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Abstract 

Mechanical bistable structures have two stable equilibria and can transit between them under 
external stimuli. Due to their unique behaviors such as snap-through and substantial shape changes, 
bistable structures exhibit unprecedented properties compared to conventional structures and thus 
have found applications in various fields such as soft robots, morphing wings and logic units. To 
quantitatively predict the performance of bistable structures in these applications, it is desirable to 
acquire information about the minimum energy barrier and an energy-efficient transition path 
between the two stable states. However, there is still a general lack of efficient methodologies to 
obtain this information, particularly for elastic continua with complicated, unintuitive transition 
paths. To overcome this challenge, here we integrate energy landscape exploration algorithms into 
finite element method (FEM). We first utilize the binary image transition state search (BITSS) 
method to identify the saddle point and then perform nudged elastic band (NEB) calculations with 
initial guess based on the BITSS results to find the minimum energy path (MEP). This integrated 
strategy greatly helps the convergence of MEP calculations, which are highly nonlinear. Two 
representative cases are studied, including bistable buckled beams and a bistable unit of 
mechanical metamaterials, and the numerical results agree well with the previous works. 
Importantly, we numerically predict the complicated MEP of an asymmetric bistable unit of 
mechanical metamaterials and use experiments to demonstrate that following this MEP leads to 
successful transition between stable states while intuitive uniaxial compression fails to do so. Our 
work provides an effective numerical platform for identifying the minimum energy barrier and 
energy-efficient transition path of a bistable continuum, which can offer valuable guidance to the 
design of actuators, damping structures, energy harvesters, and mechanical metamaterials.  

Keywords: Bistable continuum structures; Binary image transition state search; Energy barrier; 
Minimum energy path; Nudged elastic band; Asymmetric Transition Path. 

1. Introduction 
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Mechanical bistable structures abound in biological and artificial systems. For instance, Venus 
flytrap snaps from an “open” to a “closed” state to capture the prey (Forterre et al., 2005). A thin 
spherical cap can stay stable if flipped over (Holmes and Crosby, 2007; Taffetani et al., 2018; Wan 
et al., 2021). A laminate composite can bend towards two opposite sides caused by differential 
thermal strain between fibers and matrix (Daynes et al., 2008). Slender elastic structures can 
exhibit more than one stable shape owing to specific geometry or connection (Huang et al., 2022; 
Yu et al., 2021; Lu et al., 2023b, 2023a). The existence of two stable equilibria and the ability to 
transit between them driven by external stimuli endow bistable structures with distinguished static 
or dynamic properties and therefore make them potential candidates in various applications. To 
name a few, bistable structures can transform into new stable shapes that require no continuing 
energy input to maintain, thus being promising for many applications including energy-efficient 
morphing wings in aircraft (Arrieta et al., 2014; Boston et al., 2022; Diaconu et al., 2008; Mattioni 
et al., 2008; Rivas-Padilla et al., 2023), switches (Gomez et al., 2017a; Hou et al., 2018), logic 
units (Jiang et al., 2019; Meng et al., 2021; Pal and Sitti, 2023; Yan et al., 2023), grippers (C. Li 
et al., 2021; Power et al., 2023; Zhang et al., 2022), robots (Y. Li et al., 2021b), micro-electronics 
(Fu et al., 2018), origami-based structures (Dai et al., 2023; Faber et al., 2018; Fang et al., 2017; 
Li and Pellegrino, 2020; K. Liu et al., 2019; Lu et al., 2023c; Melancon et al., 2021; Silverberg et 
al., 2015; Yasuda and Yang, 2015) and valves (Preston et al., 2019; Qiao et al., 2021; Rothemund 
et al., 2018). By exploiting the conversion of stored potential energy to kinetic energy during snap-
through instability, bistable designs increase the force output of actuators (Gorissen et al., 2020; 
Tian et al., 2021; Wang et al., 2023) and make unidirectional, self-supported wave propagation 
possible in mechanical metamaterials (Meaud and Che, 2017; Vasios et al., 2021; Xiu et al., 2022; 
Yasuda et al., 2020). In addition, when subjected to external impact, the transition from a lower 
energy state to the other stable state with higher energy can effectively absorb the energy of the 
impact, thereby reducing the peak force of the impact (Ghavidelnia et al., 2023; Restrepo et al., 
2015; Shan et al., 2015). Furthermore, the inter-well vibration (periodic transition between two 
stable states) can broaden the working frequency of energy harvesters if bistable structures are 
combined with piezoelectric materials (Arrieta et al., 2013; Harne and Wang, 2013; Li et al., 2015).  

To quantitatively evaluate the performance of bistable structures in these aforementioned 
applications, it is desired to survey their energy landscapes. Among various parameters, it is of 
particular importance to know the location of the saddle point and minimum energy path (MEP). 
Here, a saddle point, also known as transition state, is an equilibrium state that is unstable along 
certain directions (Wales, 2004). It is located at the “ridge” that separates two “valleys” in the 
energy landscape, representing two locally stable states. For the minimum energy path, it is a 
transition path that connects two stable states and passes through the saddle point. It is defined as 
the path whose tangent vector always keeps parallel to the gradient of the energy landscape and 
therefore serves as an energy-efficient transition route. Along this MEP, the saddle point 
corresponds to the highest energy state. However, this maximum energy along the MEP is lower 
than the highest energy along any other transition path. Therefore, the energy difference between 
the saddle point and locally stable state is the minimum energy barrier, which is the minimally 
required energy to complete the transition from one state to another. In some mechanical systems 
(Taffetani et al., 2018), there could be more than one saddle point between two stable states. 
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Therefore, multiple MEPs can exist, and each includes one saddle point (Bolhuis et al., 2002) and 
represents a locally energy efficient transition pathway. 

The saddle point and the associated MEP that connects two stable states are paramount in 
estimating the performance of bistable structures in several aspects. For example, the minimum 
energy barrier can be used to characterize the stability and load-bearing capacity of each stable 
shape. The higher the barrier is, the more stable the state will be. Such a concept has already been 
adopted in analyzing the so-called “shock sensitivity” of a cylindrical shell subjected to buckling 
instability (Horák et al., 2006; Marthelot et al., 2017; Panter et al., 2019; Thompson et al., 2017; 
Virot et al., 2017). The calculated energy barrier also determines the energy output of actuators 
(Chi et al., 2022; Tang et al., 2020) and wave propagation speed in metamaterials (Deng et al., 
2020; Jin et al., 2020; Vasios et al., 2021) when snap-through is utilized. In addition, the energy 
barrier decides the smallest amplitude of the external input to excite the inter-well vibration so that 
the bistable energy harvesters can have broadband collecting frequency (Arrieta et al., 2010; Liu 
et al., 2013; Pan, 2017). At the same time, since MEP always follows the gradient of the energy 
landscape, one could use its tangent vector to derive the necessary, general external force along 
the transition path, providing valuable guidance to shape transformation of bistable structures. 
Therefore, establishing a general and efficient method to search for the saddle point and MEP will 
be beneficial to not only academic interests but also practical purposes.  

Intensive studies have been reported on the energy landscape analysis of bi-stable elastic structures. 
For example, arc-length methods have been widely used for snap-through instability analysis and 
shown to successfully capture the saddle point along certain chosen loading path and keep track 
of an unstable branch (Champneys et al., 2019; Crisfield, 1981; Eriksson, 1998; Groh et al., 2018; 
Liu et al., 2017; Y. Liu et al., 2019; Riks, 1979; Wan et al., 2021). However, the path identified by 
this method is associated with the prescribed forms of external force and thus may not be the MEP. 
In recent years, there have been efforts in integrating numerical methods in the fields of physics 
and chemistry, traditionally used to study chemical reaction, phase transition, nucleation, and other 
rare events (e.g., Garrido Torres et al., 2019; Henkelman et al., 2000; Henkelman and Jónsson, 
2000), into mechanical modeling to capture the saddle point and MEP. To name a few, Panter, et 
al. (Panter et al., 2019) combined the string method with the triangulated lattice model to search 
for the saddle point and the minimum energy path (MEP) of a cylindrical shell under axial loading 
to control its buckling behaviors. Zhou, et al. (Zhou et al., 2023) used the nudged elastic band 
(NEB) method together with the truss-based approach to find the efficient transition path of 
origami panels. Song, et al. (Song et al., n.d.) employed the conjugate peak refinement method to 
search for the transition path of multi-stable tensegrity structures. Avis, et al. (Avis et al., 2022) 
developed a binary image transition state search (BITSS) algorithm to efficiently capture the 
saddle point of a buckling cylindrical shell based on the triangulated lattice model. This was 
initially used by Li, et al. (Y. Li et al., 2021a) who integrated this BITSS method together with the 
string method into a discretized shell model to find the saddle point and MEP of a multi-stable 
ferromagnetic meso-structures. Although great process has been made, the previous works on the 
elastic continua mostly adopted certain mechanical models such as shell model that target slender 
structures, whereas the application of these energy landscape exploration methods on bistable 
elastic continua based on a more general mechanical framework has not been explored.  
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In this work, by integrating the binary image transition state search (BITSS) and nudged elastic 
band (NEB) method into finite element method (FEM) that is widely used for modeling elasticity 
continua, we introduce a general numerical framework that can efficiently capture the saddle point 
and MEP of bistable elastic continua. Specifically, we first use the BITSS method that manipulates 
only two “images” to locate the saddle point. Here the term “image” refers to a full set of nodal 
spatial coordinates of the meshed elastic structures that satisfies the displacement boundary 
conditions. Based on the BITSS results, we then employ gradient descent method to generate an 
initial guess for the NEB method that can successfully find the minimum energy path (MEP). The 
combination of these two algorithms greatly improves the convergence of MEP calculations, 
which are highly nonlinear, with cheap computational cost. The proposed computational pipeline 
has been tested on two representative cases, which are bistable buckled beams and bistable units 
of mechanical metamaterials. Our results are in great agreement with experimental validations of 
bistable units of mechanical metamaterials and the previous works. It is worth pointing out, as will 
be presented later in this paper, that our methodology is capable of identifying asymmetric 
transition pathways that are difficult to achieve through intuition.  

