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Abstract—In wireless networks with distributed computing, the
computational performance is limited by stragglers. To mitigate
the stragglers’ effect, coded computation is adopted through
computational redundancy. Moreover, in wireless transmission,
transmission errors may occur due to noise, channel fading and so
on. Existing works design coded computation and error detection
separately. However, this leads to frequent encoding and ineffi-
cient allocation. In this paper, we propose a joint computation and
transmission coding (JCTC) scheme to design coded computation
and error detection jointly. The coded computation is based on
Luby transform (LT) code and linear error-detecting codes are
applied for the re-transmission mechanism. To achieve the low
dynamic encoding, two-layer encoding is adopted. Then, the per-
formances of JCTC scheme are analyzed in terms of latency and
computation reliability. Finally, in order to achieve efficient task
and redundancy allocation, the wireless LT coded computation
with error detection (WLTCC-ED) algorithm is given from both
iterative and low-complexity perspectives respectively. Through
theoretical analysis and numerical simulation, it shows that our
proposed JCTC scheme has significant advantages over separate
designs.

Index Terms—Coded computation, distributed computing, er-
ror detection, transmission errors, wireless networks.

I. INTRODUCTION

W ITH the explosive number of mobile and Internet
of Things (IoT) devices, distributed computing has

aroused great interest to perform large-scale computational
tasks. In distributed computing [1], [2], mobile and IoT devices
are connected to solve computational tasks, such as mobile
edge computation [3], [4] and federated edge learning [5].
Despite the advantage of efficient computation for distributed
computing, its performance is limited by stragglers, which
slow down the execution time for the whole distributed net-
works.

To address the stragglers’ effect, a new framework named
coded computation [6] was proposed. Inspired by classical
coding theory, the authors in [6] applied maximum distance
separable (MDS) code to speed up the distributed matrix
multiplications by introducing necessary computational redun-
dancy in the homogeneous networks with nodes of uniform
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computation capabilities. Without waiting for the responses
from all the nodes, the desired computational results could be
recovered only using some fast-responding nodes. It implied
that MDS coding scheme could reduce the computation time
significantly and achieve an order-wise improvement over
the original uncoded scheme. The authors in [7], [8] further
studied the corresponding scheme to allocate the optimal
computational task for nodes in the heterogeneous networks
with disparate computation capabilities.

Compared to MDS code with a fixed rate, Luby transform
(LT) code offers the rateless property and lower decoding
complexity. Using the rateless property, the corresponding
LT coding scheme was proposed in [9]. Through sub-block
division, this scheme could exploit the computed results from
all the nodes including stragglers. It led to negligible redundant
computation and maximum straggler tolerance for a lower
latency. Moreover, the authors in [10] showed the LT coding
scheme could further reduce the computation latency at the
expense of an increased communication load.

In wireless distributed networks, transmission latency also
has an important effect on the performance. For homogeneous
wireless networks, the authors in [11] analyzed the perfor-
mance of MDS coding scheme from the total latency’s point
of view. With packet losses due to channel fading, the work of
[12] investigated the performance of total latency and provided
guidelines to design optimal MDS code. For heterogeneous
wireless networks, the authors in [13] proposed wireless coded
computation scheme to deal with both computation and trans-
mission stragglers. Then, the authors in [14] further exploited
the computed results of stragglers in wireless networks based
on block-division. As for LT coding scheme, the work of [15]
proposed block-design based wireless LT coded computation
scheme to balance both computation and transmission latency.

Using coded computation discussed above, various compli-
cated computational tasks and distributed computing scenarios
have been studied in [16]–[29]. In order to keep the master’s
data private and secure from workers, the works of [16]–[18]
studied the private and secure distributed matrix multiplication.
To speed up more complex distributed computational tasks
using codes, the authors in [19], [20] discussed the convolution
and the regression problem respectively, and the distributed
computing problem of arbitrary functions was studied in [21].
For the scenario where the exact computational result was
not required, the authors in [22]–[24] provided a strategy
of approximating coded distributed computing to realize a
tradeoff between accuracy and speed. As for a more practical
distributed network setup, the heterogeneous multi-hop net-
work was considered in [25] and the work of [26] studied
multiple distributed matrix multiplication tasks in a multi-
master heterogeneous-worker scenario. The deployment of
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coded computation in wireless edge computing was discussed
in [27]–[29].

Most existing works on coded computation disregarded the
transmission errors in wireless networks, which may lead to
a severe performance degradation. For example, although the
works of [11], [13], [15] considered the transmission latency
in wireless distributed networks, they ignored the negative
effects caused by wireless channel. The works of [12], [14]
only analyzed the performance of wireless coded computation
with packet losses and did not discuss data errors, which
were more complex and practical. Also, they did not give a
design of wireless coded computation with high reliability.
As for the accuracy-sensitive computational tasks, the results
with low reliability are intolerable. The error-detecting mech-
anism based on re-transmission [30] was applied to address
this. However, coded computation and error detection were
designed separately. Such separate design has the following
problems.

1) Frequent Encoding. Each time the input data changes,
the corresponding computed result has to be encoded again
before transmission, which leads to excessive encoding tasks
and huge encoding latency. For the delay-sensitive compu-
tational tasks, the high latency causes a severe performance
degradation and it is intolerable. So such scheme is not suitable
for high dynamic scenarios.

2) Inefficient Allocation. The error-detecting redundancy
is designed locally without the global network parameters,
while the computational tasks are allocated in the fusion center
without considering the re-transmission overhead and relia-
bility. For example, if a worker with good computation and
transmission capabilities is in a very bad channel condition,
this worker will be still allocated lots of computational tasks
in the existing separate designs. It may leads to a huge re-
transmission latency or an unsatisfied reliability. Thus, this
allocation is not efficient or optimal.

To address the above issues, we propose to design coded
computation and error detection jointly. Specifically, we first
give the new joint computation and transmission coding
(JCTC) scheme. The coded computation is based on LT code,
while error-detecting mechanism is based on re-transmission
using linear codes. Then, its performances are analyzed for
latency and computation reliability. Finally, within the required
computation reliability, the sub-optimal efficient task and re-
dundancy allocation strategies based on iterative optimization
algorithm and low-complexity algorithm are obtained respec-
tively. The main contributions of this paper are summarized
as follows:

• Joint Coding Design. The two-layer encoding is per-
formed at the fusion center so that both computation
coding and transmission coding can be done offline. Also,
the low dynamic encoding can be achieved no matter how
frequently the input data changes.

• Performance Benefits. Compared with the separate de-
signs with the same computation reliability, our JCTC
scheme can achieve less encoding and lower computation
latency. Besides, the performance of latency and compu-
tation reliability can be balanced well in the proposed
scheme.

• Efficient Task and Redundancy Allocation. Within
the required computation reliability, sub-optimal efficient
task and redundancy allocation can be obtained at the
fusion center by wireless LT coded computation with
error detection (WLTCC-ED) algorithm based on iterative
optimization to realize a tradeoff between computation
and transmission latency. As for a scenario of low error
rate, an approximate algorithm is proposed to simplify
the solving process with a lower complexity.

Organization: The rest of this paper is organized as follows.
In Section II, the wireless LT coded computation is reviewed
and the drawbacks of the existing separate designs are dis-
cussed. The proposed JCTC scheme is presented in Section III.
Then, the performances of latency and computation reliability
for the JCTC scheme are analyzed in Section IV. In Section
V, the sub-optimal task and redundancy allocation strategy is
obtained through iterative optimization, and a low-complexity
algorithm is given for the scenario of low error rate. Simulation
results are shown in Section VI and conclusion is finally
presented in Section VII.

Notation: The set {1, 2, . . . , n} is denoted as [n] for n ∈ N.
We denote f (n) = O (g (n)) if there exist constants v > 0 and
n0 ∈ N such that f (n) ≤ v · g (n) for ∀n > n0; and f (n) =
Θ (g (n)) if f (n) = O (g (n)) and g (n) = O (f (n)). The
indicator function is denoted as 1{·}. For any λ ∈ R, if λ > 0,
1{λ} = 1; otherwise, 1{λ} = 0. As for a function fi (ti, bi, ri)
with respect to variables ti, bi and ri, we denote fi|[0] =
fi (t0, b0, r0), fi|[t0] = ∂fi/∂ti|ti=t0

, fi|[b0] = ∂fi/∂bi|bi=b0
and fi|[r0] = ∂fi/∂ri|ri=r0

with the given point t0, b0 and r0.

II. SYSTEM MODEL

We consider a classical distributed master-worker setup [6],
[7] in a wireless network, as shown in Fig. 1. The whole
network consists of one master and n workers that have dif-
ferent computation and transmission capabilities. The goal is
to compute a matrix-vector multiplication y = Ax wirelessly
and reliably at the master with the help of the workers, where
A ∈ Fm×d

2q is a pre-stored matrix in this distributed network,
x ∈ Fd

2q is an input vector that is broadcast to each worker by
the master, and y ∈ Fm

2q is the output vector.
To speed up the computational tasks in heterogeneous

wireless networks, the rateless LT coded computation [9] is
applied. In LT coding approach, the master first generates the
encoded matrix Ã ∈ Fαm×d

2q (α > 1, and α can be very large
to achieve the rateless property) by treating the m rows of
A as source symbols according to the robust soliton degree
distribution [31]. Dividing Ã equally by rows, the data block
Ãi ∈ Fl×d

2q (l = αm/n) will be assigned to worker i, i ∈ [n].
Then, in order to further utilize the rateless property of LT
code and the partial works done by stragglers, the rows of
Ãi are divided again by the master into sub-blocks of the
same size as {Ãi,j ∈ Fbi×d

2q }⌈l/bi⌉j=1 and each data sub-block
will be stored in the corresponding workers, where bi denotes
the data sub-block size for worker i, i.e., each data sub-block
includes bi inner products to be calculated. For the traditional
LT coding approach, the size of data sub-blocks cannot be too
large and a fine-grained dividing strategy is usually adopted,
i.e., bi = 1, i ∈ [n].
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Fig. 1. Distributed coded computation with transmission error in wireless
networks. Each square represents a sub-block, which is transmitted through
a binary symmetric channel with a bit error transition probability {εi}ni=1.
For worker i, the computation capability is evaluated by

(
µcmp
i , ai

)
and the

transmission capability is measured by µtrn
i .

