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Abstract—With the increasing number of Internet of things (IoT) devices being deployed and used in daily life, the load on
computational devices has grown exponentially. This situation is more prevalent in smart cities where such devices are used for
autonomous control and monitoring. Smart cities have different kinds of applications that are aided through IoT devices that collect
data, send it to computational processing and storage devices, and get back decisions or actuate the actions based on the input data.
There has been a stringent requirement to reduce the end-to-end delay in this process owing to the remote deployment of cloud data
centres. This eventually led to the revolution of edge computing, wherein nano-micro-processing devices can be deployed closer to the
premises of the smart application and process the data generated with a lower turnaround time. However, due to the limited
computational power and storage, controlling the workload diverted to the edge devices has been challenging. The workload
scheduling policies and task allocation scheme often fail to consider the run time health of the edge devices due to a lack of proper
monitoring infrastructure. Thus, in this paper, we have attempted to propose a health monitoring and diagnosis framework for
geo-distributed edge clusters processing big data generated by smart city applications. This framework is built over the Map-Reduce
approach for distributed processing of big data on edge clusters deployed across the smart city. Within this framework, SmartMonit (a
monitoring agent) is deployed that collects the health statistics of edge devices and predicts the potential failures using an artificial
neural network-based self-organising maps approach. The proposed framework is deployed over different clusters to test the efficacy
concerning failure detection.

Index Terms—Edge computing, Distributed systems, Big data, Self-organised Maps, Smart city.
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1 INTRODUCTION

Smart cities have adopted many technologies that include
distributed Internet of Things (IoT) infrastructures. Large
amounts of data are often produced by smart city tech-
nologies from mechanical sensors dispersed across diverse
city infrastructures [1]. These systems gather data from
important urban infrastructure. Smart systems that operate
on a city-wide scale are included in the vast streams of
data processed by smart city systems [2]. These include,
among other things, water supply networks, waste disposal
facilities, power plants, and transportation systems. The
data generated by smart city applications is often referred
to as big data owing to its volume, velocity, variety, veracity
and other characteristics related to big data [3]. This data
is generally sent to the remote cloud for processing and
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storage purposes [4]. Most smart city applications depend
on actions or decisions based on the processed data. Al-
though cloud data centres provide necessary computing,
storage and related resources for handling the smart city
big data, it incurs a log round trip delay. This round-trip
delay or turnaround time is not suitable for several smart
applications that have stringent delay constraints [5]. For
example, mission-critical or safety-critical IoT applications
are often intolerant to delay as any significant delay can
lead to mission failure or safety concerns [6].

Edge computing is a distributed computing paradigm
that brings applications closer to computing servers and
storage to data sources. This has been seen as a complement
to cloud computing for the past few years [7]. But, the
massive smart city procedures generate increasing volumes
of data, rendering even edge processing inadequate. As
edge computing is dependent on nano or micro resources
that are strictly dependent on its current load status. So,
effective load balancing, workload scheduling, and task
allocation mechanisms are desirable to ensure that the big
data processing do not overload the compute devices. Any
failure or disruption can be massive as it will hinder the
timely services of smart city applications. It becomes per-
tinent to mention that not only failure of the edge node
can be damaging, but the recovery or reconfiguration can
be further time-consuming and often leads to the burden of
additional power consumption.

Several existing proposals have tried to provide load
balancing, workload scheduling and task allocation mech-
anisms to address the concerns of edge computing. For
example, Tütüncüoğlu et al. [8] proposed rate-adaptive task
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Fig. 1. High-level system model for running smart city workflows

offloading for latency-constrained edge computing ecosys-
tem. Similarly, Liu et al. [9] proposed a joint optimization
approach for request assignment and resource allocation
to minimise latency owing to mobile edge computing.
Kashani et al. [10] surveyed the load balancing algorithms
in fog computing based on many representative parameters
like resource utilization, response time and performance.
In another work, Kaur et al. [11] proposed a real-time
scheduling mechanism for handling tasks executed on a
heterogeneous edge platform. However, none of the above
works considered real-time monitoring to collect the edge
statistics (related to performance or load) to improve the
scheduling or related schemes. Fizza et al. [12] tried to
improve the schedulability of the real-time workload for
fog and cloud infrastructure. However, they didn’t consider
real-time monitoring or any intelligent mechanism to detect
the health status of edge nodes to predict a possible future
failure.

