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Abstract1

In present study, values of minimum temperature, maximum temperature2

and precipitation at 27 observation stations in Morocco are used to implement3

an artificial neural network based downscaling approach in order to simulate re-4

gional climate and to investigate the impact of climate change on the country5

under different scenarios. For this purpose, the best models representing the6

country among the 15 GCMs within the scope of the CMIP6 are first identified.7

Then, using the artificial neural network based statistical downscaling method, a8

multi-model ensemble is created for each climate parameter. Following the per-9

formance evaluation based on different statistical metrics and their aggregated10

values, a good agreement between the observed and the predicted variables is11

achieved. This allows us to assess future projections of temperature and pre-12

cipitation following two climate scenarios, namely the SSP2-4.5 and SSP5-8.5.13

Spatial as well as temporal changes are evaluated for three different time periods14

namely, 2025-2049, 2050-2074 and 2075-2100. Both scenarios indicate that an15

important increase of the minimum and maximum temperatures is expected and16

it can reach up to 5 ◦C by the end of the century in some regions of the country.17

Seasonal variability has also been addressed here under climate change scenarios,18

and consistent variations with annual changes are also reported during each sea-19

son, except for the summer where the increase barely goes beyond 1.5 ◦C. The20

current analysis also includes the variation of precipitation at both seasonal and21

annual timescales. The country is likely to experience an important drought dur-22

ing the upcoming years, reaching a decrease of roughly 30% and 50% each year23
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respectively, under the SSP2-4.5 and SSP5-8.5 scenarios by the end of the cen-24

tury. This change is also consistent over the seasons, especially during fall, winter25

and spring seasons, when Morocco receives its major amount of precipitation.26

Keywords: Climate change, Temperature, Precipitation, Projections, CMIP6, Ar-27

tificial neural network28

1 Introduction29

Morocco, being part of the Mediterranean region, is one of the most vulnerable countries30

to climate change (Schilling et al., 2012). Based on many global climate models (GCMs)31

that have simulated future scenarios in the region, an important increase in temperature32

and an intense decrease in precipitation are expected (Almazroui et al., 2020). Following33

these changes, this may alter many sensitive vital economic sectors in the country such34

as water (El Moçayd et al., 2020) and agriculture (Abdelmajid et al., 2021). Moreover,35

as another undesired consequence of global changes, many natural disasters are expected36

to be more and more recurrent following the occurrence of extreme weather events such37

as heavy precipitation (Tramblay et al., 2012), long drought periods (Zkhiri et al., 2019)38

and large episodes of heatwaves (Khomsi et al., 2018). These events would have negative39

impacts on the resilience of emerging cities (Satour et al., 2021) and human health40

(Habib et al., 2010) among others. Consequently, the overall development of the country41

will be largely impacted and its pace will be slowed down. Yet, the intensity of this42

change remains still subject to ubiquitous uncertainties and building reliable adaptation43

strategies that can cope with these changes are therefore very challenging (Hallegatte,44

2009). In general, the climate in Morocco is characterised by considerable45

spatio-temporal variability. This is mainly due to its particular location46

between the extra-tropics which render the climate sensitive to numerous47

large scale oscillations. In addition, the country is shaped by substantial48

topography driven mainly by the presence of Rif and Atlas mountains which49

greatly impact the dynamics of the local climate (Tuel et al., 2022). Usually,50

the climate modelling relies on Global Circulation Models (GCMS) which51

are helpful to describe large scale oscillations under the excitation of various52

effects such as greenhouse gas emission, human activities, volcanic activities,53

among others. However, because of the physical parameterization of several54

physical phenomena, their accuracy is not perfect for every region in the55

globe. This is particularly true for Morocco where some studies revealed56

the limitation of those models to accurately capture the dynamics associated57

with large scale circulations impacting the country, see for instance (Tuel58

et al., 2021). Still even if global circulation is well represented, climate59

model can suffer from large uncertainties which can be reduced through60

downscaling (Gao et al., 2006).61

Dynamical downscaling has received wide attention in Morocco, see for instance62

(Tuel et al., 2021; Tramblay et al., 2013). This has the advantage of being highly63
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efficient in regions where data records are sparse. Many high-resolution Regional Cli-64

mate Models (RCMs) have been developed because of this main limitation and they65

have succeeded in modeling the extremely variable climate in the region. Yet, this66

approach is not perfect as RCMs suffer also from ubiquitous uncertainties that can67

be driven from different elements such as the spatial resolution, the bias correction or68

the boundary description. In fact, choosing a good spatial resolution is a key ingre-69

dient in dynamical downscaling that may alter the accuracy of simulations. The first70

simulations for RCMs in the region used horizontal grid spacing larger than 20 Km,71

see for example (Tramblay et al., 2013). However, with the growing computational72

capacities, higher resolutions were possible achieving 13 Km, see (Tuel et al., 2021).73

This has not only led to reduce the overall observed uncertainty but also to develop74

a class of comprehensive climate simulations which allowed to further understand the75

physical mechanisms responsible for the observed variability in the region. Needless to76

mention that bias correction is also an important driver of the observed uncertainty77

in RCMs simulations (Ruffault et al., 2014). In fact, these models need a boundary78

description to perform climate simulations and generally, this information is available79

in simulations using GCMs. Unfortunately, these simulations are subject to systematic80

biases that need to be corrected which may lead to unsatisfactory results even with81

the use of very high-resolution models, and advanced methods for the bias correction82

as argued by (Tramblay et al., 2013). Indeed, another major drawback of the use of83

GCMs to force the simulations using RCMs is the limitation displayed by the selection84

of the right GCMs. This choice needs to be made carefully since the simulation needs85

to be consistent with the regional climatology. For example (Tuel et al., 2021)86

have demonstrated that only three of the CMIP5 in GCMs are able to cap-87

ture the regional climatology of Morocco using dynamical downscaling and88

still their ability to simulate complex meteorological events has not been89

addressed. The statistical downscaling represents an attractive alternative90

method to dynamical downscaling but, given the limitation of data avail-91

ability, statistical downscaling has received little attention. However, with the92

establishment of new databases in the region (Tuel and El Moçayd, 2023) and with93

the expansion of machine learning methods, new methodologies based on the Ensem-94

ble methods would allow to consider this class of method. In fact, the use of Bagging95

(multi-model approach) in ensemble-based methods has already been proven to be ef-96

fective when the size of databases is limited, see for instance (El Moçayd and Seaid,97

2021). This has paved the way towards using machine learning (ML) based statistical98

downscaling, (Sachindra et al., 2018), especially those relying on multi-model ensemble.99

Artificial Neural Network (ANN) method among ML techniques is frequently used in100

simulations of atmospheric variables and has been reported to be a successful method in101

downscaling studies Okkan and Kirdemir (2016); Hosseini Baghanam et al. (2022); Seker102

and Gumus (2022). This method has the ability to determine the most complex level of103

relationship between large-scale GCM outputs and basin-scale climate variables Seker104

and Gumus (2022).In the present study, a machine learning models based on ANN is105

trained using historical records of precipitation and temperature variables to downscale106

multi-model ensemble from the CMIP6. The trained model is then used to evaluate107
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future projections of precipitation, minimum temperature and maximum temperature108

under different climate change scenarios. The presented paper is organised as follows:109

in section 2, we first define the study area along with the observation stations and110

