmentation can already
be achieved using these very basic means. The accuracy of the segmentation
can be improved by reducing c, and the number of segments can be increased
by reducing h, in both cases at the expense of an increase in computational
burden.
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Fig. 8 Left: Cliffs of Moher; right: feature space consistent of grey scales and the vertical
coordinate.

Fig. 9 Top left: Mean shift trajectories using h = 0.1; top right: complete clustering using
mop-up; bottom left: segmented image; bottom right: result after mode filtering.
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6 Discussion

While this paper is not to be understood as a full review of mean-shift based
modal clustering, we have revisited the mean shift in terms of its connections
with the statistical literature, in this manner hoping to contribute to an invig-
oration of work by Statisticians on the topic. We have also demonstrated, by
means of three elaborated real data examples, how modal clustering relates in
a meaningful and direct way to physical properties of the system being con-
sidered; in this respect we see a clear advantage of the mean-shift approach to
other clustering techniques such as k-means or Gaussian mixtures.

To some extent, a similar line of thought appears to have driven the contri-
bution by [12], albeit touching the term ‘mean shift’ only in passing. The paper
by Carreira-Perpiñán [7] also contains several results which are important from
a statistical point of view, including a generalized version of the discussed
EM analogy, and, in their equation (5), an explicit relationship between the
Hessian of f , the Jacobian of µ, and the local covariance matrix at the fixed
point. Such results could be of relevance to develop a formal framework for
uncertainty quantification for mean-shift based mode estimates.

Beside the mentioned reference [7], another noteworthy review-type contri-
bution concerning modal clustering is the work by Menardi [51]. For the mean
shift, [51] provides alternative references discussing some algorithmic aspects,
software in languages other than R, and bandwidth selection methods.

Some other works have focused on the problem of bandwidth selection.
[13] argued (in line with earlier statements in the nonparametric smoothing
literature [44]), that the problem of modal estimation is more closely related
to density derivative estimation than to density estimation itself, and that
hence corresponding bandwidth selection devices should be used. [8] and [17]
use kernel asymptotics, applied on the estimated density gradient, to derive
optimal bandwidths for modal clustering, with the latter authors suggesting a
normal-reference-type rule of of thumb based on such concepts. [14] compared
the performance of different kernel density bandwidth selection routines for
mean-shift based modal clustering.

The significance of density derivatives and density-derivative ratios for the
mode estimation problem has also been discussed in the machine learning lit-
erature [55]. [65] discussed mean shift-based clustering with Gaussian, Cauchy,
and Epanechnikov kernels, and suggested bandwidth selection based on the
concept of ‘decomposition stability’; i.e. the bandwidth is selected as the center
of the maximum range over which no change in the modality is observed.

This is similar in spirit to the concept considered here: We employ the
critical bandwidths to identify when a change in modality would occur, and
then use the geometric mean of two neighboring critical bandwidths to inform
a (slightly downwardly nudged) “center” of this interval. For finding the critical
bandwidth a key point is to previously determine the number of modes. When
the number of clusters is unknown, in the univariate setting a test for assessing
that number could be employed [1]. In the multivariate case, the lack of formal
procedures for testing the number of modes makes this approach less suitable.
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Using a univariate testing procedure, multiple testing correction techniques
could be employed (see, e.g., [40]), but depending on the kind of dependence
among the variables, different algorithms would be recommended. A second
alternative, employed in Section 5.3, would be to explore the number of modes
with techniques similar to the SiZer [24, 35]. Another approach, employed
among others by [34] and [19], would be to test for significant modes for a given
matrix bandwidth. Once the number of clusters is chosen, exploratory tools
such as the mode tree [45, 52], would be useful to find a “small” bandwidth for
which the desired number of modes is observed. See also [58, Section 9.2.4.2],
for a review on this last topic.

A different line of work, not considered at all in this exposition, has targeted
the density estimate itself, rather than its bandwidth. In [41]’s contribution, a
mode-flattening procedure is proposed on the back of a mixture-based density
estimate to smooth out spurious and minor modes, hence allowing for more
accurate estimates in regions ‘where it matters’. Such methods could be of
interest in conjunction with the techniques proposed in here.

Finally, we have provided some suggestions and directions for novel
methodologies, including an ‘inverse mean shift’ technique to identify anti-
modes, employing them as the clusters’ boundary; a concept for employing
the critical bandwidth for determining the number of modes in modal cluster-
ing; and an accelerated ‘mop-up’ version of the mean shift algorithm. Notably,
the latter contribution is immediately applicable in the multivariate case (and
is arguably most useful then). Furthermore, the combination of the first two
methodologies, as outlined in Algorithm 3, presents a promising approach for
modal clustering in the univariate case.

In terms of limitations of the methodology, one could cite here the
mentioned convergence difficulties of Algorithm 2 in the case of antimodes
associated with extremely small densities; however one can argue that this will
only occur in situations where the clusters are so far away from each other
that there is little point in the clustering problem to start with. Hence the
primary limitation of the ideas discussed in Section 4 lies in their extension to
the multivariate case. As previously mentioned, formal tests for determining
the number of modes in this context are lacking, and even when the num-
ber of modes is known, there are no theoretical assurances that the estimated
modes will converge to the true modes with the proposed matrix bandwidth.
Additionally, in the multivariate setting, the ‘inverse mean shift’ becomes less
relevant since cluster boundaries in this context are not points but rather
manifolds of co-dimension one.

Lastly, it is worth mentioning that all ingredients required to execute
Algorithms 1-3 are implemented in R packages LPCM or multimode, with
explicit code to reproduce the application studies in Sections 5.2 to 5.4 pro-
vided in the supplementary material. While successful in our analyses, further
scrutiny of such methods from a theoretical point of view is encouraged in
future research.
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Supplementary information. This article is accompanied by supplemen-
tary material (S1): Replicable R Code for real data examples; (S2): Algorithm
1 is an EM algorithm, and (S3): Additional notes on convergence and EM.
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