The rest of the paper is organized as follows. Section 2 presents BITSS and NEB algorithms using 
a 2D bistable von-Mises truss system as an example and briefly describes their integration into 
finite element method (FEM) based on 2D plane strain problems. The saddle point and MEP of a 
bistable buckled beam with two rotational ends are discussed in Section 3 in two scenarios:  two 
stable states have the same or different elastic energy. Section 4 is dedicated to the analysis of the 
energy landscape of a bistable unit of mechanical metamaterials with symmetric or asymmetric, 
unintuitive MEP. Finally, some concluding remarks are given in Section 5. 

 

2. Illustrations of energy landscape exploration algorithms 

We start with a simple bistable case, a 2D bistable von-Mises truss, to illustrate both BITSS and 
NEB algorithms. Such a bistable mechanism has been broadly employed in metamaterials (Chen 
et al., 2017; Shan et al., 2015), deployable structures in aerospace (Schioler and Pellegrino, 2007), 
etc. As shown in Figure 1(a), the von-Mises truss consists of two rigid bars connected by a free 
hinge A. The two bars have lengths 𝑙𝑙1 and 𝑙𝑙2, respectively. The other ends of the two bars are 
located at the same horizontal line (x axis) and can only slide along the horizontal direction under 
the constraints of two linear springs with spring stiffnesses 𝑘𝑘1 and 𝑘𝑘2 and two torsional springs 
with stiffnesses 𝑘𝑘𝜃𝜃,1 and 𝑘𝑘𝜃𝜃,2. The rotational angles of the two bars compared to the horizontal 
direction are denoted as 𝜃𝜃1 and 𝜃𝜃2. The system has two degrees of freedom (DoF), including the x 
and y position of the point A. Initially, all springs are at their rest and point A is located at (0, h). 
In addition to this stress-free shape that is denoted as 𝑆𝑆1, the von-Mises truss has another self-
stressed, inverted shape denoted as 𝑆𝑆2. The potential energy E and its gradient with respect to the 
DoF of the system have analytical expressions as 
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(Eq. 2.2) 

where 𝜃𝜃1,𝑟𝑟 = arcsin(h/𝑙𝑙1) and 𝜃𝜃2,𝑟𝑟 = arcsin(h/𝑙𝑙2) are the rotational angles of the two bars when the 
springs are at rest. In a specific case, we choose parameters as 𝑙𝑙1 = 5 mm, 𝑙𝑙2 = 7 mm, h = 3.5 mm, 
𝑘𝑘1 = 0.1 N/mm, 𝑘𝑘2 = 0.08 N/mm, 𝑘𝑘𝜃𝜃,1 = 0.1 J/rad and 𝑘𝑘𝜃𝜃,2 = 0.08 J/rad and  plot the contour of 
the energy landscape based on Eq. 2.1&2.2 (Figure 1(b)). Two stable states have the elastic energy 
as 𝐸𝐸𝑆𝑆1 = 0 J and 𝐸𝐸𝑆𝑆2 = 0.148 J and sit at the bottom of the “valley”, separated by a mountain “ridge”. 
The minimum energy path (MEP) connects these two states and goes through the saddle point that 
is located between two “valleys”. The saddle point has an elastic energy as 𝐸𝐸𝑇𝑇 = 0.173 J. The 
energy difference between the saddle point and the stable state is the minimum energy barrier that 
we seek, which is 0.025 J if the structure transition from the state 𝑆𝑆2 to state 𝑆𝑆1. To highlight its 
importance, let us suppose a simple transition path that directly connects two stable states in the 
coordinate space (x,y) (line P, Figure 1(b)), which can be realized by indentation in experiment. 
However, such a simple path will lead to a higher energy barrier as 0.032 J compared to MEP that 
goes through the saddle point T (Figure 1(c)). 
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Figure 1. (a) Schematic illustration of the two stable states 𝑆𝑆1 and 𝑆𝑆2 and the transition state T of a von-
Mises truss. The parameters are chosen as 𝑙𝑙1 = 5 mm, 𝑙𝑙2 = 7 mm, h = 3.5 mm, 𝑘𝑘1 = 0.1 N/mm, 𝑘𝑘2 = 0.08 
N/mm, 𝑘𝑘𝜃𝜃,1 = 0.1 J/rad and 𝑘𝑘𝜃𝜃,2 = 0.08 J/rad. (b) The energy landscape of the von-Mises truss. The red (𝑆𝑆1) 
and blue (𝑆𝑆2) circles represent the locations of the stable states. The green circle is the location of the saddle 
point (T). The dash pink curve is the MEP while the straight orange line is an indentation path. (c) 
Comparison of the energy variation along the MEP and the orange indentation line. (d) The iterative process 
of two images during the BITSS algorithm. Triangles represent the locations of the images while the dash 
line is for better visualization. (e) Illustrations of the string of images (brown circles) in the NEB method. 
(f) Zoom-in of three adjacent images 𝑹𝑹𝒊𝒊−𝟏𝟏, 𝑹𝑹𝒊𝒊 and 𝑹𝑹𝒊𝒊+𝟏𝟏 (brown) in (e), in which the tangent vector 𝝉𝝉𝒊𝒊 
(black), the parallel and perpendicular components of the force 𝐹𝐹∥ (red) and 𝐹𝐹⊥ (yellow) are illustrated.  

 

2.1. Binary Image Transition State Search (BITSS) Method 

To efficiently capture the saddle point, we adopt the binary image transition state search (BITSS) 
method that has recently been introduced by Avis, et al. (Avis et al., 2022). They have also 
shown that BITSS is more reliable compared to other bracketing methods, where two images are 
manipulated until they converge to the saddle point. Compared to double-ended chain-of-states 
methods that can require a chain of more than ten intermediate states, BITSS is computation- and 
memory-efficient since it only involves two images. In addition, BITSS is less sensitive to 
initialization while an appropriate interpolation is commonly needed as an initial pathway 
estimate for conventional double-ended algorithms. This is particularly an issue for elastic 
structures where interpolations can lead to a large amount of internal stress, which can cause 
numerical issues such as converging to an incorrect pathway or divergence. Therefore, for a 
bistable elastic body with a complicated transition path, BITSS can be a general and effective 
method to locate the saddle point. Additionally, the amenability of BITSS to adaptive remeshing 
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could allow integration with commonly used adaptive finite element methods, however this will 
not be explored within this work. 

Specifically, we study a mechanical system whose elastic energy E is a scalar function of n DoF 
as 𝐸𝐸 = 𝐸𝐸(𝑿𝑿), in which 𝑿𝑿 = [𝑥𝑥1; 𝑥𝑥2; … ; 𝑥𝑥𝑛𝑛] is the n-dimensional space of the system. Particularly, 
in this study, the components of 𝑿𝑿  take the Cartesian coordinates of n/2 nodes in the two-
dimensional (2D) mesh structures. In this n-dimensional space 𝑿𝑿, the column vectors 𝑺𝑺𝟏𝟏 and 𝑺𝑺𝟐𝟐 
represent the two stable states while the vector 𝑻𝑻 represents the saddle point (transition state). 
BITSS is initiated with two images 𝑿𝑿𝟏𝟏 and 𝑿𝑿𝟐𝟐 sitting in two basins of attraction that are separated 
by a “ridge”. As mentioned, each image can represent an arbitrary state in the n-dimensional space 
as long as its components conform to the prescribed boundary conditions. These two images in the 
initial stage can be chosen as stable states 𝑺𝑺𝟏𝟏 and 𝑺𝑺𝟐𝟐, but it is not necessarily required. To make 
the two images converge to the saddle point, BITSS minimizes the total energy of two images 
together with two constraints on the Euclidean distance between the two images and their energy 
difference. These constraints ensure that neither image can cross over the “ridge” and slide to one 
of the local minima. Thus, the total energy in BITSS algorithm is written as  

𝐸𝐸𝐵𝐵𝐵𝐵𝑇𝑇𝑆𝑆𝑆𝑆(𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐) = 𝐸𝐸1(𝑿𝑿𝟏𝟏) + 𝐸𝐸2(𝑿𝑿𝟐𝟐) + 𝑘𝑘𝑒𝑒[𝐸𝐸1(𝑿𝑿𝟏𝟏) − 𝐸𝐸2(𝑿𝑿𝟐𝟐)]2 + 𝑘𝑘𝑑𝑑[𝑑𝑑(𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐) − 𝑑𝑑𝑖𝑖]2 

(Eq. 2.3) 

where 𝐸𝐸1  and 𝐸𝐸2  are the elastic energy of two states and 𝑘𝑘𝑒𝑒  and 𝑘𝑘𝑑𝑑  are spring stiffness that 
measures the strengths of distance and energy difference constraints, d is the Euclidean distance 
between two images 𝑑𝑑 = ‖𝑿𝑿𝟏𝟏 − 𝑿𝑿𝟐𝟐‖ = �(𝑿𝑿𝟏𝟏 − 𝑿𝑿𝟐𝟐) ∙ (𝑿𝑿𝟏𝟏 − 𝑿𝑿𝟐𝟐) and 𝑑𝑑𝑖𝑖 is constrained distance 
specified at the i-th iteration that is incrementally reduced as 𝑑𝑑𝑖𝑖 = (1 − 𝑓𝑓)𝑑𝑑𝑖𝑖−1 in which 0 < f < 1 
is the reduction factor for the constrained distance.  