GCMs of CMIP6 used in our analysis. Next, in Section 3, we introduce the procedure111

proposed in this study, the ANN method and the performance criteria used for the112

model assessment. Section 4 is devoted to the results obtained from the success of113

the considered models in representing the region. In this section, we also examine114

the performance of the GCMs and downscaling techniques. Performance of the multi-115

ensemble and projection analysis are also included in this section. Discussions on the116

obtained results for different scenarios are presented in Section 5. Finally, Section 6117

summarizes the study with concluding remarks.118

2 Study area and data119

Morocco is a large country located in the northwest of Africa (see Figure 1) for which120

this particular location makes local climate under the influence of numerous large scale121

oscillations. As the west coast of the country is facing the Atlantic Ocean, the climate122

there is under the influence of North Atlantic Oscillation (NAO) (Knippertz et al.,123

2003), which impacts the moisture availability and precipitation in Morocco. On the124

other side, the northern-east side of the country is driven by dynamics of the Mediter-125

ranean sea. This is particularly true regarding future projections, where the interaction126

between land and sea has a major role in rendering the area sensitive to climate change127

(Tuel and Eltahir, 2020). Recent works have also shed the light on other large-scale128

excitations responsible for controlling the variability of the climate in the region, such129

as the Madden-Julian Oscillation (MJO) (Gadouali et al., 2020; Chaqdid et al., 2023).130

This situation is rendered more complex with the topography shaping the country. In-131

deed, Morocco is surrounded by the Atlas mountains and the Rif mountains which have132

a large impact on the variability of temperature and precipitation in the country.133

Using measured data instead of reanalysis data in statistical downscaling improves134

the predictive performance of the models (Manzanas et al., 2015). For this reason,135

observation stations in Morocco, where the Moroccan agency of meteorology known as136

Direction Générale de la Météo (DGM) makes regular measurements, are considered137

in the present study. The characteristics of the stations including their ID and geo-138

graphical coordinates and long-term averaged values for minimum daily temperature139

(Tmin), maximum temperature (Tmax) and daily precipitation (Prep) are summarized140

in Table 1. The daily measurements recorded at these stations were transformed into141

monthly values for statistical downscaling. Monthly averaged minimum and maximum142

temperatures are calculated by taking the monthly average of daily minimum/maxi-143

mum temperatures (in ◦ C), while precipitation values are calculated by considering144

the average of daily measurements (in mm/day). Notice that before using the data, a145

first cleaning step was necessary. All the stations were included in the present study as146

none of them had more than 10% of missing data. Moreover, since approximately 8%147

of the data is missing for the precipitation at the station of SKASBATT TADLA in148

the measurement data between 1980-2014, it has been completed by a linear regression149
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Figure 1: Study area including Morocco’s geographical regions considered in the present
work. The 27 obesrevation stations are also shown in the map.

from neighbouring stations. For the other historical records data, the highest missing150

data rate is found to be below 1%.151

The CMIP6’s 15 GCMs are all selected for analyzing the historical data of monthly152

averaged daily precipitation, monthly averaged maximum temperature and monthly153

averaged minimum temperature. These GCMs are provided from the Earth System154

Grid Federation (ESGF) archive1. The institutes, variant labels, and horizontal and155

vertical resolutions of the GCMs used in the study are listed in Table 2. In order156

to create a common study concept among the models, it is crucial that they have157

the same variant (r1i1p1f1). However, different variants are used in four GCMs due158

to the lack of historical or future data for the variables selected as input to ANN-159

based downscaling. In addition, since the considered models have different horizontal160

1https://esgf-node.llnl.gov/search/cmip6
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Table 1: Geographical coordinates and mean values of used climate variables of stations
considered in this study.

Station ID Station Name Longutude (◦) Latitude (◦) Tmin (◦ C) Tmax (◦ C) Prep (mm/day)

S01 KENITRA -6.60 34.30 13.25 23.12 1.534

S02 SIDI IFNI -10.20 29.40 16.78 21.89 0.412

S03 AGADIR -9.57 30.38 14.34 24.09 0.717

S04 ALHOCEIMA -3.57 35.15 13.93 22.27 0.875

S05 BENI MELLAL -6.40 32.37 11.24 26.92 0.985

S06 BOUARFA -1.59 32.32 11.98 24.74 0.437

S07 IFRANE -5.17 33.50 6.21 18.16 2.648

S08 LAAYOUNE -13.12 27.09 15.97 26.43 0.155

S09 LARACHE -6.16 35.18 13.62 22.31 1.881

S10 TANGIER -5.91 35.72 13.69 22.48 1.886

S11 TANTAN -10.90 28.00 15.55 23.62 0.298

S12 TETOUAN -5.40 35.60 14.74 22.72 1.852

S13 CASABLANCA (ANFA) -7.67 33.57 14.50 21.94 1.104

S14 ERRACHIDIA -4.39 31.94 13.19 26.39 0.348

S15 ESSAOUIRA -9.78 31.52 15.11 20.43 0.882

S16 FES -4.98 33.93 10.22 24.16 1.329

S17 KASBAT TADLA -6.28 32.53 12.02 26.88 1.011

S18 MARRAKESH -8.03 31.62 13.46 27.26 0.609

S19 MEKNES -5.53 33.88 11.39 23.91 1.335

S20 MIDELT -4.73 32.68 8.45 21.78 0.479

S21 CASABLANCA (AIRPORT) -7.58 33.37 11.85 24.01 0.845

S22 OUARZAZATE -6.90 30.93 12.25 26.99 0.333

S23 OUJDA -1.93 34.78 10.85 24.31 0.734

S24 RABAT SALE -6.77 34.05 12.74 22.49 1.390

S25 SAFI -9.23 32.28 13.83 23.60 1.015

S26 TAZA -4.00 34.20 12.79 24.62 1.518

S27 DAKHLA -15.90 23.70 17.12 24.12 0.078

and vertical resolutions, a common location point is created for both observations and161

models by interpolating the latitude-longitude location points from the observation162

stations.163

The CMIP6 GCMs are forced with Shared Socioeconomic Pathways164

(SSPs) scenarios to achieve projected values of precipitation and temper-165

ature in the future (Raulino et al., 2021). The SSPs are categorized into166

various groups that represent distinct levels of socio-economic development,167

such as sustainable development (SSP1-2.6), moderate development (SSP2-168

4.5), regional competitive development (SSP3-7.0), and fossil fuel-based de-169

velopment (SSP5-8.5) (Almazroui et al., 2020; O’Neill et al., 2013). In this170

study, the SSP2-4.5 is selected for the evaluation because it assumes that171

the levels of GreenHouse Gas (GHG) emission will be maintained, while172

the SSP5-8.5 represents the most pessimistic scenario of the GHG emis-173

sions. The SSP2-4.5 is a scenario characterized by moderate socio-economic174

development and low to moderate GHG emissions, whereas the SSP5-8.5175

involves socio-economic factors such as increased inequality and competi-176
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tion, low economic growth, and high GHG emissions (Meinshausen et al.,177