It becomes very important to predict if any edge nodes
are on the verge of a possible failure in advance to avoid
additional performance degradation or loss of services.
In this context, Ray et al. [13] proposed a fault recovery
mechanism based on priority for edge computing systems.
This mechanism was based on probabilistic model check-
ing and uses stochastic multi-player games to model the
characteristics of the multi-edge computing interactions.
Furthering this issue, [14] highlighted the importance of
edge cloud durability for providing reliable hosting for IoT
applications. In another work, Wang et al. [15] proposed a
robust task offloading approach to handle the challenges of
mobility and power limitations. However, they are limited
and do not consider inherent characteristics for edge failure
(like overloading, errors, or mi-configurations). Aral et al.
[16] considered the role of spatiotemporal dependencies on
the failures in edge computing. All these works have tried to
contribute to the research domain, but as one can not handle
all the problems altogether, so there is still scope for novel
solutions in edge computing.

1.1 Research Questions:

Looking into the above discussion, we have tried to address
two important research problems in this work. These prob-
lems have been put up as research questions as below.

• How to allocate workloads across multiple edge
clusters? One of the key problems of edge com-
puting is related to its limited computing resources,
and it becomes important to find solutions that can
adopt the benefits of edge computing and remove
the limitations related to its resource limitations. The
growing amount of data generated by smart city
applications is often hard to proceed on a single-edge
device and has to be scattered or scheduled across
multiple edge clusters. To execute big data workflow
applications across multiple edge clusters, we need
an optimization technique for task allocation and
scheduling for handling smart city big data.

• How to predict node failures in heterogeneous edge
clusters? The big data processing and task execution
often overload the edge nodes and can lead to fail-
ures. exhaustive recovery schemes often utilise addi-
tional resources and add to the overhead and costs.
Thus, it is relevant to predict such edge failures in
advance and adapt the workload allocation through
optimization to avoid possible edge failures.

1.2 Organization

This paper makes the following contributions: §2 presents
the proposed scheme for design, emulation and deployment
for experimental research. Experiment setup and results are
presented in §3. We conclude the paper and future work in
§4.

2 PROPOSED SCHEME

The proposed scheme comprises two parts; a) the dis-
tributed processing of big data generated from smart city
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applications using Map-Reduce on edge clusters, and b)
health monitoring and diagnosis to predict edge node fail-
ures. The details about these parts are provided in the
subsequent sections.

2.1 Distributed Processing of Big Data
Fig. 1 presents a high-level system architecture with com-
ponents of the proposed model. The intensive increase in
workload from multiple IoT devices can create bottlenecks
in the network. To handle an elephant-like workload, a
platform is required to disseminate the workload into nu-
merous processing devices. The edge nodes with similar
resources are mapped together to create different clusters,
as shown in Fig. 2. With the increase in the workload, the
number of edge nodes and the size of the cluster varies.
In the first scenario, according to the business 4.0 model,
the devices are intelligent and sensor-enabled. Therefore,
there is more workload in that area, and to handle the huge
workload, more edge nodes are required, which results in
a larger cluster size. The increase in the number of nodes
in the clusters helps to reduce the service delay during task
allocation among the available resources in the cluster. The
controller manages the cluster and handles the incoming
requests from different devices, and allocates the resources
as per the type of incoming traffic to meet the QoS.