After receiving the input x, worker i starts to compute
{Ãi,jx}⌈l/bi⌉j=1 . When a partial result Ãi,jx is done, worker
i can transmit it to the master as soon as possible instead of
waiting for the complete result Ãix. The worker will transmit
its data sub-block early if it finishes the computation early
and only one worker can transmit its result at each time. Due
to the severe channel fading, noise and so on, different data
errors may occur during the transmission. We model these
transmission errors as a binary symmetric channel with a fixed
bit error probability εi for worker i and the channel transition
probability matrix Hi of worker i is given as

Hi =

[
1− εi εi
εi 1− εi

]
, (1)

where εi can be obtained on basis of the number of error
symbols by transmitting the reference signal or other channel
estimation techniques [32], [33].

As for an inner product transmitted by worker i, assume
that each bit error occurs independently and there is an error
in the inner product if at least one bit is erroneous [30]. Then,
the error probability for the inner product can be obtained
by εq,i = 1 − (1− εi)

q , where each inner product is repre-
sented by q bits. In order to avoid these transmission errors,
the re-transmission mechanism [30] is considered. Through
introducing the error-detecting redundancy, some transmission
errors can be detected and the re-transmission is required
for the corresponding sub-block to ensure the reliability of
transmission. Furthermore, because of the limited bandwidth
of wireless channel, a uniform maximum number of sub-
blocks that can be transmitted successfully from each worker is
pre-allocated to avoid the frequent interaction between workers
and master, which is denoted as a constant k. In other words,
each worker can send up to k sub-blocks to the master to
prevent excessive occupation of channel resources.

Once receiving a sub-block, the master detects whether
there are any transmission errors. If the transmission errors are
detected, the corresponding sub-block will be re-transmitted;
otherwise, the master will accept this sub-block and decode it.
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Fig. 2. The workflow of separate designs. Coding for computation is
performed by the master, while coding for error detection is done by each
worker. It causes that the whole computational tasks for worker i contain
the original computational tasks {Ãi,jx}

⌈l/bi⌉
j=1 and the extra encoding tasks

{Gi,j(Ãi,jx)}
⌈l/bi⌉
j=1 .

According to the decoding features of LT code, the master can
recover the desired computational result y successfully once
any (1 + η)m accepted data inner products are received from
all the workers, where η is a small decoding overhead (η → 0
as m→∞).

From the above discussion, the existing schemes design
coded computation and error detection separately, as illustrated
in Fig. 2. This has the following drawbacks.

1) Frequent and high dynamic encoding. The pre-stored
model matrix A has the characteristic of low dynamic, while
the input vector x is highly dynamic in many machine learning
and big data applications [34]. Each time the input data
changes, the corresponding computed result has to be encoded
again by each worker before transmission, which causes
burdensome encoding tasks and a huge encoding latency. Such
a severe performance degradation is intolerable for the delay-
sensitive computational tasks.

2) Inefficient task and redundancy allocation. The computa-
tional task is allocated in the fusion center without considering
the re-transmission latency and reliability, while the error-
detecting redundancy is designed by each worker locally
without the global network parameters at the fusion center.
In other words, the data sub-block size bi, i ∈ [n] is designed
by the master but the error-detecting redundancy ri is decided
by worker i. The design of the whole sub-block size is
fragmented and inefficient. For example, if a worker with good
computation and transmission capabilities is in a very bad
channel condition, this worker will be still allocated a large
sub-block size in the existing separate designs, which leads to
a huge re-transmission latency or an unsatisfied reliability. So
this allocation strategy is not optimal.

III. JOINT COMPUTATION AND TRANSMISSION CODING
DESIGN

In order to overcome the drawbacks of separate designs, the
JCTC scheme is proposed. It performs both coded computation
and error-detecting coding in the fusion center, as shown
in Fig. 3, to achieve low dynamic encoding and efficient
allocation. The specific process can be described as follows.
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Fig. 3. The workflow of JCTC scheme. Both coding for computation
and error detection are performed by the master. Each worker calculates
matrix multiplications {Ã′

i,jx}
⌈l/bi⌉
j=1 including data matrix multiplications

{Ã′′
i,jx}

⌈l/bi⌉
j=1 and redundancy matrix multiplications {S̃i,jx}

⌈l/bi⌉
j=1 .

1) Two-Layer Encoding. As shown in Fig. 3a, the master
first encodes A for computation to speed up matrix mul-
tiplication. After that, the encoded and divided sub-block
Ãi,j is encoded again for error detection to ensure the re-
liability of inner products during transmission. In this paper,
the linear error-detecting code is applied. The corresponding
data sub-block after error-detecting encoding is denoted as
{Ã′′

i,j ∈ Fbi×d
2q }⌈l/bi⌉j=1 , and {S̃i,j ∈ Fri×d

2q }⌈l/bi⌉j=1 represents the
additional redundancy for error detection, where ri is the size
of redundancy in each sub-block for worker i. Both Ã′′

i,j

and S̃i,j together constitute the two-layer encoded sub-matrix
{Ã′

i,j ∈ F(bi+ri)×d
2q }⌈l/bi⌉j=1 . Then, the master will send Ã′

i,j to
worker i ∈ [n].

2) Distributed Computing and Serial Transmitting. After
receiving Ã′

i,j , the worker i computes matrix multiplication
Ã′

i,jx and then sends the corresponding computed results back
to the master. The total computation time for worker i is
denoted as a random variable T cmp

i .
3) Error Detection and Re-transmission. The transmission

from workers to the master may incur transmission errors.
Once receiving the transmitted sub-blocks by workers, the
master will perform error detection. For a received sub-block,
if it contains no error, the master will accept it directly;
if it contains a detectable error pattern, the corresponding
sub-block will be re-transmitted; if it contains an undetected
error pattern, the master will also accept it with the unde-
tected transmission error, which means the master commits
a decoding error and decreases the reliability of the whole
networks. For worker i, the total time spent on transmitting
computed sub-blocks until accepted by the master is denoted
as T trn

i (tc), where tc is the given computation time. For the
whole networks, the number of undetected error data inner
products is represented as Nun.

4) Recovering Desired Result. After receiving enough ac-
cepted data inner products, the master is able to recover the
desired result Ax.

To facilitate the understanding, a simple example is given
as follows:
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Fig. 4. A simple example of JCTC scheme with a master and 3 workers.
After the two-layer encoding, A′

i is allocated to worker i. During the first
transmission for worker 1, here is a transmission error. Thus, worker 1 re-
transmits its computed result. Worker 2 is a straggler, which slows down the
whole networks. With the help of coded computation, the master can recover
Ax without waiting for worker 2.

Example 1. As illustrated in Fig. 4, a wireless distributed
network with one master and three workers is considered. The
corresponding steps in JCTC scheme can be described in the
following.

1) Two-Layer Encoding. Matrix A is partitioned into 2
submatrixes: A1 and A2. Each submatrix contains two row
vectors. Then, the two-layer encoded matrixes A′

1, A′
2 and

A′
3 = A′

1 + A′
2 are generated and each will be sent to a

corresponding worker by the master. These encoded matrixes
contain three row vectors, where the third one is used for error
detection by summing up the first two row vectors.

2) Distributed Computing and Serial Transmitting. After
receiving the input vector x broadcast from the master, each
worker multiplies x with the two-layer encoded matrix and
transmits the computed result back to the master.

3) Error Detection and Re-transmission. The master then
will check whether transmission errors occur. For instance,
there is a transmission error during the first transmission of
worker 1 if aT1 x + bT

1 x ̸=
(
aT1 + aT2

)
x. Thus, worker 1 re-

transmits the computed result and the second transmitted result
is accepted by the master.

4) Recovering Desired Result. The master can only receive
A′

1 and A′
3 from worker 1 and 3 respectively because of the

outage for worker 2. By subtracting A′
1 from A′

3, the master
can recover A′

2 and hence Ax without waiting for the slowest
worker.

This example implies that our JCTC scheme can not only
mitigate the stragglers’ effect, but also achieve the low dy-
namic encoding because of the two-layer encoding strategy
for A. No matter how the input vector x changes, the master
can still detect the transmission errors. And workers never
perform the error-detecting coding before transmission.