2020). The SSP2-4.5 scenario envisions a world in which existing mitigation178

policies of climate change persist and technological advancements spread179

moderately facilitating the transition to an economy based on energy effi-180

ciency and sources of renewable energy. Conversely, the most pessimistic181

scenario SSP5-8.5 depicts a world characterized by the intensive use of nat-182

ural resources and unsuccessful policies in addressing climate change (Riahi183

et al., 2017). This study aims to clearly ascertain the differences between184

the two scenarios by examining the cases of mid-level success (SSP2-4.5)185

and failure (SSP5-8.5) in implementing climate change measures.186

3 Methodology and artificial neural networks187

Statistical downscaling has received little attention compared to dynamical downscal-188

ing. In regions like Morocco, where data are sparse in both time and space, the use of189

standard statistical methods is argued to be unfeasible, especially that the country is190

shaped with complex topography. This explains the little use of this class of methods.191

However, based on the ability of machine learning based methods to tackle complex192

problems, ANN-based techniques have been demonstrated to alleviate these aforemen-193

tioned challenges, especially that new data have been recently made available. The194

procedure adopted in this study is carried out using the following steps:195

Step 1. Observed climatic data obtained daily is first converted to monthly196

averaged values. Using the bi-linear interpolation method, the 21 available197

parameters of the GCMs defining the potential regressors are estimated based198

on their location and the corresponding geographical coordinates of the gauge199

station. These parameters are air temperature, relative humidity and geopotential200

height for five pressure levels (namely, 200, 300, 500, 700 and 850), sea level air201

pressure, surface air pressure, precipitation and minimum, maximum and mean202

near-surface temperature parameters.203

Step 2. From the 21 interpolated potential regressors defined in Step 1, only204

five are retained as input for the ANN model. For each of the observed vari-205

ables (monthly averaged daily minimum temperature, monthly averaged daily206

maximum temperature and monthly averaged daily precipitation), the correla-207

tion with the regressors is calculated, and the five most correlated variables are208

retained.209

Step 3. An artificial neural network-based model is created, with the input210

data being the best-correlated five variables of GCMs and the output being the211

observation data. These five best-correlated (dominant estimators) vary212

according to the GCM model, station, or variable to be estimated.213

Step 4. Different performance criteria are used to determine the agreement214

between the observed and predicted data.215
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Step 5. Step 2, Step 3, and Step 4 are applied to all stations and use all the216

GCMs of CMIP6. The performance of GCMs to represent climate in the country217

is determined based on the success order of the models on which they are based.218

Step 6. A total of six MME models is obtained using the seven most successful219

models. Step 2, Step 3, and Step 4 are applied to the obtained MMEs, and220

the results are compared among themselves as well as with the most successful221

model results. Finally, the model which best represents the region among them222

is used for the projection.223

In this study, the Artificial Neural Networks (ANN) method is used as a Statistical224

DownScaling Method (SDSM) for GCMs. Notice that the ANN method is frequently225

preferred by researchers because it can model the relationship between variables with-226

out requiring any prior analytical relationships, see (Hosseini Baghanam et al., 2022;227

Maqsood et al., 2022; Seker and Gumus, 2022) among others. Furthermore, this method228

has the potential to find the inherent nonlinear relationship between parameters for a229

complex problem. There exist different architectures for building ANN models, but the230

feed-forward error back-propagation artificial neural networks (FF-ANN) technique is231

one of the most widely used architectures (El-Mahdy et al., 2021). Figure 2 illustrates232

a typical FF-ANN model with n neurons in the input layer (i), m neurons in the hid-233

den layer (j), and one neuron in the output layer (k). Note that the weight terms234

labeled by wij and Wjk in Figure 2 represent the link between the layers, and they235

take random values during the model setup. However, they are constantly changing236

while the comparison between the observed and the predicted values is made during237

the training process. Finally, the errors propagate backwards as well during which the238

weights minimize the errors. In the current study, the Levenberg-Marquardt algorithm239

is used to adjust the weights, see for example (Marquardt, 1963). In this algorithm, the240

trial-and-error method is used to determine the number of hidden layers. Here, between241

1 and 10 hidden layers are used in the prediction model one by one, and the number of242

the hidden layer with the lowest Root Mean Square Error (RMSE) error is then used243

in the model. For more details on the ANN we refer the reader to (Rumelhart et al.,244

1988; Svozil et al., 1997; Sudheer et al., 2002; Keskin and Terzi, 2006) among others.245

On the other hand, overfitting is a prevalent issue in machine learning. In246

this study, the early-stopping approach is employed to address the overfit-247

ting problem. Given that this research involves time series data and focuses248

on future predictions, the dataset is divided into three segments: 60% (1980-249

2000) for training, 20% (2001-2007) for validation, and the remaining 20%250

(2007-2014) is used for testing. During the training process, the error for251

both training and validation datasets are assessed at each iteration. If the252

error value decreases for both datasets, iterations proceed however, if the253

RMSE value declines in the training process while increasing in the testing254

process for six consecutive iterations, the iteration is stopped and the final255

model is derived.256
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Table 2: The CMIP6 GCMs for climate projection.

No Name CMIP6 model Country Resolution (◦ lon×◦ lat) Variant label Key reference

1 ACCESS-CM2 Australia 1.9◦ × 1.3◦ r1i1p1f1 (Bi et al., 2013)

2 CanESM5 Canada 2.8◦ × 2.8◦ r1i1p1f1 (Swart et al., 2019)

3 CanESM5-CanOE Canada 2.8◦ × 2.8◦ r1i1p2f1 (Swart et al., 2019)

4 CNRM-CM6-1-HR France 0.5◦ × 0.5◦ r1i1p1f2 (Voldoire et al., 2019)

5 CNRM-ESM2-1 France 1.4◦ × 1.4◦ r1i1p1f3 (Séférian et al., 2019)

6 EC-Earth3-Veg Europe 0.7◦ × 0.7◦ r1i1p1f1

7 FGOALS-g3 China 2.0◦ × 2.3◦ r1i1p1f1 (Li et al., 2020)

8 GFDL-ESM4 USA 1.25◦ × 1.0◦ r1i1p1f1 (Dunne et al., 2020)

9 GISS-E2-1-G USA 2.5◦ × 2.0◦ r1i1p1f2 (Kelley et al., 2020)

10 INM-CM5-0 Russia 2.0◦ × 1.5◦ r1i1p1f1 (Kulyamin and Volodin, 2018)

11 IPSL-CM6A-LR France 2.50◦ × 1.26◦ r1i1p1f1 (Boucher et al., 2020)

12 MIROC6 Japan 1.41◦ × 1.41◦ r1i1p1f1 (Tatebe et al., 2019)

13 MPI-ESM1-2-HR Germany 0.937◦ × 0.937◦ r1i1p1f1 (Gutjahr et al., 2019)

14 MRI-ESM2-0 Japan 1.125◦ × 1.125◦ r1i1p1f1 (Yukimoto et al., 2019)

15 NESM3 China 1.9◦ × 1.9◦ r1i1p1f1 (Cao et al., 2018)

In the present work, five criteria are used to determine the level of agreement be-257

tween the observed data and the data estimated using GCMs. The criteria used are:258