In Eq. 2.3, the BITSS energy 𝐸𝐸𝐵𝐵𝐵𝐵𝑇𝑇𝑆𝑆𝑆𝑆 is a scalar function of two images 𝑿𝑿𝟏𝟏 and 𝑿𝑿𝟐𝟐. Therefore, its 
DoF is twice of the system’s DoF. At each iteration, under the specified constrained distance 𝑑𝑑𝑖𝑖, 
we minimize the BITSS energy 𝐸𝐸𝐵𝐵𝐵𝐵𝑇𝑇𝑆𝑆𝑆𝑆 through finding the zeros of its gradient ∇𝐸𝐸𝐵𝐵𝐵𝐵𝑇𝑇𝑆𝑆𝑆𝑆 regarding 
the column vector [𝑿𝑿𝟏𝟏;𝑿𝑿𝟐𝟐] = �𝑥𝑥1,1;𝑥𝑥1,2; … ; 𝑥𝑥1,𝑛𝑛; 𝑥𝑥2,1;𝑥𝑥2,2; … ; 𝑥𝑥2,𝑛𝑛� where 𝑥𝑥𝑖𝑖,𝑗𝑗 is the j-th DoF of 
the i-th image as 

∇𝐸𝐸𝐵𝐵𝐵𝐵𝑇𝑇𝑆𝑆𝑆𝑆 = ∇𝐸𝐸1 + ∇𝐸𝐸2 + 2𝑘𝑘𝑒𝑒(𝐸𝐸1 − 𝐸𝐸2)(∇𝐸𝐸1 − ∇𝐸𝐸2) + 2𝑘𝑘𝑑𝑑(𝑑𝑑 − 𝑑𝑑𝑖𝑖)∇𝑑𝑑 

(Eq. 2.4) 

Specifically, we resort to the root-finding function fsolve in MATLAB to calculate the zeros of the 
gradient ∇𝐸𝐸𝐵𝐵𝐵𝐵𝑇𝑇𝑆𝑆𝑆𝑆. During the minimization, it is desired that the magnitude of each term in Eq. 
(2.4) is relatively the same to guarantee a successful search. As a result, we keep updating the 
values of 𝑘𝑘𝑒𝑒  and 𝑘𝑘𝑑𝑑  every three calling of the BITSS energy 𝐸𝐸𝐵𝐵𝐵𝐵𝑇𝑇𝑆𝑆𝑆𝑆  based on the following 
formula (Avis et al., 2022) 

𝑘𝑘𝑒𝑒 =
𝛼𝛼

2𝐸𝐸𝐵𝐵
 

(Eq. 2.5) 
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𝑘𝑘𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑥𝑥 �
�‖∇𝐸𝐸1‖2 + ‖∇𝐸𝐸2‖2

2√2𝛽𝛽𝑑𝑑𝑖𝑖
,
𝐸𝐸𝐵𝐵
𝛽𝛽𝑑𝑑𝑖𝑖

2� 

(Eq. 2.6) 

where 𝐸𝐸𝐵𝐵 is the estimated energy barrier between two images and 𝛼𝛼 and 𝛽𝛽 are two parameters. 
The estimated energy barrier 𝐸𝐸𝐵𝐵 is calculated as the difference between the highest energy along 
a linear interpolation of two images and the average energy of two images. It is worth mentioning 
here that for mechanical systems with multiple saddle points, minimization of the BITSS energy 
𝐸𝐸𝐵𝐵𝐵𝐵𝑇𝑇𝑆𝑆𝑆𝑆 typically reaches the saddle point with the lowest energy barrier because the expression (Eq. 
2.3) contains the energy of two images.  

For the bistable von-Mises truss, the two images are initiated as the two stable states, and the 
parameters are set as 𝑓𝑓 = 0.5, 𝛼𝛼 = 10 and 𝛽𝛽 = 0.1, as recommended by previous work (Avis et al., 
2022). However, as will be shown later, it may be necessary to tune the 𝛼𝛼 and 𝛽𝛽 parameters to 
prohibit the image initiated in the valley with higher energy (hence lower energy barrier) from 
crossing over the ridge. As shown in Figure 1(d) for the bistable von-Mises truss, the two BITSS 
images gradually approach each other and successfully converge at the saddle point. It is worth 
mentioning that in this case the trajectories of two images during iterations are close to the MEP, 
however, it is not a general behavior for most cases (Avis et al., 2022), as will be shown later in 
Figure 8(d). Therefore, it is necessary to employ a new numerical algorithm to find the MEP. 

 

2.2. Nudged Elastic Band (NEB) Method 

Once we successfully pinpoint the saddle point, we employ the nudged elastic band (NEB) 
algorithm to search the MEP accordingly. The NEB is a popular two-ended method that has been 
widely used in calculating the diffusion process, dislocation, solid-solid transformation and 
chemical reaction (Ásgeirsson et al., 2021; Bohner et al., 2014; Chen et al., 2019; Garrido Torres 
et al., 2019; Ghasemi et al., 2019; Ghasemi and Gao, 2020; Kolsbjerg et al., 2016; Rao et al., 2011; 
Sheppard et al., 2012; Si et al., 2023; Sobie et al., 2017; Xie et al., 2004). Here we give a brief 
review of the NEB algorithm and refer readers to previous works for the details of the method 
(Henkelman et al., 2000; Henkelman and Jónsson, 2000; Trygubenko and Wales, 2004). In the 
NEB algorithm, a string of N images [𝑹𝑹𝟏𝟏;𝑹𝑹𝟐𝟐; … ;𝑹𝑹𝑵𝑵], in which the column vector 𝑹𝑹𝒊𝒊 denotes to 
the i-th image with n DoF, is used to represent the transition path in a discretized manner, and the 
two stable states are always the first and last images 𝑹𝑹𝟏𝟏 and 𝑹𝑹𝑵𝑵, respectively. Meanwhile, the rest 
images are allowed to move. Each image is connected to its adjacent two images through an elastic 
band with spring stiffness 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵. As the algorithm advances, these N images are gradually relaxed 
from the initial interpolation between two stable states to the MEP through reducing the exerted 
force of each image to zero. On the i-th image 𝑹𝑹𝒊𝒊, the exerted force can be divided into a parallel 
and perpendicular component based on the tangent direction of this image 𝝉𝝉𝒊𝒊, as shown in Figure 
1(f). Along the parallel direction, the force is provided by the elastic band only with the equation  

𝐹𝐹∥ = 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵(‖𝑹𝑹𝒊𝒊 − 𝑹𝑹𝒊𝒊−𝟏𝟏‖ − ‖𝑹𝑹𝒊𝒊+𝟏𝟏 − 𝑹𝑹𝒊𝒊‖) 
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(Eq. 2.7) 

When the parallel force 𝐹𝐹∥  is reduced to zeros, it guarantees that the images are distributed 
uniformly along the transition path to well represent the MEP. Here, we further utilize the image 
climbing technique on the image with the highest energy along the string 𝑹𝑹𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎  (Henkelman et al., 
2000) to capture the saddle point and compare it to the BITSS results for consistency. For this 
image 𝑹𝑹𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎 , its parallel force takes the form of the inverted parallel component of the energy 
landscape gradient as −∇𝐸𝐸�𝑹𝑹𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎� + 2�∇𝐸𝐸�𝑹𝑹𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎� ∙ 𝝉𝝉𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎�𝝉𝝉𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎  instead of Eq. 2.7. Driven by this 
force, this image will climb uphill to find the saddle point.  

For the perpendicular component 𝐹𝐹⊥, it comes from the projection of the force −∇𝐸𝐸(𝑹𝑹𝒊𝒊) along the 
direction perpendicular to the tangent vector 𝝉𝝉𝒊𝒊 as −∇𝐸𝐸(𝑹𝑹𝒊𝒊) + [∇𝐸𝐸(𝑹𝑹𝒊𝒊) ∙ 𝝉𝝉𝒊𝒊]𝝉𝝉𝒊𝒊 (Figure 1(f)). Since 
the MEP always follows the energy landscape gradient, the reduction of the perpendicular 
component 𝐹𝐹⊥ to zero ensures that the string of images converges to the MEP. To incrementally 
decrease the force magnitude, we utilize the fsolve function in MATLAB.  