Big data refers to data collections that are so enormous
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Fig. 2. Proposed distributed big data processing schema in edge clus-
ters

or intricate that conventional data processing methods are
insufficient [17]. IBM defines big data by disseminating the
data into four categories: volume, variety, velocity, and ve-
racity [18]. To handle this enormous workload from different
sources over large-scale computer clusters, MapReduce was
proposed by Google [19]. Apache Hadoop1 is an open-
source library that enables the handling of structured, semi-
structured and unstructured large-scale datasets in a parallel
manner by splitting the data across servers and clusters.
Apache Spark2, an open-source initiative in the Hadoop
ecosystem, is a MapReduce improvement for the Hadoop
framework. Hadoop MapReduce and Spark vary primarily
in that Spark processes data in memory and keeps it there

1. https://hadoop.apache.org/
2. https://spark.apache.org/

for the following steps, while Hadoop MapReduce stores
data on storage. Both implements the MapReduce program-
ming model for processing large-scale datasets distributed
over different nodes in parallel that parallelizes data analyt-
ics across multiple machines in a cluster for high-speed com-
putations and low latency. MapReduce comprises of mainly
two user-defined methods, map and reduce. The user-defined
program initializes the NameNode, mapper and reducer
functions according to the workload for processing. The
incoming workload is divided into similar sizes of blocks,
which are then forwarded in the form of jobs containing
the keys (k, v) to the Hadoop MapReduce framework for
distributed and parallel processing. In the next phase, map
function creates key-value pairs for each input (k̄, v̄) and
stores them on the local disks for further processing. Then,
the MapReduce framework uses the k̄ key to group similar
values and forwards to the reduce function, consisting of two
sub-phases; the Shuffle phase is used for transferring the
intermediate output from the map to reduce, and the Sort
is used for merging and sorting the outputs, for the final
result.

Fig. 3 demonstrates the MapReduce working principle.
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Fig. 3. MapReduce programming model to process big data in a dis-
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Hadoop Distributed File System (HDFS), Hadoop’s stor-
age unit, provides high bandwidth and scalability to thou-
sands of nodes, enabling the storage of large amounts of
data [20]. The MapReduce method makes it simple to mod-
ify and run large stored data collections over the different
datanodes. Each data block is replicated into different datan-
odes by HDFS to provide fault tolerance in case of potential
failures. Spark does not have a storage system, so it needs
Hadoop HDFS to store data on the cluster.

Processing the workload from edge nodes or through
Apache Spark on a Hadoop cluster is defined in Alg. 1.
The workload (W ) is forwarded by the (D) devices and
integrated workload i.e. workload set (SW ) is divided into
number of tasks (T ). The task is forwarded to the controller
(C) of the cluster (C) for processing. A threshold value (tval)
of the workload is set according to the available resources at
the edge nodes. If the weightage of the required resources
to process the workload is less than the tval, then C allocate
the tasks to the suitable name node. Otherwise, the C act
as a Master NameNode of the lth cluster and distribute
the workload among the worker nodes (edge nodes) as
E1, E2, ...., En shown in Fig. 3.

https://hadoop.apache.org/
https://spark.apache.org/
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Algorithm 1 Resource selection scheme

1: INPUT:- Workloadset SW

2: OUTPUT:- Flag: f
3: Start
4: for w ̸= null do
5: if SW ≤ tvzl then
6: Match available resources and assign Ww → EC

7: else
8: Create blocks: B ← SW

9: Forward B → Alg. 2
10: end if
11: end for

Algorithm 2 Distributed processing of workload using
Hadoop framework

1: INPUT:- B from Alg. 1
2: OUTPUT:- Selected edge nodes in a cluster (EC

j )
3: Start
4: FUNCTION WORK MAPPER(address, index) ▷

address: Directory path, index: Workload number
5: if B ̸= null then
6: file.Write(address,B)
7: end if
8: END FUNCTION
9: FUNCTION WORK REDUCER(address, index) ▷

address: Directory path, index: Workload number
10: for (Eavl

j ∈ Breq
res ) do

11: Efile=HDFS.generateNewFile(Eavl
j .getName()