Correlation Coefficient (CC), Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970),259

normalized Root Mean Square Error (nRMSE) (Ahmed et al., 2019), Kling-Gupta Ef-260

ficiency metric (KGE) (Koch et al., 2018), and Modified Index of agreement (ModIn)261

(Willmott, 1981) and their corresponding definitions are given by262

CC =

N∑
i=1

(
Vp − Vp

) (
Vo − Vo

)
√

N∑
i=1

(
Vp − Vp

)2 ×√
N∑
i=1

(
Vo − Vo

)2 , (1)

NSE = 1−

N∑
i=1

(Vp,i − Vo,i)
2

N∑
i=1

(Vo,i − Vo)
2
, (2)

nRMSE =

√
1
N

N∑
i=1

(Vp,i − Vo,i)
2

Vo(max) − Vo(min)

, (3)

KGE = 1−

√
(CC− 1)2 +

(
Vp

Vo

− 1

)2

+

(
σp/Vp

σo/Vo

− 1

)2

, (4)

ModIn = 1−

N∑
i=1

|Vo,i − Vp,i|

N∑
i=1

(∣∣Vp,i − Vo

∣∣+ ∣∣Vo,i − Vo

∣∣) , (5)

where Vo, Vp, Vo, Vp and N represent observed, predicted, mean observed, mean pre-263
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Figure 2: A typical structure of the FF-ANN model.

dicted, and the number of data, respectively. It should be noted that it is challenging264

to determine with a single criterion whether GCMs are representative or not for cli-265

mate data in a region because successful GCMs can vary according to any performance266

criterion used. This is mainly because each assessment criterion has differ-267

ent limitations. For example, the CC only assesses the linear relationship268

between two variables and potentially overlooks other forms of relation-269

ships. The NSE and nRMSE are sensitive to outliers, the KGE may not270

accurately measure the model performance when observed data show lim-271

ited variability, while the ModIn tends to overestimate agreement which272

may not provide a comprehensive view of the data consistency. Therefore,273

the Comprehensive Rating Index (CRI) method (Li et al., 2015), which can evaluate274

the multiple criteria together, is used to determine the best-represented GCMs for the275

region under study. Notice that the CRI, frequently used in the evaluation of GCMs276

(Rivera and Arnould, 2020; You et al., 2018), is calculated as277

CRI = 1− 1

nm

n∑
i=1

Ranki, (6)

where m represents the number of GCMs employed and n represents the number of sta-278

tistical performance metrics considered. It is worth mentioning that the most successful279

model is ranked as 1.280

4 Results281

In this section we present the results obtained from the success of the considered models282

in representing the region under study. In this section, we first examine the performance283

of the GCMs and downscaling techniques, then the performance of the multi-ensemble284

and projection analysis are also assessed.285
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Table 3: Mean of the performance metrics used in the present study. Here, bold entries
represent the most successful model for the relevant metric.

CMIP6 Model

Tmin Tmax Prep

CC NSE ModIn nRMSE KGE CC NSE ModIn nRMSE KGE CC NSE ModIn nRMSE KGE

ACCESS-CM2 0.93611 0.86511 0.83611 0.09211 0.8845 0.90312 0.80612 0.80211 0.10212 0.8337 0.4575 0.1928 0.5025 0.1648 0.2338

CanESM5 0.9425 0.8755 0.8434 0.0896 0.8943 0.9115 0.8196 0.8077 0.0998 0.8453 0.42315 0.17715 0.48115 0.16512 0.2169

CanESM5-CanOE 0.9443 0.883 0.8453 0.0884 0.9011 0.9142 0.8253 0.8123 0.0985 0.8611 0.4538 0.18412 0.5131 0.16514 0.2374

CNRM-CM6-1-HR 0.93710 0.86810 0.83810 0.09210 0.8827 0.90411 0.81211 0.8039 0.10211 0.8298 0.4567 0.2075 0.49211 0.1635 0.17715

CNRM-ESM2-1 0.9389 0.879 0.847 0.0919 0.8836 0.917 0.8234 0.8132 0.0974 0.8434 0.4644 0.2162 0.5064 0.1621 0.2355

EC-Earth3-Veg 0.9471 0.8881 0.8521 0.0841 0.8962 0.9191 0.8371 0.8191 0.0931 0.8472 0.44311 0.17814 0.4988 0.16615 0.20313

FGOALS-g3 0.93512 0.8612 0.83412 0.09412 0.86414 0.916 0.8187 0.8058 0.110 0.82910 0.4510 0.1957 0.4949 0.1647 0.20512

GFDL-ESM4 0.9416 0.8747 0.8399 0.098 0.86613 0.918 0.8169 0.80310 0.19 0.81513 0.43813 0.18213 0.57 0.1659 0.20611

GISS-E2-1-G 0.92714 0.85214 0.82614 0.09814 0.87710 0.89814 0.814 0.79414 0.10614 0.82711 0.459 0.18411 0.49113 0.16511 0.2393

INM-CM5-0 0.948 0.8728 0.848 0.097 0.87512 0.9110 0.81310 0.79912 0.0997 0.81414 0.43214 0.1956 0.49112 0.1636 0.21210

IPSL-CM6A-LR 0.93113 0.85813 0.83413 0.09413 0.888 0.90113 0.80313 0.79613 0.10313 0.8299 0.4722 0.2094 0.5072 0.1634 0.2521

MIROC6 0.9417 0.8746 0.8416 0.0885 0.8779 0.9134 0.8262 0.8076 0.0972 0.8375 0.4693 0.2123 0.5063 0.1623 0.2356

MPI-ESM1-2-HR 0.9444 0.8784 0.8425 0.0863 0.87511 0.919 0.8178 0.8085 0.0986 0.82112 0.44212 0.18510 0.49410 0.16510 0.2357

MRI-ESM2-0 0.92615 0.84715 0.82315 0.09815 0.86115 0.89515 0.79215 0.78915 0.10815 0.80215 0.4576 0.1869 0.48914 0.16513 0.19314

NESM3 0.9462 0.8852 0.852 0.0852 0.8874 0.9133 0.8235 0.8114 0.0973 0.8366 0.4831 0.2191 0.5026 0.1622 0.252

4.1 Performance of GCMs and Downscalling method286

We first investigate the ability of the proposed downscaling approach using different287

CMIP6 models to accurately represent the historical data in Morocco for all the con-288

sidered stations. The metrics defined in the previous section are used to evaluate the289

performance of the ANN-reduced model in predicting the observation data. Violin plots290

of the calculated metric values for each CMIP6 model are shown in Figure 3 for Tmin,291