The implementation of NEB relies on an accurate estimation of the tangent vector. Here, for the i-
th image 𝑹𝑹𝒊𝒊, its tangent vector 𝝉𝝉𝒊𝒊 is estimated based on its two adjacent images as 

𝒕𝒕𝒊𝒊 =
𝑹𝑹𝒊𝒊 − 𝑹𝑹𝒊𝒊−𝟏𝟏
‖𝑹𝑹𝒊𝒊 − 𝑹𝑹𝒊𝒊−𝟏𝟏‖

+
𝑹𝑹𝒊𝒊+𝟏𝟏 − 𝑹𝑹𝒊𝒊
‖𝑹𝑹𝒊𝒊+𝟏𝟏 − 𝑹𝑹𝒊𝒊‖

 

𝝉𝝉𝒊𝒊 =
𝒕𝒕𝒊𝒊
‖𝒕𝒕𝒊𝒊‖

 

(Eq. 2.8) 

Though powerful, the NEB method may have difficulty in converging especially when the energy 
landscape is complicated. The convergence of the NEB calculation is sensitive to the initial guess 
of the string of the images. To resolve this issue, we utilize the saddle point calculated from BITSS 
to provide a good initialization (Avis et al., 2022; Y. Li et al., 2021a). Specifically, we apply the 
gradient descent (GD) algorithm twice with each beginning with one of the two images in the last 
iteration from the BITSS results. As a result, the “slide-down” from the saddle point to both stable 
states can be captured, and the intermediate states during the GD algorithm are chosen as the initial 
guess for the string of images. Following this initialization strategy and choosing the parameters 
as N = 12 and 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵 = 0.1 N/mm, we successfully capture the MEP of the bistable von-Mises truss 
as shown in Figure 1(e), in which the continuous MEP is obtained through the spline-interpolation 
of the images.  

 

2.3. Integration of BITSS and NEB into FEM 

The proposed computational framework has been verified in a sample bistable case with two 
degrees of freedom (DoF). To demonstrate its capability in capturing the saddle point and MEP in 
elastic continua with large numbers of DoF, we integrate BITSS and NEB algorithms into finite 
element method (FEM) that is broadly adopted to model the elastic behaviors of solids. For 
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simplicity, we focus on 2D plane strain problems in which the elastic domain is discretized into 
linear triangular meshes. In FEM, the DOF are the nodal spatial coordinates of the triangular 
meshes. For a total number of nodes 𝑠𝑠𝐹𝐹𝑁𝑁𝐹𝐹, we assemble the nodal coordinates into a 2𝑠𝑠𝐹𝐹𝑁𝑁𝐹𝐹 multi-
dimensional image X as 𝑿𝑿 = �𝑥𝑥1���;𝜕𝜕1���; 𝑥𝑥2���;𝜕𝜕2���; … ; 𝑥𝑥𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹��������;𝜕𝜕𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹�������� where 𝑥𝑥𝚤𝚤�  and 𝜕𝜕𝚤𝚤�  are the x- and y-
coordinate of the i-th node. For the material property, we assign a hyper-elastic model with the 
strain energy density U written as 

𝑈𝑈 =
1
2
𝜇𝜇[𝑡𝑡𝑡𝑡(𝑭𝑭𝑇𝑇𝑭𝑭) − 2] − 𝜇𝜇𝑙𝑙𝑠𝑠[det(𝑭𝑭)] +

1
2
𝜆𝜆{𝑙𝑙𝑠𝑠[det(𝑭𝑭)]}2 

(Eq. 2.9) 

where 𝜇𝜇 and 𝜆𝜆 are the shear modulus and Lame constants, respectively and 𝑭𝑭 is the deformation 
gradient tensor in plane strain situations. By integrating the strain energy density over one element 
and assembling the strain energy of all elements together, one can calculate the total elastic energy 
of the structure E(X) and its gradient ▽E(X) with respect to the image X, which are necessary input 
for BITSS and NEB algorithms. For prescribed boundary conditions, special treatment is required 
for the nodes that are located at these boundaries. Here, for simplicity, we only focus on the 
displacement boundary conditions. For nodal coordinates that are constrained, the components of 
the force −∇𝐸𝐸 along these DoF are assigned to be zeros so that these nodes do not move along 
certain direction as the algorithms proceed.  

 

3. Bistable Buckled Beam with Clamped Rotational Ends 

In this section, we utilize a bistable buckled beam with two rotational ends to demonstrate the 
capability of the introduced numerical platform. Extensive studies have been performed to 
investigate the mechanical behaviors of this bistable system such as its static behaviors and 
dynamic snap-through. G. Wan, et al. established the stability diagram of the bistable buckled 
beam in terms of the rotational angles of two clamped ends (Wan et al., 2019). M. Gomez, et al. 
studied the effect of the clamped angles on the bifurcation type of bistable beams and demonstrated 
the existence of the critical slowing down phenomenon during the dynamic snap-through when 
the buckled beam undergoes saddle-node bifurcation (Gomez et al., 2017b). T. Sano, et al. 
investigated the bistability of the buckled beam with frictional contact (Sano et al., 2017) or pinned 
boundary condition (Sano and Wada, 2018). A. Abbasi, et al. employed arc-length method to study 
the transition path of a bistable buckled beam that responds to magnetic field (Abbasi et al., 2023). 
R. Wiebe, et al. utilized the dynamic transition between two stable states to capture the saddle 
point (Wiebe and Virgin, 2016). B. Radisson, et al. examined the dynamic snap-through under 
symmetric boundary condition (Radisson and Kanso, 2023). By controlling the shape transition 
through external stimuli such as magnetic field, bistable beams can be applied as smart switches 
in electric circuits (Hou et al., 2018) or logic units for information operation (Pal and Sitti, 2023). 
The results based on these previous investigations make the bistable buckled beam an ideal 
candidate to verify our computational methods. Although existing beam theory (Liu et al., 2021; 
Zhang et al., 2020) or discrete elastic rod method (Huang et al., 2023) can accurately predict 
behaviors of buckled beams, we use FEM in the current paper since it can work for general elastic 
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solids. The integration of BITSS and NEB algorithms into these beam models will be explored in 
future studies.  

As schematically shown in Figure 2(a), a straight beam with two clamped ends has its thickness t 
= 2 mm and original length L = 100 mm. The parameters of the material property are chosen to be 
𝜇𝜇 = 1 MPa, 𝜆𝜆 = 3 MPa. The geometric domain is discretized into triangular meshes. The mesh 
sizes are 1 and 0.5 along the length and thickness direction of the beam, respectively. After an 
axial compression, the distance between two ends becomes l, and the beam becomes bistable by 
buckling either upwards (𝑆𝑆1) or downwards (𝑆𝑆2 ). The compressive strain is defined as 𝜀𝜀𝑐𝑐 =
(𝐿𝐿 − 𝑙𝑙) 𝐿𝐿⁄ . It is the well-known Euler buckling instability. To facilitate the analysis, we build a 
Cartesian coordinate whose origin is located at the center of the un-deformed beam and the x axis 
is parallel to the centerline of the un-deformed beam.  

If the two clamped ends do not rotate after the compression (𝜙𝜙1 = 0°, 𝜙𝜙2 = 0°), the two buckled 
shapes are mirror symmetry to each other with respect to the x axis (Figure 2(b)). In addition, if 
we plot the elastic energy E of the beam versus the y coordinate of the beam’s center 𝜕𝜕𝑐𝑐 along the 
MEP, the energy landscape also contains mirror symmetry and the two shapes have the same 
elastic energy, since two buckling directions are equally preferred (Figure 2(b)). In this situation, 
the energy landscape is termed as symmetric. 

To control the bistable behaviors and the energy landscape of the buckled beam, one can rotate the 
two clamped ends (Wan et al., 2019). For instance, as shown in Figure 2(c), by rotating the right 
end clockwise and keeping the left end unchanged (𝜙𝜙1 = 0°, 𝜙𝜙2 = 5°), the elastic energy of the 
upwards shape (𝑆𝑆1) decreases while the energy of the downwards shape (𝑆𝑆2) increases, breaking 
the mirror symmetry of both configurations and the energy landscape. Due to the end rotation, the 
state 𝑆𝑆1 is energetically preferred with a lower energy and a higher energy barrier and the state 𝑆𝑆2 
becomes “metastable” with a higher energy and lower energy barrier. Accordingly, the energy 
landscape becomes asymmetric. Both symmetric and asymmetric energy landscapes will be 
examined through our exploration algorithms. 

 
Figure 2. (a) Schematic illustration of the geometry of a buckled beam and two stable shapes that bend 
either upwards (𝑆𝑆1 , red) or downwards (𝑆𝑆2 , blue). (b) Mirror symmetry of two stable shapes and the 
corresponding energy landscape when two ends do not rotate (𝜙𝜙1 = 0°, 𝜙𝜙2 = 0°). (c) Two stable shapes of 
the buckled beam with asymmetric energy landscape when one end rotates counterclockwise (𝜙𝜙1 = 0°, 𝜙𝜙2 
= 5°). In (b) and (c), the red color denotes to 𝑆𝑆1 while the blue denotes to 𝑆𝑆2. 