As matrix multiplication is one of the key and fundamental
computational tasks underlying machine learning and big
data analytics, our proposed JCTC scheme also has potential
applications in those areas. For example, convolutional neural
networks (CNN) convolve their input data with kernels in each
layer [35]. With regard to m kernels, m convolutions need to
be computed and each convolution operation can be performed
as an inner product of two vectors. In other words, the matrix
A is consisted of m kernels and the vector x represents
the input to the neural network. For another example, the
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encoders in Transformer perform the matrix calculations of
self-attention [36]. The system matrix A represents the weight
matrixes which have been trained and the input represents the
embeddings. Then, the output query, key, and value matrixes
can be produced through multiplications. Also, the proposed
JCTC scheme can be extended to more complex wireless
environments, once the transition probability (or the channel
bit error rate) of each worker is obtained by the reference
signal or other channel estimation techniques.

According to the proposed JCTC scheme, we can define the
following metrics to evaluate the performances of the whole
networks.

Definition 1 (Computation Latency). The computation
latency, denoted as Tcmp, is the time spent on calculating
(1 + η)m data inner products for the whole networks. Tcmp

is a random variable and can be given as:

Tcmp = max
i∈[n]

T cmp
i , (2)

where all the random variables T cmp
1 , T cmp

2 , ..., T cmp
n are

assumed to be mutually independent.

Definition 2 (Transmission Latency). The transmission
latency, denoted as Ttrn, is the time spent on transmitting
(1 + η)m accepted data inner products for the whole net-
works. Ttrn is a random variable related to Tcmp and can be
given as:

Ttrn =
∑n

i=1
T trn
i (Tcmp). (3)

Definition 3 (Computation Reliability). The computation
reliability for the whole networks, denoted as Rcmp, represents
the ratio of correct data inner products to all the (1 + η)m data
inner products accepted by the master, which can be given as:

Rcmp = 1− Nun

(1 + η)m
. (4)

IV. PERFORMANCE ANALYSIS

In this section, we will analyze the performances of the
JCTC scheme. First, the bounds of expected computation
latency and the expectation of transmission latency will be
obtained. Then, we will discuss the factors that influence the
computation reliability and present the constraint of computa-
tion reliability. At last, the superiority of JCTC scheme will
be shown.

A. Latency Analysis

1) Computation Latency: Due to the sub-block division and
the error-detecting coding at the master, the time of computing
j sub-blocks, i.e. j (bi + ri) inner products, is denoted as a
random variable T cmp

i,j . The cumulative distribution function
(CDF) of T cmp

i,j can be described as a shifted exponential
distribution [6]:

Pr
[
T cmp
i,j ≤ t

]
= 1− e

−
µ
cmp
i

j(bi+ri)
(t−j(bi+ri)ai)

, (5)

for t ≥ j (bi + ri) ai and j ≤ k, where µcmp
i and ai denotes

the straggling and shift parameters, respectively, determined
by the computation capability of worker i. This latency model

fits the distribution of computation time in cloud computing
environments well. From Eq. (5), we can observe that

T cmp
i = ci (bi + ri)

(
T̂ cmp
i + ai

)
, (6)

where the random variable T̂ cmp
i is exponentially distributed

with rate parameter µcmp
i representing the initial setup time

at worker i before actually beginning computing an inner
product, and ci is the number of sub-blocks computed by
worker i completely before completing a total of (1 + η)m
accepted data inner products in the network. In Eq. (6),
T̂ cmp
i + ai indicates the time spent on computing one inner

product by worker i.
As mentioned in our JCTC scheme, workers perform their

computations with sub-block division. The number of sub-
blocks calculated by worker i till the given computation time
tc is denoted as xi (tc) in the following lemma.

Lemma 1. With a given computation time tc, the average
number of sub-blocks calculated by worker i can be derived
as

E [xi (tc)] =

k∑
j=1

(
1− e

−
µ
cmp
i

j(bi+ri)
(tc−j(bi+ri)ai)

)
. (7)

Proof. See Appendix A.

According to Lemma 1, we can find that ci = xi (Tcmp)
and

∑n
i=1 biE [xi (Tcmp)] ≥ (1 + η)m should be satisfied so

that the master can recover the desired result successfully.
For the heterogeneous networks, the order statistics cannot

be used to describe the computation latency due to sub-block
division and disparate capabilities of workers, so that the exact
expression of E [Tcmp] is hard to obtain. So the lower and
upper bounds of computation latency are discussed in the
following.

Lemma 2. Set µcmp
g = maxi µ

cmp
i and ag = mini ai, i ∈

[n]. The lower bound of Tcmp is given as

Tcmp ≥
(1 + η)m

n

(
T̂ cmp
(1) + ag

)
, (8)

where T̂ cmp
(1) is the first order statistic that follows exponential

distribution with rate parameter µcmp
g .

Proof. See Appendix B.

As a result, the expected lower bound can be described in
the following proposition.

Proposition 1 (The Expected Lower Bound of Computation
Latency). In the JCTC scheme, the expected lower bound of
computation latency Lcmp can be given as

E [Tcmp] ≥ Lcmp =
(1 + η)m

n

(
1

nµcmp
g

+ ag

)
. (9)

Proof. Based on Lemma 2 and the characteristics of order
statistic, Lcmp can be obtained by taking the expectation of
(8).

Lemma 3. Set µcmp
b = mini µ

cmp
i , ab = maxi ai and rm =

maxi ri, i ∈ [n]. The upper bound of Tcmp is given as

Tcmp ≤
(
2αm

n
+ (k + 1) rm

)(
¯̂
T cmp
w + ab

)
, (10)
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for w ∈We, where

¯̂
T cmp
w =

∑
w∈We

T̂ cmp
w∑

w∈We
1

,

the set of workers that have not completed all their com-
putational tasks until Tcmp is denoted as We, i.e. We =
{ i| cibi < αm/n}, and T̂ cmp

w is a exponential random variable
with rate parameter µcmp

b .

Proof. See Appendix C.

As a result, the expected upper bound can be described in
the following proposition.

Proposition 2 (The Expected Upper Bound of Computation
Latency). In the JCTC scheme, the expected upper bound of
computation latency Ucmp can be given as

E [Tcmp] ≤ Ucmp =

(
2αm

n
+ (k + 1) rm

)(
1

µcmp
b

+ ab

)
.

(11)

Proof. Based on Lemma 3, Ucmp can be obtained by taking
the expectation of (10).

Remark 1 (Special Cases). Assuming m = Θ(n), α =
Θ(1), η = Θ(1), µcmp

g = Θ(1), ag = Θ(1), µcmp
b = Θ(1),

ab = Θ(1), k = Θ(1) and rm = Θ(1) [11], one has

E [Tcmp] = Θ (1) ,

from Eq. (9) and Eq. (11). Consider a scenario where the
channel condition is so good that εi → 0, i ∈ [n]. Then, the
upper bound of E [Tcmp] can be simplified to

E [Tcmp] ≤ Ucmp =
2αm

n

(
1

µcmp
b

+ ab

)
,

since the error-detecting redundancy is not required.

2) Transmission Latency: Due to the instability of wire-
less channel and the disparate transmission capabilities, it is
assumed that the transmission time for a single inner prod-
uct follows a mutually independent exponential distribution
[12], [37] with the rate parameter µtrn

i , which represents the
transmission capability for worker i. In our JCTC scheme, a
sub-block with detectable transmission errors is required to
be re-transmitted. We denote the total number of times for a
sub-block transmitted by worker i as kre,i, which follows a
geometric distribution that can be given as:

Pr [kre,i = j] = ps,i(1− ps,i)
j−1

, (12)

where ps,i is assumed as the success probability and its
detailed expression will be discussed in Section IV-B. Then,
the time T trn

i (Tcmp) spent on transmitting ci sub-blocks can
be obtained by

T trn
i (Tcmp) =

kre,i∑
u=1

ci(bi+ri)∑
κ=1

T trn
i,(κth) =

ci(bi+ri)∑
κ=1

kre,i∑
u=1

T trn
i,(κth)

=

ci(bi+ri)∑
κ=1

T trn
i,re,(κth), (13)

for ci > 0, where T trn
i,(κth) is the time for the result of the

κth inner product transmitted by worker i and T trn
i,re,(κth) =∑kre,i

u=1 T
trn
i,(κth) is the transmission time of the κth inner product

until it is accepted by the master. Obviously, T trn
i (Tcmp) = 0

if ci = 0, which means that worker i has no completed sub-
block to transmit by the time Tcmp. In the following lemma,
we state the statistical property of T trn

i,re,(κth).

Lemma 4. The random variable T trn
i,re,(κth) follows an expo-

nential distribution with rate parameter ps,iµtrn
i , i.e.,

Pr
[
T trn
i,re,(κth) ≤ t

]
= 1− e−ps,iµ

trn
i t. (14)

Proof. See Appendix D.

Based on Lemma 4, we present an another lemma to show
the expectation of T trn

i (tc) in the following.

Lemma 5. The expected random variable E [T trn
i (tc)] can

be given as

E
[
T trn
i (tc)

]
=

bi + ri
ps,iµtrn

i

k∑
j=1

(
1− e

−
µ
cmp
i

j(bi+ri)
(tc−j(bi+ri)ai)

)
.

(15)

Proof. See Appendix E.

As a result, the expectation of transmission latency can be
given in the following proposition.

Proposition 3 (The Expectation of Transmission Latency).
In the JCTC scheme, the expectation of transmission latency
E [Ttrn] for the whole networks can be given as

E [Ttrn] =

n∑
i=1

E
[
T trn
i (Tcmp)

]
=

n∑
i=1

bi + ri
ps,iµtrn

i

k∑
j=1

(
1− e

−
µ
cmp
i

j(bi+ri)
(Tcmp−j(bi+ri)ai)

)
. (16)

Proof. According to Lemma 5 and Eq. (3), E [Ttrn] can be
obtained by substituting tc = Tcmp into Eq. (15) and summing
it over all i ∈ [n].