+.”resources”)
12: for (r=0 to r ≤ Eavl

j .getResources()) do
13: Eval ← Eavl

j .getResources(r)
14: if Eval is active then
15: Efile.Write(j)
16: end if
17: end for
18: end for
19: END FUNCTION

The Hadoop-based workload dissemination approach
is defined in Alg. 2. The WORK MAPPER() and
WORK REDUCER methods are used to map the work-
load among suitable nodes in the cluster. The <
address, index > are used as < key, value > to define
the path of the local storage and to index the bunch of the
selected workload. The available resources at the jth edge
node on the particular cluster are denoted by Eavl

j and the
required resources to process the selected bunch of work-
load (B) are denoted by the Breq

res . The mapped resources of
the edge nodes are stored in the Efile for allocation of the
resources at the WORK REDUCER method. The relation
among the taskset (ST ) is highlighted below.

ST =

n∑
p=1

(MR
p ) (1)

where p = 1, 2, .., n are the total elements in the taskset.
In smart city scenario, there can be D devices/users

and Userset can be denoted as SU . The relation among the

different SU is given by Eq. 2.

SU =

m∑
r=1

(Dr) (2)

From Eq. 12, the relationship between the devices and the
MapReduce components is given by Eq. 3.

Dr →MR
p (3)

The incoming workload is scheduled in the multiple
queuing (Q) models in the Hadoop framework. The dif-
ferent levels of queues contain reliant queues as q. The
integrated queue is represented by Eq. 4.

Q =

α∑
x=1

qx (4)

The defined queue in the queue group is the integrated
multi-level queue and is given by Eq. 5.

d

dL
qx = qx(Lv) (5)

The queue configuration levels are denoted by L, given by

L =

∫ XY

x=1

Lx (6)

where X and Y are the partition and levels of the queue
representation, respectively.

By using Eq. [1,4,6], the task allocation in the Hadoop
framework is calculated by using Eq. 7.

MR
p → qxLv (7)

The devices/users tasks are formulated by

Dr →< MR
p → qx(Lv) > (8)

2.2 Failure Detection
Table 1 shows the information on performance metrics con-
cerning the edge node of a particular cluster collected to
check the health of the nodes. Machine learning techniques
are used to predict the health of the node. The early predic-
tion of the node failure helps the service provider to provide
remedial solutions to fix the failure in the nodes.

TABLE 1
Proficiency metrics for failure prediction in Edge clusters

S. No. Performance metrics
1 Edge node throughput
2 Transaction latencies
3 Queue length
4 CPU utilization
5 Memory utilization
6 I/O traffic
7 Status of the nodes in the clusters
8 Mapper progress
9 Mapper execution time

Initially, the information of the nodes is timely collected
to check the health of the respective node. In the next phase,
the collected information is pre-processed to extract the
required fields as mentioned in Table 1 and forward the
same to the machine learning tool to check the health of
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the various nodes in the clusters. The components used for
the health prediction of the nodes in the clusters are shown
in Fig. 4. In the further sections, data collection, data pre-
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Fig. 4. Health prediction scheme using SOM

processing, and health prediction models are discussed.

2.2.1 Data Collection
Data collection is used to gather information needed to
identify emergent failures or root causes of performance
degradation in edge clusters. To monitor the health of
the nodes in the proposed framework, SmartMonit [21] is
deployed in each master node in edge clusters. SmartA-
gent, the executable application of SmartMonit, is managed
by the user of the big data cluster using the command
line. SmartMonit is a monitoring framework that offers a
comprehensive approach to continuous data collection from
big data clusters. The framework has an adaptable and
dynamic pipeline for transferring the gathered data to the
embedded high-performance, large-scale storage system.
To collect the system logs, SmartMonit is executed in the
master node, which starts collecting data from all the worker
nodes, including system and infrastructure information. All
the collected data is then transferred to the Management
Node for further processing. Fig. 5 illustrates a high-level
implementation of SmartMonit in a big data cluster.
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Fig. 5. The framework of SmartMonit