12 
 

 

3.1. Symmetric Energy Landscape 

Asymmetric Transition Path 

We first explore the energy landscape of a bistable buckled beam when its two ends do not rotate 
after compression. The compressive strain 𝜀𝜀𝑐𝑐 is set as 1%. In this situation, the two stable shapes 
are symmetric with respect to both x and y axes. To pinpoint the saddle point, the BITSS algorithm 
is first employed whose initiation is chosen as the two stable states. In the simulation, we set the 
distance rescaling parameter f = 5% and the algorithm stops when the distance between two images 
d is below 5% of its initial value. The values of two parameters 𝛼𝛼 and 𝛽𝛽 are chosen as 𝛼𝛼 = 10, 𝛽𝛽 = 
0.1.  

The shapes of two images as the algorithm proceeds are shown in Figure 3(a), in which the solid 
red and blue beams represent the two stable states 𝑆𝑆1 and 𝑆𝑆2 while the purple and orange shapes 
with meshes are two images during this iterative process. Initially, the two images hold the mirror 
symmetry as the measured distance between two images is close to that between two stable states 
after five iterations. However, as the iteration continues and the distance between the two images 
is shortened, the mirror symmetry is broken, and the two images become sinusoidal. This behavior 
agrees with the previous experimental and numerical efforts on the point indentation of a buckled 
beam (Harvey and Virgin, 2015). In the end, the distance between two images will be below 5% 
of the initial distance and we take the average of the two images as the approximation of the saddle 
point. The saddle point takes the sinusoidal shape with its center located at (0,0). Intuitively, the 
system keeps invariant under the mirror reflection based on y axis, suggesting that there should be 
another saddle point that is symmetric to the current one regarding y axis. However, the current 
triangular mesh introduces numerical bias to the ideally mirror symmetry so that two images do 
not converge to the other saddle point. To converge to such a saddle point, one could simply 
reverse the stacking direction of the triangular meshes.  

In addition to the shapes, we also show the variation of the energy of two images during the 
iterative process and compare them with the true MEP. This can be obtained from high resolution 
NEB method (see below). Specifically, we choose the y coordinate of the beam’s center 𝜕𝜕𝑐𝑐 and the 
total elastic energy of the beam E to present the iterative results. As shown in Figure 3(b), two 
images gradually climb uphill in the energy landscape and approach the saddle point as BITSS 
algorithm proceeds. By averaging two images in the last step, we find the saddle point (green 
asterisk) at the highest point along the MEP, demonstrating the accuracy of the BITSS method. In 
Figure 3(c), we output the variation of two spring stiffness values 𝑘𝑘𝑒𝑒 and 𝑘𝑘𝑑𝑑 in the BITSS method 
as the iteration proceeds to better understand the BITSS method. As the algorithm continues, 𝑘𝑘𝑒𝑒 
keeps increasing and spans multiple orders of magnitude, since the estimated energy barrier 
between two images becomes smaller when the two images approach the saddle point (Eq. 2.5). 
At the same time, 𝑘𝑘𝑑𝑑 undergoes a non-monotonic change within the same order of magnitude, 
because the energy gradient also lowers as the distance between two images decreases, effectively 
cancelling out changes to 𝑘𝑘𝑑𝑑 (Eq. 2.6).   
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After finding the saddle point using the BITSS method, we apply the gradient descent (GD) 
algorithm to initiate the NEB calculation. To accelerate the calculation, we start with a low number 
of images (N = 5) and the spring stiffness 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵 is set as 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵 = 1×10-5 N/mm. As shown in Figure 
3(d), the string of five images in NEB gradually moves and converges to the MEP. We then 
increase the number of images by linearly interpolating the current results as the initial guess for 
NEB calculation. Specifically, we add a new image between each pair of adjacent images, and the 
value of this new image is the average of two existing images. For instance, using NEB results 
with 5 images, we can add 4 more new images and construct initial guess for NEB algorithm with 
9 images based on this interpolation technique, and the results are shown in Figure 3(e), where the 
images are sequentially arranged from top (𝑆𝑆1) to bottom (𝑆𝑆2). Following the MEP, the bistable 
buckled beam breaks its mirror symmetry and becomes sinusoidal, similar to the point indentation 
process of the beam’s center (Harvey and Virgin, 2015). Finally, we increase the number of images 
N to 17 by constructing the initial guess through the same interpolation method and display the 
MEP in terms of the y coordinate of the beam’s center 𝜕𝜕𝑐𝑐 and the elastic energy E in Figure 3(f). 
The image of the highest energy overlaps with the saddle point from the BITSS calculation, 
suggesting that the NEB and BITSS algorithms converge to the same saddle point. Apart from the 
MEP, we also apply a mechanical indentation on the middle point of the beam’s centerline through 
displacement control and compare it with the MEP. As shown in Figure 3f, the indentation passes 
through the saddle point, yet it is slightly different from the MEP.  Based on the obtained MEP, 
the stable states 𝑆𝑆1 and 𝑆𝑆2 have the same energy as 𝐸𝐸𝑆𝑆1 = 𝐸𝐸𝑆𝑆2 = 0.0113 mJ while the saddle point 
T has the energy as 𝐸𝐸𝑇𝑇 = 0.0204 mJ, leading to an energy barrier as 0.0091 mJ.   

 
Figure 3. The asymmetric transition path for a buckled beam with 𝜀𝜀𝑐𝑐 = 1%, 𝜙𝜙1 = 𝜙𝜙2 = 0°. (a) The shapes 
of the two images during iterations in the BITSS method. (b) The variation of the energy of the two images 
every five iterations in the BITSS method. (c) The variation of the spring stiffness 𝑘𝑘𝑒𝑒 and 𝑘𝑘𝑑𝑑 in the BITSS 
method every three iterations. (d) The shapes of five images during iterations in the NEB method with 
spring stiffness 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵 = 1×10-5 N/mm. (e) The shapes of the 9 images when the NEB method converges. (f) 
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The MEP based on a spline-interpolation of 17 images from the NEB results in terms of 𝜕𝜕𝑐𝑐 and E. In all 
figures, the red and blue color represent 𝑆𝑆1 and 𝑆𝑆2, respectively. The green asterisk is the saddle point by 
averaging the two images of the last iteration in the BITSS method. The purple and orange color denote to 
the two images in the BITSS method. The black curve is the MEP, and the orange dash line is the 
mechanical indentation. 

 

Symmetric Transition Path 

Apart from the asymmetric transition path in which the buckled beam becomes sinusoidal, the 
buckled beam can also follow a symmetric transition path passing through a saddle point with 
symmetric configuration. Such a symmetric transition path can be revealed in experiments by 
indenting a clamped beam with symmetric constraint (Neville et al., 2020, 2018) or with axial 
strain that is close to the Euler’s buckling strain (Pandey et al., 2014). To prove the versatility of 
the proposed numerical framework, we also capture this symmetric transition path. In this situation, 
this symmetric saddle point contains higher elastic energy than the sinusoidal saddle point and 
hence a direct implementation of BITSS algorithm does not find such a symmetric configuration. 
Therefore, we prevent the middle section of the beam (x = 0) from any displacement along x 
direction to force the beam to stay in mirror symmetry with respect to y axis during the transition.  

Under the symmetric constraint, the iterative process of BITSS is shown in Figure 4(a). Initially, 
as the distance between two images decreases, two images contain mirror symmetry to each other 
regarding the x axis. However, near the end of the iterations, the image that starts from the state 𝑆𝑆2 
(bottom, orange) flips from bending downwards to upwards. This change is also clearly shown in 
the energy variation of two images along the MEP. As shown in Figure 4(b), when two images get 
close to the saddle point (green asterisk), one image deviates from the MEP slightly while the other 
image still follows the MEP as the iteration proceeds. This behavior is caused by the fact that the 
saddle point in this situation is cosine-like rather than being straight – the beam favors bending 
instead of an axial compression to lower its elastic energy even under the symmetric constraint 
(Figure 4(a)). Therefore, the mirror symmetry between two images with respect to the x axis 
initially needs to be broken near the end of the iterations.  

The NEB results with 7 images are shown in Figure 4(c). Along the MEP from the stable shape 
that bends upwards (𝑆𝑆1, red) to downwards (𝑆𝑆2, blue), the buckled beam keeps its bending direction 
in its middle part yet flips its bending direction near two ends before reaching the saddle point. 
However, after passing the saddle point, the buckled beam begins to flip the curving direction in 
this middle part to release the elastic energy until it meets another stable shape (𝑆𝑆2). By linearly 
interpolating these 7 images to 13 images through the same technique and using them as initial 
guess for NEB, we can capture the MEP more accurately by increasing the image’s resolution 
along this pathway. As shown in Figure 4(d), the MEP with 13 images is plotted in terms of 𝜕𝜕𝑐𝑐 
and E, which is also close to the indentation through displacement control. Based on this result, 
the energy barrier of this symmetric transition path is 0.0193 mJ, which is higher than that of the 
asymmetric transition path because of the additional constraint.  
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Figure 4. The symmetric transition path for a buckled beam with 𝜀𝜀𝑐𝑐 = 1%, 𝜙𝜙1 = 𝜙𝜙2 = 0°. (a) The shapes of 
the two images during iterations in the BITSS method. (b) The variation of the energy E of two images 
every five iterations in the BITSS method. (c) The shapes of 7 images in the NEB method with spring 
stiffness 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵 = 5×10-4 N/mm. (d) The MEP based on a spline-interpolation of 13 images (circles) from 
the NEB results. In all figures, the red and blue color represent 𝑆𝑆1 and 𝑆𝑆2, respectively. The green asterisk 
is the saddle point by averaging the two images of the last iteration in the BITSS method. The purple and 
orange color denote to the two images in the BITSS method. The black curve is the MEP, and the orange 
dash line is the mechanical indentation. 