B. Computation Reliability Analysis

After the wireless transmission from workers to the master,
several scenarios may occur at the master:

• No error. The probability that the master receives a sub-
block with no error from worker i is denoted as pc,i. From
the channel model, we know that

pc,i = (1− εi)
q(bi+ri). (17)

• Undetected errors. The probability that the master re-
ceives a sub-block with an undetected error pattern from
worker i is denoted as pe,i. With regard to all the (bi +
ri,bi) linear error-detecting codes, the average probability
of undetected errors has been proved [38]–[40] that p̄e,i =

(1− (1− εi)
qbi)2−qri . In this paper, it is assumed that pe,i ≈

p̄e,i, i.e.
pe,i =

(
1− (1− εi)

qbi
)
2−qri . (18)
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• Detectable errors. The probability that the master receives
a sub-block with a detectable error pattern from worker i is
denoted as pd,i. It can be obtained by pc,i and pe,i, i.e.

pd,i = 1− pc,i − pe,i. (19)

A received sub-block is accepted by the master only if
it either contains no error or an undetected error pattern.
Otherwise, if the master detects the transmission errors, the
corresponding sub-block will be re-transmitted until it is
accepted. Notice that the number of transmission for a single
sub-block follows a geometric distribution with the success
probability ps,i = pc,i + pe,i in Eq. (12).

For wireless coded computation, the accepted sub-blocks
with undetected errors will affect the accuracy of the desired
result Ax and decrease the computation reliability for the
whole distributed networks. In the JCTC scheme, we require
the ratio of the number of data inner products with undetected
errors to (1 + η)m accepted data inner products in Ax does
not exceed pr, where pr is the tolerable maximum error
inner product rate. It means that there is at most (1 + η)mpr
undetected error inner products in the desired result.

As a result, the expected computation reliability for the
whole networks can be given in the following proposition.

Proposition 4 (The Expectation of Computation Reliability).
In the JCTC scheme, the expectation of computation reliability
E [Rcmp] for the whole networks can be obtained by

E [Rcmp] = 1−

n∑
i=1

bipe,i

pc,i+pe,i
E [xi (Tcmp)]

(1 + η)m
. (20)

Proof. Due to the re-transmission under detectable errors,
the expected total number of transmission for worker i sending
xi (tc) sub-blocks is denoted as E [zi (tc)] with the given
computation time tc. Then, E [zi (tc)] can be obtained by

E [zi (tc)] =
E [xi (tc)]

pc,i + pe,i
. (21)

With regard to a sub-block transmitted by worker i, it can
be accepted on the initial transmission or any re-transmissions.
Although it is re-transmitted for many times, there can still be
errors for an accepted sub-block because of the limited error-
detecting ability. We denote the probability that an accepted
sub-block contains undetected errors as pu,i and it can be given
by

pu,i = pe,i + pd,ipe,i + p2d,ipe,i + · · ·

=

∞∑
j=1

pj−1
d,i pe,i =

pe,i
pc,i + pe,i

, (22)

where 1− pd,i = pc,i + pe,i has been used.
From Eq. (21) and Eq. (22), we know that the average

number of data inner products with undetected error patterns

can be given as

E [Nun] =

n∑
i=1

bipe,iE [zi (Tcmp)]

=

n∑
i=1

biE [xi (Tcmp)] pu,i

=

n∑
i=1

bipe,i
pc,i + pe,i

E [xi (Tcmp)]. (23)

Then, E [Rcmp] can be obtained by taking the expectation of
Eq. (4) and substituting Eq. (23) into it.

Remark 2 (The Constraint of Computation Reliability).
From Proposition 4, the corresponding constraint of computa-
tion reliability in our JCTC scheme can be shown as:

E [Rcmp] ≥ 1− pr, (24)

where the right-hand side of the constraint (24) implies the
ratio of the minimum number of correct inner products to the
total (1 + η)m inner products. Our design must satisfy the
constraint in order to obtain the desired result and meet the
requirement of computation reliability at the same time.

C. Comparison with Separate Designs

In the existing separate designs, each worker needs to
encode its computed sub-block for error detection by itself
before sending to the master, as shown in Fig. 2. In other
words, coded computation is independent of error detection
and they are designed separately. It implies that each worker
not only computes a data sub-block but also spends some time
encoding it for error detection. The encoding task performed
by worker i can be described by a matrix multiplication as
follows:

Gi,j

(
Ãi,jx

)
, (25)

where Gi,j ∈ F(bi+ri)×bi
2q is the coding matrix used for error

detection. For JCTC scheme, the worker i only calculates the
matrix multiplication Ã′

i,jx including the data matrix multipli-
cation Ã′′

i,jx and the redundancy matrix multiplication S̃i,jx.
So the computational task for error detection in JCTC scheme
can be represented by the redundancy matrix multiplication.
With the same computation reliability, it costs less calculated
amount for error detection in JCTC scheme than the one in
separate designs. The comparison of calculated amount for
workers is shown in the following proposition.

Proposition 5 (Comparison of Calculated Amount for Error
Detection). Assume that the data sub-block size and the error-
detecting redundancy obtained by both JCTC scheme and sep-
arate designs are the same, which implies that the computation
reliability of both schemes is also the same. Compared with
separate designs, the JCTC scheme can decrease the calculated
amount served as error detection for all n workers by at
least

∑n
i=1 xi (tc) bi (2bi − 1) operations including additions

and multiplications with the given computation time tc, when
d ≤ mini bi.
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Proof. In the JCTC scheme, worker i calculates each sub-
block with a redundancy matrix multiplication S̃i,jx. It needs
extra ri (d− 1) additions and rid multiplications. So there are
a total of

∑n
i=1 xi (tc) ri (2d− 1) operations served as error

detection for all n workers with the given time tc.
For the separate designs, the encoding task performed by

worker i is described as Gi,j(Ãi,jx). Worker i encodes
each sub-block for error detection with extra (bi + ri) (bi − 1)
additions and (bi + ri) bi multiplications. Thus, here are a total
of
∑n

i=1 xi (tc) (bi + ri) (2bi − 1) encoding operations for all
n workers in the separate designs.

Notice that when d ≤ mini bi, the JCTC scheme only
needs at most

∑n
i=1 xi (tc) ri (2bi − 1) operations served as

error detection for all n workers and can decrease at least∑n
i=1 xi (tc) bi (2bi − 1) operations, compared with the exist-

ing design.

Because each worker encodes its computed data sub-blocks
by itself, the whole computation time for the separate designs,
denoted as T S

tot,c, contains the original time calculating matrix
multiplication and the encoding time for error detection,
represented by T S

cmp and T S
cc respectively. Since the worker

with poor capability for matrix multiplication is also weak in
encoding, we assumed that T S

tot,c can be approximated by the
sum of T S

cmp and T S
cc, i.e. T S

tot,c = T S
cmp + T S

cc. Further, T S
cmp

and T S
cc can be obtained by

T S
cmp = max

i∈[n]
T S,cmp
i , T S

cc = max
i∈[n]

T S,cc
i ,

where T S,cmp
i is the original time calculating matrix multi-

plications {Ãi,jx}cij=1 and T S,cc
i denotes the encoding time

calculating {Gi,j(Ãi,jx)}cij=1 for worker i. And the CDF of
T S,cmp
i and T S,cc

i can be given respectively by

Pr
[
T S,cmp
i ≤ t

]
= 1− e

−
µ
cmp
i
cibi

(t−cibiai), (26)

Pr
[
T S,cc
i ≤ t

]
= 1− e

− µcc
i

ci(bi+ri)
(t−ci(bi+ri)a

cc
i )

, (27)

where µcc
i and acci represent the encoding capability for

worker i. In the following proposition, we compare the whole
computation time between these two schemes.

Proposition 6 (Comparison of the Whole Computation
Time). Assume that the data sub-block size and the error-
detecting redundancy obtained by both JCTC scheme and
separate designs are the same, which implies that the com-
putation reliability of both schemes is also the same. When
µcc
i = µcmp

i and acci = ai, the difference in the expected whole
computation time between these two schemes is bounded as

LS
cmp ≤ E

[
T S
tot,c

]
− E [Tcmp] ≤ US

cmp, (28)

where LS
cmp is the lower bound of E

[
T S
cmp

]
and US

cmp is its
upper bound.