Tmax and Prep. Here, the width of the curve in the violin plots indicates that the292

calculated metric value is concentrated in that region, and the boxes inside the violins293

represent the region with values between the first quartile (Q1) corresponding to294

the value below which 25% of the data points lie, and the third quartile (Q3)295

indicating the value below which 75% of the data points. The results demon-296

strate that two models, namely EC-Earth3-Veg and NESM3, successfully represented297

the behavior of Tmin. This is confirmed by the values of the different evaluation metrics298

considered here, except for NESM3 where the value of KGE does not translate a good299

fit of the model to the observation. In the violin plots of Tmax shown in Figure 3, it is300

seen that differences between the models are not very high, and a general agreement301

between the models and the observation data is observed except for ACCESS-CM2,302

GISS-E2-1-G and IPSL-CM6A-LR. In addition, it can be concluded that EC-Earth3-303

Veg and CanESM5-CanOE models show a similar prediction performance for almost304

all considered stations. However, a simple inspection of violin plots of the precipitation305

values depicted in Figure 3, it can be concluded that, unlike the temperature values, the306

distribution is not similar and there are significant differences between these models.307

For example, although some models (such as GFDL-ESM4 and CanESM5) give a CC308

value very close to 0, the NESM3 model differs from others in terms of CC and NSE,309

and EC-Earth3-Veg distinguishes from other models according to the ModIn metric.310
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Figure 3: Violin plots of the considered performance criteria for estimating Tmin (top
plot) and Tmax (middle plot) and precipitation (bottom plot).
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Figure 4: Station-based heat map of the CRI values for GCMs obtained for Tmin (left
plot), Tmax (middle plot) and Prep (right plot).

In addition to the violin plots, the averaged metric values obtained at all stations311

are calculated for each parameter and for all the considered CMIP6 models and are312

presented in Table 3. Notice that the numbers given as superscripts in this table313

indicate the model’s rank in the metric, and the most successful models are shown in314

bold. For the temperature Tmin, the averaged CC value of the predicted and measured315

values is between 0.925 and 0.947. These results, which are quite close to each other,316

are similar to other metrics, compare results in Table 3. Indeed, when metrics of the317

temperature Tmax are analyzed, it is determined that the agreement is lower than the318

temperature Tmin, and the averaged CC value is between 0.894 and 0.919. For values319

of the precipitation, it is determined that the averaged CC value is 0.482 in the best320

model, where the fit is lower than for the temperature values. Note that these values321

are averaged values, and it should be considered that low or high values at a station322

may affect the averaged values.323

Although the general success displayed by the proposed models, it is seen that324

the obtained results vary depending on the considered metric. Therefore, since each325

method metric’s calculation and approach are different, the accuracy of the prediction326

should be understood from the perspective of the corresponding metric. For example,327

the CC metric determines the compatibility of two data sets, while the nRMSE metric328

calculates the difference between the predicted and observation values. The CRI metric329

evaluates the performance of a model’s prediction and determines the most successful330

model according to all metrics. The success ranks of models used in the 27 stations are331

determined according to the calculated CRI values and illustrated in Figure 4. In this332

figure, models with the minimum averaged CRI values (i.e. the most successful models)333

are ranked from left to right to understand the distribution of the mean CRI values.334
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Figure 5: Determination of the best MME for Tmin (a), Tmax (b) and Prep (c).

Regarding the estimation of temperature Tmin, the EC-Earth3-Veg, NESM3,335

MPI-ESM1-2-HR, CNRM-ESM2-1 and CNRM-CM6-1-HR are roughly the336

models that have the most successful rate. It is also evident that simulations337

of the EC-Earth3-Veg and NESM3 are robust as they are the most successful338

models in almost all stations for the temperature Tmin. Similarly these two339

models are also robust for the estimation of the temperature Tmax followed340

by CanESM5-CanOE, MPI-ESM1-2-HR and MIROC6, respectively. For341

the precipitation, as it can be seen from Figure 4, there is not a single342

model that can be robust for most of the stations. However, the MIROC6,343

CanESM5-CanOE, IPSL-CM6A-LR, INM-CM5-0 and NESM3 have high344

success rates.345

4.2 Performance of multi-model ensemble346

Although the best models based on the CRI parameter have been found to be satis-347

factory in a significant part of the considered stations, especially for the temperature348

variables, some stations are not well represented. In particular, the prediction of precip-349

itation is not accurate for all considered stations. Therefore, a Multi-Model Ensemble350

(MME) that better represents the entire region is created in the current study. For this351

purpose, the MMEs are obtained by averaging the most successful models following352

their ranks. For sake of simplicity, MMEk is used to denote a MME obtained using the353

best k successful models based on the CRI criteria. For example, the MME2 is derived354

from the mean of the two most successful models according to the CRI values whereas,355

the MME4 is obtained using the most successful top four models. In this manner, a356

total of five different MMEs are obtained using the top six most successful models.357

Using these MMEs as input, Step 2, Step 3 and Step 4 described in Section 3 are358

applied. Hence, the results obtained from the calculations for Tmin, Tmax and Prep359

are compared between themselves as well as with the most successful model. In this360
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Figure 6: Distribution of the best MME and observed values for monthly and seasonal
time scales for Tmin (a), Tmax (b) and Prep (c).
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Figure 7: Observed measurements and future projections of the seasonal Tmin

for SSP2-4.5 (a) and SSP5-8.5 (b).

comparison, determining the number of models to be used in the MME is a challenging361

task. For this reason, the mean CC, which is also preferred by different researchers362

(Iqbal et al., 2020; Seker and Gumus, 2022), is considered in the assessment of MME.363

In this approach, the CC values between the model results and the observation data364

are calculated for each station, and how each new model added for the MME affects365

the prediction performance is evaluated by considering the averaged CC for all stations.366

The results of this approach for Tmin, Tmax and Prep are also included in Figure 5.367

It is evident that the MMEs created according to the averaged CC values in all368

climate parameters perform better than the most successful model. For the temperature369

Tmin, the MMEs created using the MME3 do not increase the performance but slightly370

decrease it, and for the temperature Tmax, the performance of the model decreases371

when using the MME4. On the other hand, for precipitation values, it is observed372

that the model performance improves until the MME5, and the performance decreases373

after adding the next model. Therefore, the MME3 (EC-Earth3-Veg, NESM3 and MPI-374

ESM1-2-HR) is used for Tmin, MME4 (EC-Earth3-Veg, NESM3, CanESM5-CanOE and375

MPI-ESM1-2-HR) for Tmax and MME5 (MIROC6, CanESM5-CanOE, IPSL-CM6A-376
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Figure 8: Observed measurements and future projections of the seasonal Tmax

for SSP2-4.5 (a) and SSP5-8.5 (b).
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Figure 9: Observed measurements and future projections of the seasonal Prec
for SSP2-4.5 (a) and SSP5-8.5 (b).