 

3.2. Asymmetric Energy Landscape 

The two stable states of a buckled beam can have different elastic energies if we rotate one clamped 
end. Here we study a representative case where the left end of the beam does not rotate 𝜙𝜙1 = 0° 
while the right end rotates clockwise with 𝜙𝜙1 = 5°. The compressive strain 𝜀𝜀𝑐𝑐 is also set as 1%. 
Two asymmetric stable buckling configurations can be identified, which are shown in red and blue 
in Figure 5(a). 

The iterations of the BITSS method are shown in Figure 5(a). In this case, the mirror symmetry is 
lost for both stable states, and there is only one sinusoidal saddle point that exists – its mirror 
reflection disappears when the boundary symmetry is lost. The energy variations of two images 
during the iterations are shown in Figure (b) together with the MEP in terms of 𝜕𝜕𝑐𝑐 and E. The MEP 
is now asymmetric with the state 𝑆𝑆1 containing lower elastic energy and higher energy barrier 
while the state 𝑆𝑆2 having higher elastic energy and lower energy barrier. Accordingly, the image 
that starts from 𝑆𝑆1 has larger change between adjacent iterations compared to the other image, and 
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two images successfully converge to the saddle point. The NEB results based on 9 images are 
displayed in Figure 5(c) to illustrate the shape change of the buckled beam along the MEP of this 
asymmetric energy landscape. Starting from the state 𝑆𝑆1, the deflection occurs mainly near the left 
end when approaching the saddle point. After reaching the saddle point, the buckled beam deflects 
downwards near its right end to decrease the elastic energy until it becomes the other stable shape 
(𝑆𝑆2). Apart from the shape change, the energy variation of the buckled beam along the MEP is 
shown in Figure 5(d) based on the NEB calculation with 17 images. The stable state 𝑆𝑆1 has elastic 
energy as 𝐸𝐸𝑆𝑆1 = 0.0084 mJ while the stable state 𝑆𝑆2 has energy as 𝐸𝐸𝑆𝑆2 = 0.0144 mJ. The saddle 
point contains the energy as 𝐸𝐸𝑇𝑇 = 0.0171 mJ, giving the energy barrier as 0.0087 mJ for 𝑆𝑆1 and 
0.0027 mJ for 𝑆𝑆2. 

 
Figure 5. The transition path for a buckled beam with 𝜀𝜀𝑐𝑐 = 1%, 𝜙𝜙1 = 0°, 𝜙𝜙2 = 5° (a) The shapes of the two 
images during iterations in the BITSS method. (b) The variation of the energy E of two images every five 
iterations in the BITSS method. (c) The shapes of 9 images in the NEB method with spring stiffness 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵 
= 1×10-5 N/mm, different colors are assigned for images for better visualization. (d) The MEP based on a 
spline-interpolation of 17 images (circles) from the NEB results.  In all figures, the red and blue color 
represent 𝑆𝑆1 and 𝑆𝑆2, respectively. The purple and orange color denote to the two images in the BITSS 
method. The green asterisk is the saddle point by averaging the two images of the last iteration in the BITSS 
method, and the black curve is the MEP.  

 

We would like to point out here that, for asymmetric energy landscape where the two stable states 
have different energies and thus energy barriers, the parameters 𝛼𝛼  and 𝛽𝛽  used in the BITSS 
algorithm sometimes need to be adjusted so that two images can converge to the saddle point. The 
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recommended values 𝛼𝛼 = 10, 𝛽𝛽 = 0.1 work well for many cases as demonstrated by the previous 
work (Avis et al., 2022) and all examples mentioned above. However, when the difference between 
energy barriers becomes significant, the image that initiates from the meta-stable state will cross 
over the energy barrier if these recommended values are chosen. For instance, for the same straight 
beam, when we axially compress it with strain 𝜀𝜀𝑐𝑐 = 5% and rotate its left end clockwise with 𝜃𝜃1 = 
17° (Figure 6(a)), its two stable states have different energy as 𝐸𝐸𝑆𝑆1 = 0.0391 mJ and 𝐸𝐸𝑆𝑆2 = 0.0878 
mJ. In this case, the captured saddle point through a successful implementation of the BITSS 
method has energy as 𝐸𝐸𝑇𝑇 = 0.0957 mJ. In this case, the energy barriers for the states 𝑆𝑆1 and 𝑆𝑆2 are 
0.0566 mJ and 0.0079 mJ, respectively, and the difference in energy barriers is 0.0487 mJ, which 
is 7 times higher than that of the previous example (0.006 mJ). As shown in Figure 6(a)-(b), the 
image that starts from 𝑆𝑆2 will get over the energy barrier and converge to the stable state 𝑆𝑆1 with 
the other image under the recommended values of 𝛼𝛼 and 𝛽𝛽 in the BITSS algorithm. 

To resolve this issue, we increase the magnitude of the energy penalty term 𝑘𝑘𝑒𝑒(𝐸𝐸1 − 𝐸𝐸2)2 in the 
total energy in BITSS to ensure that the two images are located at different sides of the saddle 
point during iterations. Since the spring stiffness 𝑘𝑘𝑒𝑒 is linearly related to the parameter 𝛼𝛼 (Eq. 2.4), 
we choose a larger value as 𝛼𝛼 = 20 instead of the recommended value. As shown in Figure 6(c)-
(d), with the adjusted parameters, the two images stay at two sides of the saddle point along MEP 
as the BITSS algorithm proceeds and converge to the saddle point in the end, suggesting that this 
parameter adjustment technique can be utilized in the future if one image slides off the “ridge”. It 
is also worth noting that, while the BITSS parameters may need some adjustments depending on 
the systems of interest, the method itself is robust. Typically, a reasonable range of choices for the 
parameter values will converge to the same result. 

 
Figure 6. The transition path for a buckled beam with 𝜀𝜀𝑐𝑐 = 5%, 𝜙𝜙1 = 17°, 𝜙𝜙2 = 0°. The shapes and energy 
of the two images during iterations in the BITSS method are shown in (a) and (b) when 𝛼𝛼 = 10, 𝛽𝛽 = 0.1, in 
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(c) and (d) when 𝛼𝛼 = 20, 𝛽𝛽 = 0.1, respectively. In all figures, the red and blue colors denote to 𝑆𝑆1 and 𝑆𝑆2 
states while the purple and orange colors denote to two images in the BITSS method, respectively. The 
black curve is the MEP, and the green asterisk is the saddle point captured by the BITSS method.  

 

4. Bistable Unit of Mechanical Metamaterials 

In this section, we focus on another type of 2D bistable structure that features two tilted straight 
beams with clamped ends (Figure 7(a)). In addition to the stress-free configuration (𝑆𝑆1), this 
structure has another stable shape when two beams are compressed and sheared at one end (𝑆𝑆2, 
Figure 7(a)), which can be obtained through a vertical indentation of the structure’s top edge. Such 
a bistable design serves as a building unit for multi-stable mechanical metamaterials that have very 
promising potentials in applications of impact absorption (Shan et al., 2015), logic operation (Jiang 
et al., 2019; Wu and Pasini, n.d.), etc., and the information of energy barrier is significant in 
determining the performance of metamaterials in these applications. Therefore, we employ the 
BITSS and NEB to seek the saddle point and MEP of this type of structure. The previous study 
has demonstrated that the bistable behavior depends heavily on the geometry (Shan et al., 2015), 
and here we investigate two situations with qualitatively different geometric features. In the first 
situation, the two elastic beams have the same geometric parameters including the thickness w and 
the tilting angle 𝜓𝜓. As a result, the structure contains mirror symmetry, and the two beams are 
under the same deformation along the MEP, similar to the indentation process in the previous 
report (Shan et al., 2015). In the second situation, we break the mirror symmetry by assigning two 
beams with the same width yet different tilting angles. This situation has a complicated energy 
landscape and an unintuitive transition path that will be shown later, cannot simply be reproduced 
through the conventional mechanical indentation.  
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Figure 7. The symmetric transition path for a bistable unit. (a) Illustration of the geometric parameters and 
two stable shapes of a bistable unit with symmetric geometry (𝜓𝜓1 = 40°, 𝜓𝜓2 = 40°). (b) The shapes of one 
tilted beam of two images during iterations of the BITSS method when 𝛼𝛼 = 10 and 𝛽𝛽 = 0.1. (c) The energy 
E of two images every three iterations in the BITSS method along with the MEP. (d) The shapes of 5 images 
out of 9 images in the NEB method with spring stiffness 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵 = 1×10-3 N/mm. (e) The MEP based on a 
spline-interpolation of 17 images (circle) from the NEB results. In all figures, the red and blue color 
represent the stress-free and self-stressed shapes, respectively. The green asterisk is the saddle point by 
averaging the two images of the last iteration in the BITSS method. The purple and orange color denote to 
the two images in the BITSS method. The black curve is the MEP, and the orange dash line is the 
mechanical indentation.  