Proof. From Eq. (26) and Eq. (27), we notice that T S,cmp
i

and T S,cc
i can be rewritten as T S,cmp

i = cibi(T̂
S,cmp
i + ai) and

T S,cc
i = ci(bi + ri)(T̂

S,cc
i + acci ), where the random variables

T̂ S,cmp
i and T̂ S,cc

i are exponentially distributed with rate pa-
rameter µcmp

i and µcc
i respectively. Similar to the computation
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Fig. 5. The expectation of calcu-
lated amount for error detection ver-
sus the number of workers n, where
m = 5000, α = 1.25, k = 3,
bi = d = αm/kn, ri = bi/9,
µcmp
i = µcc

i ∼ U (15, 25) (row/ms)
and ai = acci ∼ U (0.25, 1) (ms/row)
for ∀i ∈ [n].
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Fig. 6. The expectation of the whole
computation latency versus the num-
ber of workers n, where m = 5000,
α = 1.25, k = 3, bi = d =
αm/kn, ri = bi/9, µcmp

i = µcc
i ∼

U (15, 25) (row/ms) and ai = acci ∼
U (0.25, 1) (ms/row) for ∀i ∈ [n].

latency analysis of the JCTC scheme in Section IV-A1, the
bounds of E

[
T S
cmp

]
and E

[
T S
cc

]
can be given as

LS
cmp =

(1 + η)m

n

(
1

nµcmp
g

+ ag

)
, (29)

US
cmp =

2αm

n

(
1

µcmp
b

+ ab

)
, (30)

LS
cc =

(1 + η)m

n

(
1

nµcc
g

+ accg

)
, (31)

US
cc =

(
2αm

n
+ (k + 1) rm

)(
1

µcc
b

+ accb

)
, (32)

where µcc
g = maxi µ

cc
i , accg = mini a

cc
i , µcc

b = mini µ
cc
i ,

accb = maxi a
cc
i and LS

cc, US
cc represent the lower bound and

the upper bound of E
[
T S
cc

]
respectively. Then, the expected

whole computation time in separate designs can be described
as

LS
cmp + LS

cc ≤ E
[
T S
tot,c

]
≤ US

cmp + US
cc. (33)

Thus, when µcc
i = µcmp

i and acci = ai, we can know that
LS
cmp ≤ E

[
T S
tot,c

]
− E [Tcmp] ≤ US

cmp from Eq. (9), Eq. (11)
and Eq. (33).

The above propositions imply that the less calculated
amount for workers can also lead to the lower computation
latency for the whole networks. Hence, the total latency in
JCTC scheme is lower than that in separate designs under the
same computation reliability.

Fig. 5 and Fig. 6 show the expectation of calculated amount
for error detection and the whole computation latency ver-
sus the number of workers respectively. It is observed that
Monte Carlo simulation results are in good agreement with
the theoretical ones. As n increases, both calculated amount
and latency decrease, since more computing resources are
utilized with larger n. Moreover, the JCTC scheme performs
better than the separate designs, which confirms the theoretical
analysis.

V. OPTIMAL TASK AND REDUNDANCY ALLOCATION

For JCTC scheme, minimizing the upper bound of the
expected total latency E [Tcmp + Ttrn] is considered, which
can still lead to a decrease in total latency. Under the condition
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that the required computation reliability is satisfied, latency is
reduced as much as possible by designing the optimal data
sub-block size and the corresponding optimal error-detecting
redundancy for each worker. Thus, the optimization problem
can be formulated as follows:

P0 : min
b,r

E [Tcmp + Ttrn]

s.t. 0 ≤ bi ≤ l/k, ri ≥ 0,∀i ∈ [n] (34)

Pr

[
n∑

i=1

bixi (Tcmp) < (1 + η)m

]
= o (1/n) , (35)

n∑
i=1

biE [xi (Tcmp)] pu,i ≤ (1 + η)mpr. (36)

In P0, the constraint (34) determines the range of data
sub-block and error-detecting redundancy. The constraint (35)
ensures that the master can aggregate a sufficient number
of data inner products to recover the desired computational
result successfully, and the computation reliability of the whole
networks is guaranteed in (36). For any given µcmp

i > 0,
ai > 0, µtrn

i > 0 and 0 ≤ εi < 1/2, P0 is always feasible
because there exists at least one feasible solution, i.e., bi = l/k
and ri = +∞ for i ∈ [n], satisfying the constraints of P0.

However, due to the heavy relation between transmission
and computation latency for each worker, it is challenging to
obtain the exact expression of E [Tcmp + Ttrn], which makes
this problem hard to solve. According to [7, Section III-A], we
can introduce a new variable tcmp to relax the term E [Tcmp]
and optimize the computation latency tcmp, the data sub-
block size {bi}ni=1 and the error-detecting redundancy {ri}ni=1

simultaneously when the distribution of the random variable
Tcmp is unknown. Then, the reformulated problem P1 can be
obtained as follows:

P1 : min
tcmp,t,b,r

tcmp +

n∑
i=1

ti

s.t. 0 ≤ bi ≤ l/k, ri ≥ 0,∀i ∈ [n]

(pc,i + pe,i)tiµ
trn
i ≤ (bi + ri)E [xi (tcmp)] ,∀i ∈ [n] (37)

n∑
i=1

(pc,i + pe,i)
bi

bi + ri
tiµ

trn
i ≥ (1 + η)m, (38)

n∑
i=1

pe,i
bi

bi + ri
tiµ

trn
i ≤ (1 + η)mpr, (39)

where the set {ti}ni=1 is introduced to relax the term E [Ttrn],
representing the transmission time of each worker. The con-
straint (37) implies the relationship between computation and
transmission for each worker, which ensures that the number
of transmitted sub-blocks is no more than the number of com-
puted sub-blocks. To aggregate sufficient data inner products to
recover the desired result, the number of total accepted results
should be more than (1 + η)m, which leads to the constraint
(38). And the computation reliability required by the whole
networks can be denoted as the constraint (39). The solution
to P1 is provably asymptotically optimal when n becomes
very large [13].

For P1, there are differences of convex (DC) structure
and products of convex functions (PF) structure [41] in the

constraint (37), (38) and (39), which makes this problem
non-convex. In the following, we solve this problem in two
different ways.

A. Iterative Optimization Algorithm

The non-convexity of P1 is caused by the DC structures
and the PF structures in constraints. Using successive con-
vex approximation (SCA) algorithms [42], we can transform
such non-convex structures into convex approximations and
iteratively solve the relaxed convex optimization problem
to get sub-optimal solutions. For the DC structure, we can
linearize the concave part by taking the Taylor expansion to
obtain the convex upper approximation, while the product of
convex functions can first be rewritten as a function with the
DC structure according to [41] and then the corresponding
convex upper approximation can be obtained by linearizing
the concave part in the rewritten function for the PF structure.
Hence, the relaxed convex optimization problem can be given
as:

P ′
1 : min

tcmp,t,b,r
tcmp +

n∑
i=1

ti

s.t. 0 ≤ bi ≤ l/k, ri ≥ 0,∀i ∈ [n] (40)
f1,i (ti, bi, ri)− k (bi + ri)

+ (bi + ri)

k∑
j=1

e
−

µ
cmp
i

j(bi+ri)
[tcmp−j(bi+ri)ai] ≤ 0,∀i ∈ [n] (41)

(1 + η)m+

n∑
i=1

f2,i (ti, bi, ri) ≤ 0, (42)

n∑
i=1

f3,i (ti, bi, ri)− (1 + η)mpr ≤ 0, (43)

where f1,i (ti, bi, ri), f2,i (ti, bi, ri) and f3,i (ti, bi, ri) are con-
vex functions with respect to ti, bi and ri. See Appendix F for
the detailed convex approximations of DC and PF structures
and the concrete expressions of f1,i (ti, bi, ri), f2,i (ti, bi, ri),
f3,i (ti, bi, ri). In P ′

1, note that the objective function and the
constraint (40) are linear functions. Besides, the constraint (41)
can be rewritten as a convex exponential cone. The constraint
(42) and (43) are also convex since they are the sum of some
convex functions. Thus, P ′

1 is a convex problem and we can
solve it iteratively to find the sub-optimal approximate solution
to P1. The wireless LT coded computation with error detection
based on SCA (WLTCC-ED(SCA)) algorithm is provided,
which is given as Alg. 1.

During each iteration of WLTCC-ED(SCA) algorithm, it is
required to deal with P ′

1, which falls into a convex exponential
cone programming category. It can be solved efficiently to a
desired accuracy by using interior-point methods with MOSEK
in polynomial time computational complexity of O

(
n3.5

)
.

Remark 3 (Negligible Channel Transition Probability).
When the channel condition is so good that the sub-blocks
transmitted from workers are almost error-free, i.e. εi → 0, i ∈

1One way to find out the initial points is to choose the optimal solution to
P ′′
1 as the value of t(0)0 , b(0)0 and r

(0)
0 .
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Algorithm 1 Wireless LT Coded Computation with Error
Detection based on SCA
Require: The parameter tuple (µcmp

i , ai, µ
trn
i , εi, pr) for each

worker i ∈ [n].
Ensure: The data sub-block size b∗i and error-detecting re-

dundancy r∗i for the worker i.
1: procedure WLTCC-ED(SCA)
2: Set the number of iterations β = 0, the proper initial

step-size θ(0) ∈ (0, 1] and adopt the proper initial
points1 t

(0)
0 , b(0)0 and r

(0)
0 ;

3: while t
′∗(β)
i , b

′∗(β)
i and r

′∗(β)
i are not a stationary

solution do
4: Solve P ′

1 to obtain the optimal solution b
′∗(β+1)
i and

r
′∗(β+1)
i ;

5: Update t0, b0 and r0 according to t
(β+1)
0 =

t
(β)
0 + θ(β) · (t′∗(β+1) − t

(β)
0 ), b

(β+1)
0 = b

(β)
0 +

θ(β) · (b′∗(β+1) − b
(β)
0 ) and r

(β+1)
0 = r

(β)
0 + θ(β) ·

(r′∗(β+1) − r
(β)
0 );

6: Apply a diminishing step-size rule [42]: θ(β+1) =
θ(β)

(
1− δθ(β)

)
, δ ∈ (0, 1);

7: set β ← β + 1;
8: end while
9: return b∗i = b

′∗(β)
i and r∗i = r

′∗(β)
i for the worker i.