LR, INM-CM5-0 and NESM3) for Prep.377

The box plot graphs shown in Figure 6 are presented to demonstrate the agreement378

between the measured values for Tmin, Tmax and precipitation, and the most successful379

MME. These plots present the mean, median, minimum, and maximum values, along380

with the values ranges of Q1 and Q3. These graphs reveal that the MMEs for Tmin and381

Tmax are quite successful in predicting historical data. Additionally, it can be clearly382

seen that the values obtained with MME for Tmin and Tmax in March, April and May383

are slightly lower than the observed values, while the prediction performance is better384

in other months. Concerning the precipitation values, although the agreement is not385

as successful as in temperature values, there are no excessive differences between the386

values. Except for the summer months, the precipitation values calculated using the387

MME are underestimated, with the highest differences occurring in September, October388

and November. However, it can still be confirmed that the performance of predicting389

monthly and seasonal precipitations is satisfactory.390

4.3 Projection analysis391

In this section, the possible future changes in the temperature Tmin, Tmax, and precip-392

itation for Morocco are analyzed using the generated simulations with the developed393

MMEs. Firstly, the temporal variations of these variables are analyzed for both seasonal394

and annual time scales, then the spatial variations are evaluated. The evaluation period395

considered in the present work is 2025-2100 and it is split into three separate ranges.396

Consequently, changes are analyzed for the following periods: 2025-2049, 2050-2074,397
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Figure 10: Changes in the observed (1980–2014) and two future projections (2015-2100)
for Tmin (a), Tmax (b) and Prep (c).

and 2070-2100, which are referred to as the near future (NF), mid future (MF), and398

far future (FF), respectively. The future projections under the SSP2-4.5 and SSP5-8.5399
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scenarios for Tmin are shown in Figure 7 for each season. An important increase of400

daily minimum temperature is expected under both scenarios and during all seasons401

for the three periods. The most important increase will occur during the NF periods,402

while in the MF and FF, the temperature Tmin will remain roughly at the same values403

as those displayed during NF. Concerning the seasonal changes, the main increasing404

will occur during winter (by 19%, 9% and 5% in NF, MF and FF respectively) where405

the increase could reach approximately 1.5◦ following the SSP2-4.5 scenario and 1.8◦406

following the SSP5-8.5 scenario. The increase of temperature is also expected during407

the other seasons with an increase of 1.5◦ during the spring and of 1◦ during the fall. It408

should also be noted that, while the major part of the expected change will generally409

occur in NF, the winter averaged daily minimum temperature will be subject to an410

important increase following the SSP5-8.5 scenario during the whole century. Needless411

to mention that the increase rate may reach 60% compared to historical records in FF,412

which will lead to an addition of 4.6◦ to the actual daily minimum temperature.413

The results obtained for the seasonal projection in the temperature Tmax according414

to the SSP2-4.5 and SSP5-8.5 scenarios are shown in Figure 8. It is clear that increases415

in values of Tmax for the SSP2-4.5 are found to be 1.8 ◦C (7%), 0.7 ◦C (3%), and 0.4416

◦C (1%) for NF, MF, and FF, respectively. Moreover, changes in DJF and MAM are417

observed to be very close in percentage and magnitude, these increases are calculated418

to be approximately 2 ◦C (10%) in total. On the other hand, similar to Tmin, the419

increase in Tmax for the JJA season is relatively low, both in terms of the value and420

percentage, and increases for NF, MF, and FF in the JJA are found to be 1.2 ◦C, 0.4421

◦C, and 0.1 ◦C, respectively. Except for the JJA season, the amount of increase in FF422

for the SSP5-8.5 scenario increases in comparison to the previous time period, similar423

to Tmin. For example, while the increase in NF is 1.5 ◦C (8.4%) for DJF, becomes 1.7424

◦C (9.5%) in FF, and for MAM, the increase in NF is 1.5 ◦C (6.7%), and it reached425

1.6 ◦C (7.2%) in FF. In addition, although the percentage increase in values of Tmax426

is less than that in values of Tmin, it is understood that they are also likely to exhibit427

a significant change when considered on a value basis. In particular, the amount of428

increase predicted as 2.9 ◦C (10%) in total for the SSP2-4.5 scenario in the SON season429

reaches 4.9 ◦C for the SSP5-8.5 scenario.430

Figure 9 presents results for the seasonal projection of the precipitation according431

to the SSP2-4.5 and SSP5-8.5 scenarios. It should be noted that the rate of change432

in the precipitation is different than that in the temperature. An important intra-433

seasonal variability is expected following the SSP2-4.5 scenario. For example, while434

DJF is increasing (a total of 12%), MAM is decreasing (a total of 24%). In the SON435

season, there is a significant decrease in NF (about 15.8%) whereas, in the following436

years this rate of decrease becomes moderate (about -0.6% in MF and about -4.1% in437

FF). Although there is an increase in NF and a decrease in MF and FF in the summer438

months, these changes might not be considered as significant because the precipitation439

values during this season are low. In the SSP5-8.5 scenario, it can be concluded that440

the averaged precipitation shows relatively clearer changes. For example, while the rate441

of increase in DJF is 12% in the SSP2-4.5 scenario, it is 21% in the SSP5-8.5 scenario,442
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Table 4: Linear trends of observed and projected variables.

Period Tmin (◦C/decade) Tmax (◦C/decade) Prep (mm/day/decade)

OBS (1980-2014) 0.299 0.337 0.082

SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5

NF (2025-2049) 0.093 0.36 0.114 0.365 -0.019 -0.003

MF (2050-2074) 0.164 0.388 0.175 0.392 0.016 -0.003

FF (2075-2100) 0.073 0.47 0.112 0.525 -0.014 -0.034

ALL (2025-2100) 0.16 0.41 0.164 0.439 -0.004 -0.009

and the decrease in MAM is calculated as 35.3% from 23.7% in the SSP2-4.5 scenario.443

Although there is an increase in the rate of decrease in SON, the change is not as high444

as in DJF and MAM.445

In order to examine changes in the future temperature and precipitation patterns446

of the country according to different scenarios, the changes are investigated over the447

annual averaged values and are displayed in Figure 10 for Tmin, Tmax, and precipitation.448

Here, the black line in the plots represents the average of all observed stations, the blue449

and red lines represent the possible changes according to the SSP2-4.5 and SSP5-8.5450

scenarios, and the filling in of the same colour indicates the range of the lowest and451

highest values at the stations. For the temperature Tmin and Tmax, it is clear that452

the values calculated according to the SSP2-4.5 and SSP5-8.5 scenarios for the year453

2040 are quite close to each other, but later the temperature values calculated with the454

SSP5-8.5 scenario diverge since they are higher. On the other hand, it is evident that455

there are no significant differences between the trends of the two scenarios considered456

for precipitation which are quite similar. It is worth mentioning that another major457

important feature of these results remains the range of uncertainty which translates458

the spatial variability already observed in historical records. This may further increase459

under the impact of climate change which shall be discussed later in the present study.460

461

On the other hand, since only a general change structure can be seen from these462

plots, in order to make a more detailed evaluation, the linear slopes for OBS, NF,463

MF, and FF are calculated and listed in Table 4. According to the results from this464

table, the historical linear trend slope for Tmin is calculated as 0.299 ◦C per decade.465

For the SSP2-4.5 scenario, it is 0.093, 0.164, and 0.073 ◦C/decade for NF, MF, and466

FF, respectively, and 0.16 ◦C/decade for 2025-2100. Furthermore, linear trend slopes467

calculated with the SSP5-8.5 are 0.36, 0.388, 0.470, and 0.410 ◦C/decade for NF, MF,468

FF, and all time scales, respectively. Thus, when the trend slopes are considered, it469

is clearly understood that the slope values will decrease according to the SSP2-4.5470
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Figure 11: Spatial distribution of future changes in Tmin according to MME for seasons.