 

4.1. Symmetric Transition Path 

We first study the case when the two beams have the same geometry. To generate the bistable 
behaviors, the width 𝑤𝑤1, 𝑤𝑤2 and the tilting angles 𝜓𝜓1, 𝜓𝜓2 are chosen as 𝑤𝑤1 = 𝑤𝑤2 = 0.58 mm, 𝜓𝜓1 = 
𝜓𝜓2 = 40°. The height of the beam is H = 3.2 mm. For simplicity, the two beams have the same 
material property as 𝜇𝜇 = 1 MPa, 𝜆𝜆 = 3 MPa. The bottom edges of the beams are clamped while the 
top ends are connected to a rigid block with material property 𝜇𝜇 = 38.5 MPa, 𝜆𝜆 = 57.7 MPa. The 
geometric domain is discretized into triangular meshes. For the beams, the mesh sizes are 0.1 mm 
and 0.2 mm along the length and width directions, respectively. For the top block, the size of the 
meshes is roughly 0.3 mm. We set up a top block that is far more rigid than the beams, ensuring 
that the boundary condition of the top end is close to being clamped. We build a Cartesian 
coordinate whose origin is located with equal distance to the centers of the beam’s bottom edges. 
At the same time, the x axis is built along the bottom edge while the y axis is along the vertical 
direction. 

To obtain the self-locked shape 𝑆𝑆2, we first indent the structure at the top edge of the block to a 
certain distance of 5 mm and then relax this displacement boundary condition to let the structure 
seek its local equilibrium nearby. As shown in Figure 7(a), two stable shapes keep the mirror 
symmetry with the same deformation for the two tilted beams. Using the BITSS algorithm with 
parameters 𝛼𝛼 = 10, 𝛽𝛽 = 0.1, we can capture the saddle point, and the shapes of two images during 
iterations are shown in Figure 7(b). For clarity, we only show the deformation of one tilted beam 
since the mirror symmetry is kept in the BITSS iterations. As BITSS continues, the image that 
initiates at the stress-free shape bends significantly downwards in its middle part and undergoes 
larger deformation compared to that of the other image. In the meanwhile, the image that starts 
from the self-stress state initially bends downwards because the constraint applied in the BITSS 
requires it to maintain a certain distance to the top image. However, it later bends upwards and 
approaches the saddle point. This shape change can also be clearly seen if we plot the energy of 
two images during iteration together with the MEP in terms of the y coordinate of the center point 
of the block’s bottom edge 𝜕𝜕𝑚𝑚 . As shown in Figure 7(c), the top image (purple dots) keeps 
climbing uphill towards the saddle point while the bottom image (orange dots) first moves away 
from the saddle point and then approaches the saddle point when the top image is close.  



20 
 

The approximated saddle point is used to initiate the NEB method with 9 images, and the results 
are shown in Figure 7(d), where one tilted beam is displayed because of the mirror symmetry. 
Following the MEP from the stress-free shape, the beam initially develops a bending curvature 
downwards in its middle part as the top end moves downwards and reaches the saddle point with 
a sinusoidal-like configuration. After passing the saddle point, the beam relaxes itself as the top 
end continues to move until it becomes the self-stressed stable state. The energy variation along 
the MEP is shown in Figure 7(e) based on the NEB results using 17 images. The stable states have 
energy as 𝐸𝐸𝑆𝑆1 = 0 mJ and 𝐸𝐸𝑆𝑆2 = 0.2997 mJ while the saddle point contains elastic energy as 𝐸𝐸𝑇𝑇 = 
0.3049 mJ. Accordingly, the energy barriers for the stress-free (𝑆𝑆1) and self-stressed (𝑆𝑆2) states are 
0.3049 mJ and 0.0052 mJ, respectively. 

 

4.2. Asymmetric Transition Path 

For a bistable unit with a symmetric configuration as presented in the last subsection, its saddle 
point and the MEP can also be obtained through indenting the top edge of the block since the 
structure keeps the mirror symmetry along the transition path (Figure 7(e)). The indentation can 
also be applied to the center of the buckled beam to obtain the saddle point, as shown in Figure 
3(f) and Figure 4(d), though the indentation is slightly different from the MEP in these two cases. 
However, if the bistable structure has asymmetric geometry, its MEP can be complex and un-
intuitive and thus cannot be captured through a simple mechanical indention. Such asymmetric 
configurations and transition path may offer advantages in controllable, directional force output in 
robots when bistable structures act as actuators (Wang et al., 2023). Therefore, it is necessary to 
call for a robust method instead of indentations in these situations to find the saddle point and 
transition path.   

To demonstrate the capability of our proposed numerical method in asymmetric cases, the bistable 
unit is designed to have two tilted beams with different geometric parameters. Specifically, two 
beams have different width as 𝑤𝑤1 = 0.58 mm, 𝑤𝑤2 = 0.55 mm and tilting angles as 𝜓𝜓1 = 40°, 𝜓𝜓2 = 
45°, respectively. The height H is chosen as H = 3.2 mm. The two beams have the same mesh 
divisions, which are 50 and 4 along the length and width directions, respectively. The mesh size 
of the top block is around 0.3 mm. To obtain the self-stressed equilibrium shape, we first compress 
the top edge of the structure downwards through displacement control and then remove this 
constraint to relax the structure to a stable shape nearby through static analysis. With such an initial 
geometry, the two beams have different deflections in the self-stress shape, forming a tilting angle 
𝜑𝜑 = 3.34° between the top edge of the rigid block and the horizontal direction (Figure 8(a)). This 
tilting angle is determined through coordinates of two nodes on the top edge. The two stable states 
have their elastic energy as 𝐸𝐸𝑆𝑆1 = 0 mJ and 𝐸𝐸𝑆𝑆2 = 0.307 mJ. 
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Figure 8. The asymmetric transition path for a bistable unit with 𝜓𝜓1 = 40°, 𝜓𝜓2 = 45°. (a) The shape of the 
stress-free and self-stressed shapes of the bistable unit. (b) The saddle point (green) captured by the BITSS 
method when 𝛼𝛼 = 10, 𝛽𝛽 = 0.1, f = 5%. (c) The shapes of 7 images from the NEB results with spring stiffness 
𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵 = 4×10-3 N/mm. (d) The MEP (black curve) based on a spline-interpolation of 13 images from the 
NEB results. The purple and orange circles denote to the two images in the BITSS method. The figure 
includes the variation of 𝜕𝜕𝑚𝑚, rotational angle 𝜑𝜑 and elastic energy E along 13 images and the relationship 
between E and 𝜕𝜕𝑚𝑚 along the MEP. In all figures, the red and blue colors denote to the stress-free (𝑆𝑆1) and 
self-stressed states (𝑆𝑆2), respectively.  

 

We initiate the BITSS algorithm with two stable states, and the parameters are chosen as 𝛼𝛼 = 10, 
𝛽𝛽 = 0.1, f = 5%. Unlike the previous examples, in this case, the two images during the BITSS 
algorithm do not follow the MEP, as shown in Figure 8(d). Averaging the two images in the last 
iteration, we obtain the saddle point whose configuration is closer to the self-stress state with a 
smaller tilting angle 𝜑𝜑 = 0.33° (Figure 8(b)). The saddle point contains elastic energy as 𝐸𝐸𝑇𝑇  = 
0.319 mJ, resulting in energy barrier as 0.319 mJ and 0.012 mJ for 𝑆𝑆1  and 𝑆𝑆2 , respectively. 
Employing the NEB method with 13 images and 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵 = 4×10-3 N/mm, we find the MEP based on 
the captured saddle point and reveal the shape change along this transition path in Figure 8(c). In 
addition, a quantitative representation of this MEP can be found in Figure 8(d) in which the elastic 
energy E, the y coordinate of the center of the block’s bottom edge 𝜕𝜕𝑚𝑚 and the rotating angle 𝜑𝜑 of 
these images are plotted versus the image’s label in a sequential manner. 
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Following the MEP from the stress-free shape, the left beam with 𝜓𝜓1 = 40° first bends downwards 
while the right beam with 𝜓𝜓2 = 45° bends upwards initially. As a result, the right block moves 
downwards with decreasing 𝜕𝜕𝑚𝑚  and rotates counterclockwise with increasing angle 𝜑𝜑  (Figure 
8(d)). The largest rotational angle 𝜑𝜑 is 31.7°. As the left beam becomes sinusoidal, the right beam 
begins to bend downwards. During this stage, the rigid block starts to rotate clockwise with 
decreasing 𝜑𝜑 as it continues to move downwards with decreasing 𝜕𝜕𝑚𝑚. Unlike the non-monotonic 
variation of the angle 𝜑𝜑, the elastic energy E keeps increasing before the structure meets its saddle 
point. After passing the saddle point, the structure decreases its elastic energy E when the rigid 
block again rotates counterclockwise with increasing 𝜑𝜑 to reach the self-stress shape.  