SmartMonit collects the performance metrics defined in
Table 1 through the APIs shown in Table 2. The main
component of SmartMonit is the SmartAgent used for orga-
nizing the data collection from big data clusters, including

TABLE 2
SmartMonit APIs for log collection

TaskAgent APIs Description
taskExec() Deliver the execution time since the task

started in sec.
taskProg() Deliver the progress of the running task as a

percentage.
taskInputSize() Deliver the input data size of the running task

in mb.
taskBlockId() Deliver the block id allocated to the task.
taskHostId() Deliver the ID of the node the task ran on.
taskCPUutil() Deliver the CPU utilization of the task.
taskMemUtil() Deliver the memory utilization of the

task.
blockLoc() Deliver the locations of the nodes that host

the block.
tasksWaiting() Deliver the number of tasks pending to be

run.
taskActivity() Deliver the number of tasks running in the

node.
hearthBeat() Deliver if the worker node is alive or not.
SystemAgent APIs Description
totalCoreNum() Deliver the number of CPU cores in the node.
CPUUsage() Deliver the CPU utilization of the node.
totalMem() Deliver the total memory in the node.
memUsage() Deliver the memory utilization of the node.
diskReadSpeed() Deliver the disk read speed of the node.
diskWriteSpeed() Deliver the disk write speed of the node.
uploadSpeed() Deliver the network upload speed of the node.
downloadSpeed() Deliver the network download speed of the

node.
availableDisk() Deliver if the worker node has enough disk

capacity or not.
CPUtemp() Deliver the temperature of CPUs in the node.

MapReduce tasks information and resource utilization from
each machine. It collects all the information provided by
the APIs and stores it in the database. The data filtering for
further processes is discussed in §2.2.2. SmartAgent has two
sub-agents, TaskAgent and SystemAgent. MapReduce tasks
(mapper and reducer) information, such as job and task
status, cluster details, the processed data, and the progress
and execution time of each task, are gathered via YARN
REST APIs3 deployed in TaskAgent. Similarly, system met-
rics, namely edge nodes’ throughputs, transaction latencies,
queue length, CPU and memory loads, and I/O traffic, are
collected via SystemAgents, which implements Sigar APIs4.
All the collected data is transferred to the RabbitMQ cluster
in the Managemen node in real-time via Producers deployed
in each node. RabbitMQ provides efficient and lossless
data transmission. The Consumer receives the data from the
RabbitMQ cluster and stores the collected data in a time-
series database, InfluxDB5.

Fig. 6 demonstrates SmartMonit integration methodol-
ogy in edge clusters.

2.2.2 Pre-processing / Feature Engineering
The data is collected from the edge nodes of a particular
cluster via SmartMonit for health prediction. Onwards, the
data is processed to make it compatible with the machine
learning tool. During analysis, the missing data is padded,
data is labelled, and the unwanted metrics are removed
accordingly. Moreover, feature scaling is used to normalize

3. https://hadoop.apache.org/docs/r3.2.0/hadoop-yarn
4. https://github.com/hyperic/sigar
5. https://www.influxdata.com/
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Fig. 6. Data Collection agents model (a); Implementation of SmartMonit
mechanism in Edge clusters (b)

the range of the monitoring data variables collected by
the monitoring tool. After this, the metrics that weighs for
health prediction are identified. Various techniques are used
for data processing, like, RF classifier, etc. The classifier
identifies the weightage of each metric and calculates the
impact of the metric on the health of the selected node, and
accordingly, the metrics are selected for training the model.