10: end procedure

[n], the error-detecting redundancy obtained by WLTCC-ED
is given as r∗i = 0. In other words, only coded computation is
needed, while error-detecting coding is not required in this
situation. Moreover, if the transmission capability of each
worker µtrn

i is the same and the bandwidth of wireless channel
is unlimited, the data sub-block size obtained by WLTCC-ED
is given as b∗i = 1, which degenerates to the fine-grained LT
coding approach.

Remark 4 (Trade-off between Computation and Transmis-
sion). WLTCC-ED realizes a trade-off between computation
latency and transmission latency. When the transmission ca-
pability and channel condition of each worker are the same,
i.e. µtrn

i = µtrn, εi = ε, i ∈ [n], the workers with more power-
ful computation capability will complete more computational
tasks. In other words, for worker i, the larger value of µcmp

i

and the smaller value of ai will lead to the larger value of kb∗i
in WLTCC-ED. If the computation capability of each worker
are the same, i.e. µcmp

i = µcmp, ai = a, i ∈ [n], the workers
with more powerful transmission capability and better channel
condition will complete more computational tasks. In other
words, for worker i, the larger value of µtrn

i and the smaller
value of εi will lead to the larger value of kb∗i in WLTCC-ED.

B. Low-Complexity Algorithm

The iterative procedure in Alg. 1 may incur high computa-
tional complexity. To simplify it with a lower complexity, an
approximate method is provided when the error rate is small.

First, in the scenario of low error rate, the corresponding
approximate treatments are done for some terms in P1 as
follows.

• Approximation 1. Since the channel condition is pretty
good, i.e. the value of εi is very small, it does not need to
add a large amount of error-detecting redundancy to meet the
requirement of computation reliability for the whole networks.
In other words, the value of ri is also very small and satisfies
ri ≪ bi for each worker. Thus, it is approximated that

bi
bi + ri

≈ 1. (44)

• Approximation 2. According to [30], pe,i can be approx-
imated by a weaker upper bound in the scenario of low error
rate, i.e.

pe,i ≈ 2−qri . (45)

• Approximation 3. For the (bi + ri,bi) linear code, up
to ri error inner products can be detected [38]–[40], i.e.
pd,i ≤

∑ri
j=1 C

j
bi+ri

εjq,i(1− εq,i)
bi+ri−j . Approximating bi-

nomial distribution by Poisson distribution [43] and then using
Stirling’s approximation, we can obtain

pc,i+pe,i = 1− pd,i

≥ 1−
ri∑
j=1

Cj
bi+ri

εjq,i(1− εq,i)
bi+ri−j

(a)
≈ 1−

ri∑
j=1

χi
je−χi

j!
≥ 1− ri

χi
χie−χi

χi!

(b)
≈ 1− ri

χi
χie−χieχi

χi
χi
√
2πχi

= 1− ri√
2π (bi + ri) εq,i

, (46)

where χi = (bi + ri) εq,i. The condition (a) represents the
approximation between binomial distribution and Poisson dis-
tribution, while the condition (b) holds because of the Stirling’s
approximation.

Then, utilizing arithmetic means and geometric means (AM-
GM) inequality, the bounds of PF structures in P1 are given
as:

• Substitute Eq. (45) into the constraint (37) of P1, and
utilize AM-GM inequality as follows:(

(1− εq,i)
bi+ri + 2−qri

)
ti

≤ 1

2
(1− εq,i)

2(bi+ri) + 2−1−2qri + t2i ;

• Substitute Eq. (44) and Eq. (46) into the constraint (38)
of P1, and utilize AM-GM inequality as follows:(

1− (bi + ri)
− 1

2 ri√
2πεq,i

)
ti

≥ ti −
1

3
√

2πεq,i

(
(bi + ri)

− 3
2 + r3i + t3i

)
;

• Substitute Eq. (44) and Eq. (45) into the constraint (39)
of P1, and utilize AM-GM inequality as follows:

2−qriti ≤ 2−1−2qri +
1

2
t2i .
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At last, by replacing the original constraints in P1 with their
tighter convex bounds, the approximate optimization problem
for scenario of low error rate can be given as

P ′′
1 : min

tcmp,t,b,r
tcmp +

n∑
i=1

ti

s.t. 0 ≤ bi ≤ l/k, ri ≥ 0,∀i ∈ [n]

µtrn
i

(
1

2
(1− εq,i)

2(bi+ri) + 2−1−2qri + t2i

)
≤ (bi + ri)

k∑
j=1

e
−

µ
cmp
i

j(bi+ri)
[tcmp−j(bi+ri)ai]

,∀i ∈ [n]

n∑
i=1

µtrn
i

(
ti −

(bi + ri)
− 3

2 + r3i + t3i
3
√
2πεq,i

)
≥ (1 + η)m,

n∑
i=1

µtrn
i

(
2−1−2qri +

1

2
t2i

)
≤ (1 + η)mpr.

Since the objective function and the constraints in P ′′
1 are

composed of the sum of convex functions, this approximate
optimization problem is also convex. Based on the Lagrange
function with Karush–Kuhn–Tucker (KKT) conditions [44],
we can get the optimal computation time as

t∗cmp =
(1 + η)m

n∑
i=1

hi/kγi · 1{λi}

, (47)

where hi =
∑k

j=1 (1− e−
µ
cmp
i

kγi
j +µcmp

i ai), γi is the positive
solution to the equation

k∑
j=1

(
1 +

µcmp
i kγi
j

)
e−

µ
cmp
i

kγi
j = ke−µcmp

i ai , (48)

and

λi = (1− εq,i)µ
trn
i +

n∑
u=1

(
(1− εq,i)µ

trn
i

(1− εq,u)µtrn
u

− 1

)
hu

kγu
(49)

is the straggling factor that indicates whether the worker i is
a straggler or not. Moreover, the optimal transmission time,
error-detecting redundancy and data sub-block size can be
obtained as follows:

t∗i =

√
2 (1− pr) t∗cmphi

kγiµtrn
i

− (1− εq,i)
2t∗cmp
kγi · 1{λi}, (50)

r∗i =

−1− log2

(
(2pr−1)t∗cmphi

kγiµtrn
i

+
(1−εq,i)

2t∗cmp
kγi

2

)
2q

· 1{λi},

(51)

b∗i =

(
t∗cmp

kγi
− r∗i

)
· 1{λi}. (52)

Then, the wireless LT coded computation with error detec-
tion in the scenario of low error rate (WLTCC-ED(LER)) is
provided, which is given as Alg. 2.

Compared with SCA algorithm with iterations, Alg. 2 can
be carried out in the constant time. It has low-complexity and

Algorithm 2 Wireless LT Coded Computation with Error
Detection in the scenario of Low Error Rate
Require: The parameter tuple (µcmp

i , ai, µ
trn
i , εi, pr) for each

worker i ∈ [n].
Ensure: The data sub-block size b∗i and error-detecting re-

dundancy r∗i for the worker i.
1: procedure WLTCC-ED(LER)
2: for i = 1 to n do
3: Obtain γi in Eq. (48) and λi in Eq. (49) for the

worker i;
4: if λi > 0 then
5: The worker i is chosen;
6: else
7: The worker i is abandoned;
8: end if
9: end for

10: Obtain the optimal t∗cmp in Eq. (47);
11: return b∗i and r∗i for the worker i according to Eq.

(52) and Eq. (51).
12: end procedure

can obtain approximate solutions faster in the scenario of low
error rate.

Remark 5 (Stragglers Recognition). There are not only
computation stragglers with the poor computation capability,
but also transmission stragglers with the weak transmission
capability or bad channel condition. In Alg. 2, a worker can
be decided as a straggler or not by λi, i ∈ [n]. When λi ≤ 0,
worker i is a straggler, which implies that it will lead to a
severe performance degradation for the whole networks. Thus,
worker i will not compute or transmit any inner products, i.e.
b∗i = 0.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we will present some numerical results to
show the performances of our proposed JCTC scheme.

Similar to [7], [13], [32], [33], we choose the number
of rows in A as m = 5000, the number of workers as
n = 100, the tolerable maximum error inner product rate
as pr = 0.005, and the maximum number of sub-blocks
that can be transmitted by each worker as k = 4. Also, we
assume that α = 2.8 and q = 1. The value of decoding
parameter η in LT coding approach can be determined as
η = 0.0326 [15], which implies the master can recover the
desired result successfully once receiving (1 + η)m = 5163
data inner products. For error detection, MDS code is applied
and the encoding capability of workers in the separate designs
is chosen as acci ∼ U (0.1, 2) , µcc

i ∼ U (10, 30) , i ∈ [n]. The
schemes studied are given as follows.

1) UUA (Uniform Uncoded Allocation). Computation and
error detection are designed separately. Each worker is
assigned the same number of rows and does not divide
the local data block into sub-blocks, i.e., l = m/n, bi =
l = m/n for ∀i ∈ [n]. The error-detecting redundancy ri,
i ∈ [n] is obtained by [33, Eq. (15)];

2) MG-MDSCA (Maximum-Grained MDS Coding Ap-
proach). Coded computation and error detection are
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TABLE I
PARAMETERS OF THREE SCENARIOS.