The implementation of the NEB algorithm can be highly nonlinear, and a successful search for the 
MEP depends on good initial guess and appropriate choose of the spring stiffness 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵. In our 
numerical framework, we exploit the BITSS results to provide good initial guess for the NEB 
method to ensure good convergence. Such a treatment becomes necessary when the MEP deviates 
significantly from a linear interpolation between two stable states. For instance, for the asymmetric 
bistable unit that is studied in this section, the NEB method with 7 images requires only 77 
iterations to converge to the MEP based on the BITSS results. However, using the same number 
of images and spring stiffness 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵, the NEB fails to converge to the MEP after 2000 iterations if 
a linear interpolation between two stable states is chosen as the initial guess (Figure 9). Considering 
that the BITSS method only requires two images to capture the saddle point, which is cheap in 
both storage and computational time, our numerical pipeline is more efficient than a direct 
implementation of the NEB algorithm that is initiated with a linear interpolation between two 
stable states.  
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Figure 9. Comparison between the NEB results in the introduced numerical framework (unfilled shapes) 
and the NEB results that are initiated with a linear interpolation between two stable states (colored 
shapes). In both cases, the image number is 7 and the spring stiffness 𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵 = 4×10-3 N/mm.  

 

4.3. Experimental Validation 

The predicted saddle point and the MEP will not only offer the energy barrier quantitatively but 
also point out an efficient pathway along which a bistable structure can transition from one stable 
state to the other. This knowledge becomes even more valuable for bistable structures with 
complicated, unintuitive MEP. Here, based on the asymmetric bistable unit that is presented in the 
last subsection, we experimentally validate that the MEP acquired through our numerical 
framework can serve as useful guidance to a successful shape transition, which cannot be achieved 
through an intuitive uniaxial compression.  

Specifically, we fabricate a bistable unit with asymmetric geometry through laser-cutting of cured 
polydimethylsiloxane (PDMS, SYLGARD® 184, synthesized by mixing the base and curing agent 
at a 10:1 weight ratio; Sigma-Aldrich) using a CO2 laser (VLS 2.3, University Laser System, 
Norman, CT). The bistable PDMS structure contains two tilted beams with the following 
geometric parameters: 𝑤𝑤1 = 𝑤𝑤2 = 1 mm, 𝜓𝜓1 = 45°, 𝜓𝜓2 = 50°, H = 7 mm, and a uniform thickness 
of 3 mm. The two beams are connected by a T-block and a U-block at their top and bottom ends, 
respectively. For the shape transition, we place the PDMS structure horizontally on a high-density 
polyethylene (HDPE) substrate with negligible friction to rule out the effect of gravity. Stiff wood 
bars are used to push the top edge to control the deformation of the structure. Please note that we 
paint the top surface of the PDMS structure using a black marker to enhance the contrast for 
imaging purposes, and we assume that the very thin layer of paint has negligible effect on the 
shape transition. 

In simulation, only a 2D plane strain case with the same geometry is considered for simplicity, and 
the material property is set as 𝜇𝜇 = 1 MPa and 𝜆𝜆 = 3 MPa. The bottom edge of the structure is 
clamped to avoid rigid body motion, and the geometric domain is divided into triangular meshes. 
The two tilted beams have the mesh divisions as 50 and 4 along their length and width directions, 
respectively, whereas the mesh size of the rest domain is around 0.7 mm. To obtain the self-
stressed state (𝑆𝑆2), we uniaxially compress the top edge of the structure with 6 mm through 
displacement control and then remove this boundary condition to let the structure relax itself to a 
stable shape nearby through static analysis. In the BITSS algorithm, the parameters are chosen as 
𝛼𝛼 = 25, 𝛽𝛽 = 0.1 and f = 5%. In the NEB method, we use 7 images, and the spring stiffness is set as 
𝑘𝑘𝑁𝑁𝑁𝑁𝐵𝐵 = 3×10-5 N/mm.  

Both experimental and simulation results show that the structure has a self-stressed stable shape 
(vii in Figures 10(a) and 10(b)) in addition to the stress-free shape (i in Figures 10(a) and 10(b)). 
The MEP obtained in the simulation is shown in Figure 10(a). Following the MEP, the top block 
of the structure undergoes both linear and rotational motion as the two beams bend downwards 
sequentially, which is similar to the previous example. Guided by this numerical result, we first 
indent the right half of the top surface of the block using one stiff wood bar to rotate the top block 
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clockwise (ii and iii in Figure 10(b)). Then we use another wood bar to push the left half of the top 
surface to induce counterclockwise rotation of the top block (iv-vi in Figure 10(b)), while 
maintaining the force exerted on the right half from the wood bar. Finally, we remove the two bars 
and let the structure relax to the self-stressed state (vii in Figure 10(b) and supplementary Video 
1). However, if we employ an intuitive strategy by directly compressing the top surface without 
rotating the top block, the structure will bounce back to the initial stress-free state once the bar is 
withdrawn (Figure 10(c) and supplementary Video 2). We run additional experiments to verify 
that the reconfiguration process is robust, and the self-stressed state is stable even after 25 s 
relaxation (supplementary Video 3). Such a failure to complete the shape transition is observed 
under various compression depth and speed, which is also supported by finite element simulation 
in commercial software ABAQUS based on dynamic analysis (top row in Figure 11). The reason 
can be attributed to the fact that the pure compression cannot help the structure reach the self-
stressed stable shape due to the non-equilibrium stress even the structure has crossed the “ridge” 
and get close to the local minimum in the energy landscape. With this specific geometry, the 
structure has energy as 0.794 mJ at the meta-stable state (𝑆𝑆2). The energy of the transition state is 
0.838 mJ, leading to the energy barrier as 0.044 mJ. While the structure compressed at 12 mm has 
an energy of 0.847 mJ, whose energy difference from 𝑆𝑆2 (0.053 mJ) is higher than the energy 
barrier. As a result, once the external constraint is lifted, the extra elastic energy compared to the 
meta-stable state (𝑆𝑆2) will convert to kinetic energy and drive the structure to cross over the small 
energy barrier and move to the stress-free state (𝑆𝑆1) with a lower elastic energy and higher energy 
barrier (0.794 mJ). To test the kinetic effect in the shape transition, we further run a static 
simulation using ABAQUS and find the structure will converge to 𝑆𝑆2 (bottom row in Figure 11). 
The energy barrier of the bistable metamaterials is known to depend on geometries of the structures 
(Shan et al., 2015). Thus, it is of great interests in exploring the geometrical parameter space to 
optimize energy barrier for easy and robust reconfigurations, which will be conducted in future 
studies. 
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Figure 10. Experimental validation of the MEP from the proposed numerical framework. (a) The shapes of 
7 images along the MEP. The red and blue colors denote the stress-free and self-stressed states, respectively. 
(b) The successful shape transition in the experiment following the MEP. (c) Under a pure compression in 
experiment, the bistable unit bounces back to the stress-free shape once the constraint is removed. The scale 
bar is 10 mm. 

 

 

Figure 11. Comparison between the dynamic and static simulations. After removal of 12 mm indentation, 
the bistable unit can snap back to 𝑆𝑆1 under dynamic analysis (top row) or converge to 𝑆𝑆2 nearby under 
general static analysis (bottom row). The scale bar is 5 mm. 

 

5. Conclusion 

In this work, we introduce a robust computational framework by integrating the BITSS and NEB 
algorithms into FEM to find the saddle point and the associated MEP of bistable elastic continua. 
In this numerical pipeline, the BITSS algorithm that manipulates two images is first employed to 
pinpoint the saddle point. Then we use gradient descent algorithm based on the captured saddle 
point to initiate the NEB method that relaxes a string of images to converge to the MEP. We 
successfully verify the performance of the proposed framework in two representative cases 
including bistable buckled beams and bistable units from mechanical metamaterials, under both 
symmetric and asymmetric conditions. The obtained saddle point and MEP can not only provide 
the information of the energy barrier, which offers quantitative evaluation of the performance of 
bistable structures, but also point out an efficient transition pathway that guides the shape transition 
of bistable structures either under either mechanical force in this work or distributed body force 
through external stimuli such as magnetic field.  

The proposed numerical framework has its advantages in several aspects. First, it is built on FEM 
that is widely adopted to model the mechanical behaviors of solids, suggesting that the proposed 
method can be broadly applied in analyzing the energy landscape of multi-stable structures. 
Second, previous work has demonstrated that the combination of the BITSS and string method can 
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capture the MEP and saddle point of multi-stable slender structures based on a discrete shell model 
(Y. Li et al., 2021a). Since the string method is an efficient double-ended method that converges 
to the MEP through relaxing a string of images, its similarity to the NEB suggests that our method 
has great potentials in searching for multiple saddle points and MEPs in multi-stable elastic 
continua. Third, because the BITSS method requires only two images to find the saddle point, its 
implementation together with the NEB algorithm can be more computation-efficient in find the 
MEP than directly applying the NEB that is initiated with a linear interpolation between two stable 
states, particularly for systems with large number of DoF. 

Only 2D plane strain problems under displacement boundary conditions are considered in this 
study. However, the introduced numerical framework should be seamlessly integrated into 3D 
finite element modeling under various types of boundary conditions such as concentrated or 
distributed force, greatly expanding the range of application of our methods. In addition, by 
integrating potential energies associated with other fields, our method should also be capable of 
solving multi-physics problems where the bistable structures are subjected to external stimuli such 
as magnetic fields (Y. Li et al., 2021a, 2021b) or differential swelling (Li et al., 2023). Such a 
characteristic enables the search for the energy barrier and transition path of bistable structures 
made of stimuli-responsive materials, which can facilitate their applications in controllable shape 
change (Ma et al., 2023; Shao et al., 2018; Zhao et al., 2016), fast actuation (Wani et al., 2017), 
etc.  
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