2.2.3 Self Organised Maps for Failure Prediction
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Data n

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

Xn Yn Zn

Weight MatrixHeader of dataIncoming data Output

1: Healthy
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Mapping

Fig. 7. SOM based classification model

The timely collected information about the different edge
nodes of the clusters is processed using a reinforcement
learning approach to identify the health of the systems.
The advanced status of the edge nodes helps to attain
the Quality of Service (QoS). The message is forwarded
to the controller for timely handling of the raised issues
and balancing the load among intra and inter-cluster. The
identified metrics, as mentioned in Table 1, are used to check
the status of the edge nodes. In this manuscript, an artificial
neural network (ANN) based Self Organizing Map (SOM)
reinforcement approach is used to for early failure detection.

By using the weightage metrics, the edge nodes can be
categorized into healthy or un-healthy classes as shown in
Fig. 7.

Training. During the training phase, the weight matrixes are
created according to the behaviour of the selected metrics.
The neurons in the SOM-based classification model are
assigned weights as per defined classes. The eigenvectors
are used for initial weight allocation to the neurons. There-
after, a competitive learning approach is used to iterate the
weights to make the model more accurate. For training, the
required samples are pre-processed to improve the accuracy
of the defined model.
Mapping. In the mapping phase, the selected metrics en-
closed in the header of the incoming traffic and the allocated
weights are mapped to get the status of the edge nodes. The
mapping of the defined model is discussed in the following
steps:

• Initially,W weight matrix is selected randomly from
the selected sample.

• The assigned weight is mapped with the weights of
the incoming metrics.

• During mapping, the close weights are marked to the
similar weight class matrix by using the Euclidean
distance approach to find the best machine unit
(BMU).

To classify the incoming data from various edge nodes,
the sequence of instructions is highlighted in Algorithm 3.
The proposed algorithm works for each edge node (j) for
all clusters (v). The Ej edge node undergoes the proposed
steps to identify the status. Afterwards, the selected metrics
are fetched from the headers of the timely incoming data
from the edge nodes. The random weights (Wjv ∈ (0, 1))
are assigned to the neurons to classify the incoming input
values. The Euclidean distance (Dyz) is calculated to find
the similarity index of the features. After a number of
iterations, the minimum Euclidean distance is selected and
accordingly, the random weights are updated by using the
competitive learning approach as Wjv at time t + 1 to
improve the performance of the defined model. According
to the behaviour of the selected E, it is pushed into the
defined class (Qref ).

Algorithm 3 Application-specific classification using SOM
1: START
2: for j = 1 ; j ≤ n; j ++ do
3: for v = 1 ; v ≤ m; v ++ do
4: initial Weight allocation→Wjv ∈ (0, 1)
5: Index target edge node Dt

6: Euclidean distance:
Dyz =

√∑n
j=1(yj − xj)2

7: Calculate BMU→MIN(Dxy)
8: Weight updation using BMU:
Wjv(t+ 1) =Wjv(t) + θ(jv,BMU, t)α(t)(Dt −Wjv)

9: PUSH Ej → Qref
v

10: Revise: t, t ≤ λ
11: end for
12: end for

We have implemented SOM using a Python library,
MiniSom. All source code is open-source on GitHub6.

6. https://github.com/JustGlowing/minisom

https://github.com/JustGlowing/minisom
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3 RESULTS AND EVALUATION
This section presents a comprehensive evaluation of the
proposed system for failure prediction in edge clusters.

3.1 Experimental testbed and workload
To evaluate the accuracy of the proposed system, we de-
ployed three different Spark YARN clusters on AWS, con-
sisting of 4 nodes (1 master and 3 workers), each having 4
cores and 16 GB of memory. The operating system for each
node is Ubuntu Server 20.04 LTS, SSD Volume Type. The
Spark version is 3.3.0, and the Hadoop version is 3.3.4. We
executed the WordCount7 benchmark over a 20GB dataset.

3.1.1 Monitoring tool overheads
To evaluate the overheads of the monitoring tool, we mea-
sure the CPU and memory consumption. SmartMonit con-
sumes only about 2.64% memory and 4.71% CPU. Moreover,
it requires only 3.82 MB of disk space while creating 30 KB/s
network traffic for 100 tasks.