Scenario 1
Group 1: 20 workers Group 2: 30 workers Group 3: 40 workers Group 4: 10 workers
ai = 3, µcmp

i = 6, ai = 6, µcmp
i = 10, ai = 5, µcmp

i = 1, ai = 12, µcmp
i = 2,

µtrn
i = 1500, εi = 0 µtrn

i = 1500, εi = 0 µtrn
i = 1500, εi = 0 µtrn

i = 1500, εi = 0

Scenario 2
Group 1: 20 workers Group 2: 30 workers Group 3: 40 workers Group 4: 10 workers
ai = 3, µcmp

i = 6, ai = 6, µcmp
i = 10, ai = 5, µcmp

i = 1, ai = 12, µcmp
i = 2,

µtrn
i = 60, εi = 0.03 µtrn

i = 2000, εi = 0.07 µtrn
i = 3000, εi = 0.11 µtrn

i = 500, εi = 0.01

Scenario 3
100 workers

ai ∼ U (0.5, 12), µcmp
i ∼ U (2, 20), µtrn

i ∼ U (100, 1200), εi ∼ U (0.01, 0.1)

Scenario 4

Group 1: 12 workers Group 2: 6 workers Group 3: 12 workers Group 4: 20 workers
ai = acci = 0.012, ai = acci = 0.5178, ai = acci = 0.1877, ai = acci = 0.0108,

µcmp
i = µcc

i = 10.4907, µcmp
i = µcc

i = 3.8685, µcmp
i = µcc

i = 5.3052, µcmp
i = µcc

i = 12.3772,
µtrn
i = 464.155, εi = 0.0076 µtrn

i = 153.77, εi = 0.0286 µtrn
i = 218.68, εi = 0.017 µtrn

i = 646.75, εi = 0.0055

designed separately. Each worker is assigned the same
number of rows with maximum-grained sub-block divi-
sion [6] based on MDS code, i.e., l is obtained by setting
the first derivative of [6, Eq. (11)] to zero and bi = l/k.
The error-detecting redundancy ri, i ∈ [n] is obtained by
[33, Eq. (15)];

3) MG-LTCA (Maximum-Grained LT Coding Ap-
proach). Coded computation and error detection are de-
signed separately. Each worker is assigned the same num-
ber of rows with maximum-grained sub-block division [9,
Sec. 3.2] based on LT code, i.e., l = αm/n, bi = αm/kn
for ∀i ∈ [n]. The error-detecting redundancy ri, i ∈ [n]
is obtained by [33, Eq. (15)];

4) BD-WLTCC (Block-Design Based Wireless LT Coded
Computation). Coded computation and error detection
are designed separately. With the given {µcmp

i }, {ai},
{µtrn

i }, {εi} and pr, each worker is assigned the data
sub-block size bi based on [15, Alg. 1], while the error-
detecting redundancy ri is obtained by [33, Eq. (15)], for
∀i ∈ [n];

5) WLTCC-ED(SCA). Coded computation and error detec-
tion are designed jointly through JCTC scheme. With the
given {µcmp

i }, {ai}, {µtrn
i }, {εi} and pr, the data sub-

block size bi and error-detecting redundancy ri of worker
i can be obtained by Alg. 1, where latency is optimized
using SCA;

6) WLTCC-ED(LER). Coded computation and error detec-
tion are designed jointly through JCTC scheme. With the
given {µcmp

i }, {ai}, {µtrn
i }, {εi} and pr, the data sub-

block size bi and error-detecting redundancy ri of worker
i can be obtained by Alg. 2, where latency is optimized
using approximations.

In order to compare the performances of different schemes,
four scenarios are considered as in Table I2. For Scenario 1,
considering no transmission error, 100 workers are divided
into four groups with the different computation capabilities
and the same transmission capabilities, whereas each group in
Scenario 2 has disparate computation capabilities, transmission
capabilities and channel conditions. Scenario 3 is the case
of heterogeneous wireless networks where the parameters

2The unit of 1
/
µcmp
i , ai, 1

/
µcc
i and acci is milliseconds per row, and the

unit of µtrn
i is the number of inner products per millisecond.
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6)

6)

1 2 3 4
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0

500
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1500
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2500
1)UUA

2)MG-MDS

3)MG-LTCA

4)BD-WLTCC

5)WLTCC-ED(SCA)

6)WLTCC-ED(LER)

Computation Time

Transmission Time

Fig. 7. Latency comparison between four separate designs and our JCTC
schemes in four different scenarios, where pr = 0.005.

of each worker are drawn from the corresponding random
sources. Scenario 4 is based on a practical wireless distributed
computing system with 50 workers. First, we observe the
computation time, transmission time and channel conditions
of these workers to get the statistics data. Then, through fitting
the statistics data on computation and transmission time to the
exponential model, we get the computation and transmission
capabilities of workers. Also, the channel conditions can be
obtained by using the reference signal. Finally, the workers
can be divided into 4 groups as shown in Table I.

Performance comparisons in the above four scenarios be-
tween the implemented schemes are shown as Fig. 7 and
Fig. 8 for latency and computation reliability, respectively. We
can observe that WLTCC-ED(SCA) and WLTCC-ED(LER)
can avoid encoding for error detection in workers and min-
imize the total latency to achieve a sub-optimal trade-off
between computation and transmission latency compared with
separate designs. For the computation reliability, WLTCC-
ED(SCA) can always satisfy the required reliability but the
low-complexity algorithm is only applicable to the scenario
of low error rate, like Scenario 1 and Scenario 4, because of
the approximations.

For Scenario 2, the performance changes over εi including
latency and computation reliability are shown in Fig. 9 and
Fig. 10. We can note that the total latency of our JCTC
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1) 1) 1) 1)2) 2) 2) 2)3) 3) 3) 3)4) 4) 4) 4)5) 5) 5) 5)6)
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1)UUA

2)MG-MDS
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Fig. 8. Computation reliability comparison between four separate designs
and our JCTC schemes in four different scenarios, where pr = 0.005.
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Fig. 9. The expected total latency E [Ttot] versus channel condition εi,
where pr = 0.005 and other parameters are chosen from Scenario 2.
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Fig. 10. The expected error inner product rate 1−E [Rcmp] versus channel
condition εi, where pr = 0.005 and other parameters are chosen from
Scenario 2.
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Fig. 11. The expected total latency E [Ttot] versus the tolerable maximum
error inner product rate pr, where the parameters of workers are chosen from
Scenario 2.
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Fig. 12. The expected error inner product rate 1 − E [Rcmp] versus the
tolerable maximum error inner product rate pr, where the parameters of
workers are chosen from Scenario 2.

schemes is always lower than the separate designs regardless
of the channel condition. Moreover, in order to guarantee
the computation reliability, the implemented schemes needs
lots of re-transmissions especially when the channel condition
is not satisfactory, which makes them sensitive with εi. For
computation reliability, WLTCC-ED(LER) does not satisfy the
required computation reliability when the channel condition is
bad, since some approximations for the scenario of low error
rate are applied in this scheme. And other schemes keep the
value of expected computation reliability above 1− pr.

Fig. 11 and Fig. 12 show the effect of pr on the perfor-
mances from latency’s and computation reliability’s points of
view respectively. The expected total latency will be reduced
as the required computation reliability is decreased. Specially,
if an extremely high computation reliability is required for a
scenario with bad channel condition, the total latency may in-
crease to infinity due to the constant re-transmission. From the
reliability’s point of view, we notice that the low-complexity
algorithm cannot guarantee the final computational result with
no error regardless of pr due to the bad channel condition, and
the expected computation reliability of WLTCC-ED(LER) is
worse than other schemes because of the approximation. But
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WLTCC-ED(LER) can also perform well in a scenario with the
low requirement of computation reliability and good channel
condition.

VII. CONCLUSION

In this paper, we have proposed the JCTC scheme to design
coded computation and error detection jointly. Due to the two-
layer encoding strategy, the low dynamic encoding has been
achieved. Then, the performances of JCTC scheme, including
latency and computation reliability, have been analyzed. Un-
der the same computation reliability, theoretical performance
comparisons with separate designs have shown the advantages
of JCTC scheme from calculated amount’s and latency’s points
of view. Finally, to achieve the efficient task and redundancy
allocation, the WLTCC-ED algorithms have been presented
based on both iterative and low-complexity methods. The
simulation results have also verified the superiority of our
proposed scheme.

APPENDIX A
PROOF OF LEMMA 1

From Eq. (5), we can know that

xi (tc) =


0, if T cmp

i,1 > tc,

j, if T cmp
i,j ≤ tc < T cmp

i,j+1,∀j ∈ [k − 1] ,

k, if tc ≥ T cmp
i,k .

Then, the expectation E [xi (tc)] can be obtained by

E [xi (tc)] =

k∑
j=0

j × Pr [xi (tc) = j]

=

k−1∑
j=1

j × Pr
[
T cmp
i,j ≤ tc < T cmp

i,j+1

]
+ k × Pr

[
T cmp
i,k ≤ tc

]
=

k−1∑
j=1

j ×
(
Pr
[
T cmp
i,j ≤ tc

]
− Pr

[
T cmp
i,j+1 ≤ tc

])
+ k × Pr

[
T cmp
i,k ≤ tc

]
=

k∑
j=1

Pr
[
T cmp
i,j ≤ tc

]
=

k∑
j=1

(
1− e

−
µ
cmp
i

j(bi+ri)
(tc−j(bi+ri)ai)

)
.