Figure 12: Spatial distribution of future changes in Tmax according to MME for seasons.
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Figure 13: Spatial distribution of future changes in Prep according to MME for seasons.

scenario and will increase according to the SSP5-8.5 scenario using the annual averaged471

values. A similar situation also occurred in Tmax for which, the slopes of the linear trend472

calculated in all periods according to the SSP2-4.5 scenario are lower than the slope of473

the observation values. In addition, while the linear trend slope of the observed values474

in Prep is 0.082 mm/day/decade, it turned negative in the SSP2-4.5 and SSP5-8.5475

scenarios, and the amount of decrease is higher in the SSP5-8.5 scenario.476

As suggested above, in addition to the temporal changes, substantial spatial vari-477

ability is also expected under climate change impact. For this purpose, the spatial478

variability of seasonal and annual changes are also analyzed in this section. The spatial479

distribution of Tmin, Tmax, and precipitation for two different scenarios and four seasons480

are displayed in Figure 11, Figure 12, and Figure 13, respectively. The changes in these481

plots indicate the difference between the mean of 1980-2014, the reference period, and482

the percentage change in the precipitation. A simple analysis of changes in Tmin values483

shown in Figure 11 according to the SSP2-4.5 scenario reveals that temperatures will484

continuously increase as the time period rises in the DJF, MAM, and SON seasons i.e.,485

in the period from NF to FF. More precisely, according to the SSP2-4.5 scenario, it486

is predicted that a serious temperature increase will occur in the eastern part of the487

country in the MAM season, even in the NF. Since this increase would also occur in MF488

and FF in DJF and SON in the same region, it should be noted that the relevant region489

would face a serious temperature increase even in a relatively optimistic scenario. In490

the SSP5-8.5 scenario for Tmin, the situation is even more remarkable during the DJF,491
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Figure 14: Spatial distributions of future change in Tmin according to MME.

MAM, and SON seasons. For example, in the SSP2-4.5 scenario, regions where the492

temperature increases above 5 ◦ C will occur are limited while, in the FF period of the493

SSP5-8.5 scenario, this increase would occur in almost half of the country in DJF. In494

contrast to these increases in DJF, MAM, and SON in Morocco, it is observed that the495

increase of temperature in the JJA season for both scenarios is limited compared to496

other seasons, even in the FF time period of the SSP5-8.5 scenario, there is an increase497

in a small region in the central part of the country. It is also noteworthy that increases498

in the southern part of the country are generally lower than the rest.499

The spatial distributions of possible changes for the temperature Tmax parameter500

according to seasons and two different scenarios are depicted in Figure 12. Although501

the general structure of Tmax is similar to those obtained for Tmin, the increase in502

Tmax is higher than expected. The increases in Tmax values in JJA are also limited503

compared to other seasons. However, one should note that this value is already high504

during the present climate. Moreover, according to the SSP5-8.5 scenario, a significant505

part of the northern part of the country would face an increase of more than 5 ◦ C in506

FF. Figure 13 presents the spatial distribution of the possible changes in precipitation507

according to seasons and two different scenarios. In the SSP2-4.5 scenario, the largest508

difference in the rate of change in DJF occurred in NF, and it is understood that there509

is not much change in the following periods. According to this scenario, precipitation510

generally increases in the north while it decreases in the south region. Although a511

similar situation is observed for the SSP5-8.5 scenario, it is recognized that changes in512

the precipitation are more pronounced as the time period progresses in this scenario.513
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Figure 15: Spatial distributions of future change in Tmax according to MME.

Figure 16: Spatial distributions of future change in precipitation according to MME.
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The MAM and SON seasons give similar results. In these seasons, according to both514

scenarios, it is revealed that the precipitation would decrease significantly in a vast part515

of the country. Under the SSP5-8.5 scenario, the precipitation during the spring could516

increase in the Sahara region. In the JJA, although there is an increase in the southern517

part of the country and a decrease in the northern part, it is considered that these518

increases or decreases are not very significant since the precipitation in this season is519

generally low.520

Spatial distributions of annual averaged values are given in Figure 14, Figure 15,521

and Figure 16 for the temperature Tmin, Tmax, and the precipitation, respectively. It is522

clear that Tmin and Tmax exhibit similar features in annual values as in seasonal values,523

and the amount of increase in temperatures rises as periods advance, according to the524

SSP2-4.5 and SSP5-8.5 scenarios. In addition, it is remarkable that in the SSP5-8.5525

scenario, the increase in FF reaches the highest level, and more than 5◦ C is projected526

in the northern region. The annual changes in the precipitation values show that there527

would be a significant decrease in the precipitation in the country except for the Sahara528

region. It is also clear from Figure 18 that an increase in the precipitation is likely to529

occur in a small region of the northern region. The decrease may reach up to 30% in530

FF according to the SSP2-4.5 scenario and it exceeds 50% in the SSP5-8.5 scenario at531

the same period. Although this decrease in the precipitation would be limited in NF,532

it is predicted that the increase would reach the highest levels in FF.533

5 Discussions534

In the present study, projections of monthly averaged daily total precipitation, monthly535

averaged maximum and minimum temperatures with 15 GCMs available under CMIP6536

for Morocco, an important region of north-west Africa, are carried out using an ANN-537

based statistical downscaling method. The data are analyzed as historical (1980-2021),538

near future (2025-2049), mid future (2050-2074) and far future (2075-2100). The best539

three GCMs for simulating historical precipitation are MIROC6, CanESM5-CanOE540

and IPSL-CM6A-LR, respectively. The two best GCMs for simulating Tmax and Tmin541

are EC-Eart3-Veg and NESM3. The MPI-ESM1-2-HR GCM is the third-best GCM542

for Tmin, and the CanESM5-CanOE is the third-best model for the temperature Tmax.543

It should be stressed that in addition to the current work, the EC-Eart3-Veg model,544

which was found to be a successful model in a study conducted by (Dey et al., 2022)545

in India, was also found to show excellent skills in studies conducted by (Babaousmail546

et al., 2021) in the north Africa region, (Nashwan and Shahid, 2022) in Egypt, and547