3.2 Failure prediction evaluation
In this section, we evaluate the accuracy of the SOM algo-
rithm. Fig. 8 demonstrate the health status prediction results
using the SOM for the big data cluster.

As evidenced by experiments in [3], the tasks running on
the nodes with more than 70% CPU usage and more than
60% memory usage tend to be outliers. Our experiments
shown in Fig. 9 demonstrate the distribution of the outliers
based on CPU/memory consumption. In our case, If a
node’s CPU usage is more than 70% and memory usage
is more than 60%, that computer is considered unhealthy.
Moreover, if the node is disconnected from the network or
a signal (heartbeat) cannot be received from a node, then
this node is also considered unhealthy. All the nodes in edge
clusters outside of these situations are considered healthy.

Fig. 8(a) shows the SOM distance map as a background
over the collected metrics. The maps that host only red
circles in Fig. 8(b) indicate the node did not get approval re-
garding health status, which is already unhealthy, while the
maps that host only green squares specify the healthy nodes
that are currently running. The maps with both markers
show nodes with a high potential to fail and are detected by
the algorithm. The maps with a white background indicate
potential nodes that are difficult to detect. In other words, it
shows the accuracy of the algorithm.

3.2.1 Performance reduction verification
Outliers are tasks that take longer to complete than similar
tasks. To verify the performance degradation resulting in
failures, we conduct experiments on poorly performing
nodes by referring to outliers. As indicated in [22], the
nodes having outliers, which is a common symptom in
underperforming nodes, are highly prone to fail. Using
the progress and execution times of the tasks, we identify
outliers as used in this work [22]. As clearly indicated in
Fig. 9, outliers are most likely to appear when resources are
heavily utilised in big data systems. Fig. 9(a) shows outlier
occurrences while CPU utilization is very high, while Fig.
9(b) demonstrates it during high memory usage.

7. http://wiki.apache.org/hadoop/WordCount

0 2 4 6 8 10
0

2

4

6

8

10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) SOM distance map as a background

0 2 4 6 8 10
0

2

4

6

8

10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Predicting healthy and unhealthy nodes

Fig. 8. Big data failure prediction using SOM

4 CONCLUSION AND FUTURE WORK

This paper considers an important problem related to edge
computing for handling big data processing in a smart city.
It is often seen that several latency-sensitive or real-time
workloads are assigned to edge nodes for faster processing
or to avoid the round trip delay from the data source
and cloud data centre. However, as these edge devices are
in itself limited in resources, so they are always at risk
of failure leading to service disruption, adopting recovery
strategies, and degradation in performance. The recovery or
re-configuration policies used in the existing systems often
add to the overhead, additional energy consumption, and
long delay. So, it is important to understand the symp-
toms related to possible edge failures that we have called
health status in this paper. If we are able to accurately
predict the health status of the edge devices, then we can
make timely decisions (like service or data migration to
another edge or restricting any further allocation to pos-
sibly overloaded edge) till these edge nodes are back to
normal health status. In this paper, we have proposed a
self-organized map (SOM)-based failure detection scheme
that is based on the monitoring scheme. This monitoring
scheme deploys a smart agent known as SmartMonit that
collects the health statistics of the edge devices in real-time.
Once the health statics are collected, the SOM predicts the
possible nodes that are expected to fail. Knowing this, we

http://wiki.apache.org/hadoop/WordCount
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Fig. 9. Frequency of outliers occurrences. Outliers are most likely to occur during high resource utilization in big data systems.

can optimize our workload allocation mechanism to avoid
such a scenario. This work has been validated over three
Spark YARN clusters to understand the behavior of the
scheme. The results look promising and predict the edge
node failure successfully. In the future, we will perform the
root cause analysis and diagnosis for the key reasons behind
the failures. Based on the analysis, we will further design
self healing strategies for resource-constrained IoT systems.
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