APPENDIX B
PROOF OF LEMMA 2

When the computation capability tuple for all n workers
is
(
µcmp
g , ag

)
, the best computational performance for the

whole networks is achieved. It implies that the heterogeneous
networks are reduced to the corresponding homogeneous net-
works with the best computational performance. Thus, we can
obtain

Tcmp = max
i

T cmp
i = max

i
ci (bi + ri)

(
T̂ cmp
i + ai

)
≥
(
max

i
cibi +min

i
ciri

)
×
(
min
i

T̂ cmp
i + ag

)
≥ (1 + η)m

n

(
T̂ cmp
(1) + ag

)
.

APPENDIX C
PROOF OF LEMMA 3

When the computation capability tuple for all n workers
is (µcmp

b , ab), the worst computational performance for the
whole networks is achieved. It implies that the heterogeneous
networks are reduced to the corresponding homogeneous net-
works with the worst computational performance. Thus, we
can obtain

Tcmp = max
i

T cmp
i = max

i
ci (bi + ri)

(
T̂ cmp
i + ai

)
≤ (cw + 1) (bw + rw)

(
T̂ cmp
w + ab

)
, w ∈We.

Summing over all w ∈We, we get∑
w

Tcmp ≤
∑
w

(cw + 1) (bw + rw)
(
T̂ cmp
w + ab

)
≤
∑
w

(
max
w

cwbw +max
w

cwrw

)(
T̂ cmp
w + ab

)
+
∑
w

(
max
w

bw +max
w

rw

)(
T̂ cmp
w + ab

)
=
(
max
w

cwbw +max
w

cwrw +max
w

bw +max
w

rw

)
×
∑
w

(
T̂ cmp
w + ab

)
,

Tcmp ≤
(
max
w

cwbw +max
w

cwrw +max
w

bw +max
w

rw

)
×
(
¯̂
T cmp
w + ab

)
≤
(
2αm

n
+ (k + 1) rm

)(
¯̂
T cmp
w + ab

)
.

APPENDIX D
PROOF OF LEMMA 4

With the certain kre,i = j, T trn
i,re,(κth) follows an erlang

distribution with shape parameter j and rate parameter µtrn
i

according to the convolution formula. On the basis of the total
probability theorem, we can get

Pr
[
T trn
i,re,(κth) ≤ t

]
=

∞∑
j=1

Pr [kre,i = j] Pr
[
T trn
i,re,(κth) ≤ t |kre,i = j

]

=

∞∑
j=1

ps,i(1− ps,i)
j−1

(
1−

j−1∑
u=0

e−µtrn
i t(µtrn

i t)
u

u!

)

= 1− e−µtrn
i t

∞∑
j=1

j−1∑
u=0

ps,i(1− ps,i)
j−1 (µ

trn
i t)

u

u!

= 1− e−µtrn
i t

∞∑
u=0

∞∑
j=u+1

ps,i(1− ps,i)
j−1 (µ

trn
i t)

u

u!

= 1− e−µtrn
i t

∞∑
u=0

((1− ps,i)µ
trn
i t)

u

u!

= 1− e−ps,iµ
trn
i t.
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APPENDIX E
PROOF OF LEMMA 5

From Eq. (13) and Eq. (14), we notice that the random
variable T trn

i (tc) =
∑(bi+ri)xi(tc)

κ=1 T trn
i,re,(κth) follows an erlang

distribution with shape parameter (bi + ri)xi (tc) and rate
parameter ps,iµ

trn
i with the given time tc and fixed xi (tc).

Then, the CDF of T trn
i (tc) can be obtained through the total

probability theorem as

Pr[T trn
i (tc) ≤ t]

=

k∑
j=1

Pr [xi (tc) = j] Pr
[
T trn
i (tc) ≤ t |xi (tc) = j

]
=

k−1∑
j=1

(
Pr
[
T cmp
i,j ≤ tc

]
− Pr

[
T cmp
i,j+1 ≤ tc

])
Pr [Ui,j ≤ t] + 1

− Pr
[
T cmp
i,1 ≤ tc

]
+ Pr

[
T cmp
i,k ≤ tc

]
Pr [Ui,k ≤ t] , (53)

where Ui,j is a random variable following an erlang distri-
bution with shape parameter j (bi + ri) and rate parameter
ps,iµ

trn
i . According to Eq. (5) and Eq. (53), the expectation of

T trn
i (tc) can be gotten directly by the definition of the mean,

i.e.,

E
[
T trn
i (tc)

]
=

+∞∫
0

t
∂ Pr [T trn

i (tc) ≤ t]

∂t
dt

=
bi + ri
ps,iµtrn

i

k∑
j=1

(
1− e

−
µ
cmp
i

j(bi+ri)
(tc−j(bi+ri)ai)

)
.

APPENDIX F
THE CONVEX APPROXIMATIONS OF DC AND PF

STRUCTURES IN P1

In P1, we assume that

f1,i (ti, bi, ri) = (pc,i + pe,i) tiµ
trn
i

= tiµ
trn
i

(
(1− εi)

q(bi+ri) + 2−qri − (1− εi)
qbi2−qri

)
,

f2,i (ti, bi, ri) = −(pc,i + pe,i)
bi

bi + ri
tiµ

trn
i

=− bitiµ
trn
i (bi + ri)

−1

×
(
(1− εi)

q(bi+ri) + 2−qri − (1− εi)
qbi2−qri

)
,

f3,i (ti, bi, ri) = pe,i
bi

bi + ri
tiµ

trn
i

= bitiµ
trn
i (bi + ri)

−1
2−qri

(
1− (1− εi)

qbi
)
.

For the DC structures in f1,i, f2,i and f3,i, we set

fDC
1,i (bi, ri) = (1− εi)

qbi2−qri ,

fDC
2,i (bi, ri) = (1− εi)

qbi2−qri(bi + ri)
−1

.

Then we can linearize fDC
1,i and fDC

2,i with the given point b0
and r0 as follows:

fDC
1,i ≈ fDC

1,i|[0] + fDC
1,i|[b0] · (bi − b0) + fDC

1,i|[r0] · (ri − r0)

= fl1,i (bi, ri) ,

fDC
2,i ≈ fDC

2,i|[0] + fDC
2,i|[b0] · (bi − b0) + fDC

2,i|[r0] · (ri − r0)

= fl2,i (bi, ri) .

For the PF structures in f1,i, f2,i and f3,i, we can rewrite
as follows:

biti =
1

2
(bi + ti)

2 − 1

2

(
b2i + t2i

)
≈ 1

2
(bi + ti)

2 − 1

2

(
b20 + t20

)
− t0 (ti − t0)− b0 (bi − b0)

= fp1,i
(ti, bi) ,

with the given point t0.
Then, according to [41, Section IV-B], f1,i (ti, bi, ri),

f2,i (ti, bi, ri) and f3,i (ti, bi, ri) can be written as the follow-
ing convex functions:

f1,i ≈
(
(1− εi)

q(bi+ri) + 2−qri − fl1,i

)
tiµ

trn
i

≈µtrn
i

2

(
(1− εi)

q(bi+ri) + 2−qri − fl1,i + ti

)2
− µtrn

i

2
fp2,i ,

f2,i ≈− µtrn
i fp1,i

×
(
(bi + ri)

−1
(
(1− εi)

q(bi+ri) + 2−qri
)
− fl2,i

)
≈µtrn

i

2

(
(bi + ri)

−1
(
(1− εi)

q(bi+ri) + 2−qri
)
− fl2,i

)2
+

µtrn
i

2
f2
p1,i
− µtrn

i

2
fp3,i

,

f3,i ≈µtrn
i

(
2−qri(bi + ri)

−1 − fl2,i

)
fp1,i

≈µtrn
i

2

(
2−qri(bi + ri)

−1 − fl2,i + fp1,i

)2
− µtrn

i

2
fp4,i

,

where fp2,i
(ti, bi, ri), fp3,i

(ti, bi, ri) and fp4,i
(ti, bi, ri) can

be obtained by

fp2,i
=fPF

2,i|[0] + fPF
2,i|[t0] · (ti − t0) + fPF

2,i|[b0] · (bi − b0)

+ fPF
2,i|[r0] · (ri − r0) ,

fp3,i
=fPF

3,i|[0] + fPF
3,i|[t0] · (ti − t0) + fPF

3,i|[b0] · (bi − b0)

+ fPF
3,i|[r0] · (ri − r0) ,

fp4,i
=fPF

4,i|[0] + fPF
4,i|[t0] · (ti − t0) + fPF

4,i|[b0] · (bi − b0)

+ fPF
4,i|[r0] · (ri − r0) ,

and functions fPF
2,i (ti, bi, ri), fPF

3,i (ti, bi, ri), fPF
4,i (ti, bi, ri)

are given as follows:

fPF
2,i =

(
(1− εi)

q(bi+ri) + 2−qri − fl1,i

)2
+ t2i ,

fPF
3,i =

(
(bi + ri)

−1
(
(1− εi)

q(bi+ri) + 2−qri − fl2,i

)
+ fp1,i

)2
,

fPF
4,i =

(
2−qri(bi + ri)

−1 − fl2,i

)2
+
(
fp1,i

)2
.

Note that fl1,i , fl2,i , fp2,i
, fp3,i

, fp4,i
are composed of

linear functions with respect to ti, bi and ri respectively and
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fp1,i
is also a convex function with respect to ti and bi.

According to the conclusion on the convexity of composite
functions [44], we can know that f1,i (ti, bi, ri), f2,i (ti, bi, ri)
and f3,i (ti, bi, ri) are also convex so that P1 can be relaxed
to the convex problem P ′

1.
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