(Majdi et al., 2022) in the MENAP (Middle East, North Africa, Afghanistan, Pakistan,548

and Turkey) region.549

The performance of the GCMs to simulate historical precipitation, maximum, and550

minimum temperatures are evaluated individually, and it is found that the capability551

of these models vary from a station to another and the parameter estimated namely,552

the temperature Tmin, Tmax and the precipitation. It is also clear that while the top553

two GCMs (i.e. EC-Eart3-Veg, NESM3) are the same for maximum and minimum554
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temperatures, the accuracy of other models vary considerably. In addition, the EC-555

Eart3-Veg model, which has a good performance in simulating maximum and minimum556

temperatures, does not perform well in simulating the precipitation. Here, the MIROC6557

model, which performs better than the other models to predict the precipitation, does558

not perform well in simulating the maximum and minimum temperatures as opposed to559

the other aforementioned models. In many other studies in the literature, it has been560

emphasized that biases and uncertainties in the GCMs limit the performance of their561

simulations for different regions (Wu et al., 2015; Xu et al., 2019; Abbas et al., 2022).562

Therefore, it is essential to make multi-model ensemble projections instead of climate563

projections based on single-model projections. Previous studies conducted by Dey et al.564

(2022); Seker and Gumus (2022); Iqbal et al. (2020); Guo et al. (2021); Nashwan and565

Shahid (2022) have shown that uncertainties can be reduced through MMEs created566

using GCMs with the best representation capability. It has also been found that the567

performance of simulations using the MME created for the present study supports the568

previous studies such that the MMEs are more successful than the single model for569

simulating historical climate variables.570

The analysis of climate change impact on the temperature Tmin reveals that an571

important amount of increase is to be expected in the future, following both SSP2-572

4.5 and SSP5-8.5 scenarios. The major part of the increase will occur in the near573

future according to both scenarios. Moreover, the northern part of the country is more574

likely to experience substantial increase. These results are in good agreement with575

those presented by (Hamed et al., 2022) in the MENA region, with some differences576

on the rate of increase in the southern region. Furthermore, (Carvalho et al., 2021)577

found similar results for the potential changes in the temperature Tmin in the region,578

with some differences in the seasonal variability where the study concluded that the579

important changes will occur during the winter and summer as opposed to the present580

study which reveals that the major increases will be observed during the winter and581

fall time.582

On the other hand, projections for the temperature Tmax in the study area are found583

to be consistent with the temporal changes in the temperature Tmin. However for the584

considered conditions, the temperature Tmax increases more than the temperature Tmin.585

In addition, although the spatial changes are similar to those displayed by the spatial586

distribution of Tmin, the increase is wider from a spatial point of view. In this regard,587

especially in the autumn months, increases of up to 5 ◦ C in Tmax for the SSP5-8.5588

scenario are to come to the forefront. Seasonal changes demonstrated in the current589

study, are consistent with those reported in the study by (Lachgar et al., 2021), although590

the increasing amount is different. In addition, increases in values of the temperature591

Tmax are more pronounced, especially in areas within high-altitude regions in the north592

and northeast parts of the country.593

The change in the precipitation exhibits a different structure compared to the tem-594

perature. Here, a projected decrease, regarding the precipitation of 30% following the595

SSP2-4.5 scenario and of 50% following the SSP5-8.5 scenario are expected. Besides,596
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based on the presented results, an increase of precipitation during winter time (DJF)597

is observed for the three considered future periods. This is considered as a surprising598

result, with respect to the literature. In fact, many previous studies have highlighted599

that a decrease of precipitation is expected for all seasons in the future scenarios.600

For example, Tuel et al. (2021) used a CMIP5 multi-model to force a high-resolution601

regional climate model over the west part of the Mediterranean region. This study602

shows that a consistent decrease of precipitation is expected during winter time using603

the three GCMs. Those results were later confirmed with CMIP6 simulations in (Al-604

mazroui et al., 2020). These observations are further explained by the fact that wind605

changes in the region favour the flow towards the west coast. This brings dry air from606

the Sahara region and prevents the storms coming from the ocean to hit the region.607

Further investigations on regional climatology using CMIP6 simulations are therefore608

needed to explain this discrepancy. Yet, the overall change of the precipitation might609

not be considered as significant nor robust. Moreover, the present work also shed light610

on an increase of precipitation during the summer time (JJA). Generally, simulations611

based on the CMIP6 indicate that an increase is expected, see for example (Cos et al.,612

2022). As opposed to simulations for which the CMIP5 were used, the trend is oriented613

towards a general decrease, see Tuel et al. (2021); Cos et al. (2022). A similar pattern614

has also been revealed in the study by (Bichet et al., 2020). In their study,615

a precipitation decrease of 20% by 2030, 30% by 2040 and 50% by 2050 is616

predicted in the northernmost regions of Africa. These results are in good617

agreement with the findings of the present study. The results in the current618

work show that the precipitation will decrease in the MAM and SON seasons in all619

scenarios except for a local region in the north. In this regard, studies conducted by620

(Lachgar et al., 2021) and (Tomaszkiewicz, 2021), to a limited extent, both in terms of621

the number of models and the spatial coverage, have predicted a decrease in the precip-622

itation in these seasons. In addition, there is a consistency with results of many studies623

in the literature (Hamed et al., 2022; Du et al., 2022; Mesgari et al., 2022; Spinoni et al.,624

2020) with the increase in the annual precipitation in the Sahara region determined in625

this study. According to other studies from the literature and results of this present626

study, it is concluded that there is a common agreement about the southern part of627

Morocco, but there is no common consensus about the northern part of Morocco. In628

terms of seasonal variations, changes in DJF season give results contrary to previous629

studies but, there is a good agreement in other seasons. Thus, it is also expected that630

the precipitation patterns of the country will change significantly, and the amount of631

precipitation will be reduced to half, especially in areas other than the south of the632

country.633

6 Conclusions634

In the present study, a statistical downscaling method based on the ANN and multi-635

model ensemble is implemented over Morocco. The learning class of the ANN is de-636

veloped using ground stations which allowed to both validate the downscaling and also637

to assess the best GCMs able to simulate the regional climate in Morocco. Next, us-638

ing different climate scenarios, projections of the temperature and precipitation have639
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been performed and spatio-temporal variability of different climate parameters have640

also been assessed. Results obtained for this analysis, confirm that Morocco is prone to641

high levels of variability at seasonal, annual and decadal scales. Overall, the tempera-642

ture is expected to increase in the near future but also in the mid and far future and its643

increase is consistent throughout the seasons as well. The precipitation exhibits also a644

high level of variability and yet, some discrepancies are observed for the general trend645

of changes during winter and summer seasons compared to previous studies available in646

the literature, especially those using the CMIP5 simulations. This needs further inves-647

tigation to understand the reasons behind these surprising changes. A careful analysis648

of the regional climatology is therefore needed to further understand these projections.649

In this study, the changes in annual and seasonal values of the precipitation and tem-650

perature under different scenarios reveal that Morocco is a vulnerable region regarding651

climate change. For this reason, studies on adaptation to climate change in the country652

should be implemented by decision-makers. Finally, it is suggested that the effects of653

these possible changes in the precipitation and temperature patterns on the country for654

drought should also be investigated for different scenarios.655
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