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ABSTRACT 16 

Risk identification is a knowledge-based process that requires the time-consuming and laborious 17 

identification of project-specific risk factors. Current practices for risk identification in 18 

construction rely heavily on an expert’s subjective knowledge of the current project and of 19 

similar historical projects to determine if a risk may affect the project under study. When 20 

quantitative risk-related data are available, they are often stored across multiple sources and in 21 

different types of documents complicating data sharing and reuse. The present study introduces 22 

an ontology-based approach for construction risk identification that maps and automates the 23 

representation of project context and risk information, thereby enhancing the storage, sharing, 24 

and reuse of knowledge for the purpose of risk identification. The study also presents a novel 25 

wind farm construction project risk ontology that has been validated by a group of industry 26 

experts. The resulting ontology-based risk identification approach is able to accommodate 27 

project context in the risk identification process and, through implementation of the proposed 28 

approach, has identified risk factors that affect the construction of onshore wind farm projects. 29 

Keywords: risk management; risk identification; onshore wind farm; ontology; knowledge 30 

management; construction   31 
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1. Introduction 32 

By 2050, approximately 35% of worldwide electricity demands are anticipated to be supplied 33 

by onshore and offshore wind farms [1]. Expanding the capacity of wind energy to meet this 34 

demand will require the large-scale construction of turbines and grid systems. An important step 35 

in the pre-construction stage of wind farm projects is risk management. The construction phase 36 

of wind projects may be hindered by various types of risks [2], which must be appropriately 37 

managed to ensure project objectives are completed on time, within budget, and in adherence to 38 

environmental and safety regulations [2,3]. Onshore wind projects are a unique type of 39 

construction project that are characterized by repetitive construction, where each project has 40 

several turbines that are constructed in a similar way. As a unique type of construction process, 41 

onshore wind farm construction is characterized by unique risks. Also, onshore wind projects are 42 

relatively new types of construction, thus available data and reference materials are either scarce 43 

or of low quality [2]. As such, existing risk registers for onshore wind farm construction are 44 

broad, encompassing risks that may not be applicable to all projects while omitting contextual or 45 

project-specific risks. Thus, risk management in wind farm projects remains a relatively 46 

unexplored field of study, resulting in a lack of applicable risk management decision-support 47 

systems suitable for onshore wind farm construction. Current risk identification methods in wind 48 

farm construction, therefore, lack the capacity to map specific project characteristics to identified 49 

risk factors. This limitation prevents the contextualization of historical data, requiring risk 50 

analysts to manually evaluate the similarity between previous and current projects. This is a 51 

time-intensive process that involves the review of data across multiple, fragmented databases and 52 

the tedious mapping of risk factors to the specific characteristics of a new project [2]. 53 
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The first step of the risk management process is risk identification. Here, various aspects of a 54 

project, including financial, environmental, social, regulatory, and/or political considerations [4], 55 

are reviewed to identify factors that may result in schedule delays, cost overruns, or other safety 56 

or environmental concerns. In current practice, risk analysts obtain specific details (i.e., context) 57 

of a project from incompatible and fragmented data sources (e.g., expert experience, historical 58 

project information, construction plans, and other project-related documentation) before 59 

comparing the project under study to similar historical projects and curated risk registers to 60 

identify potential risks for a new project.  61 

Several risk identification techniques were proposed in the literature, which can be categorized 62 

as traditional [5] or advanced [6]. Traditional risk identification techniques such as risk registers, 63 

Delphi method, and interviews are limited by several barriers, including (1) the requirements of 64 

experts to review a significant volume of project documents, (2) the inability to automatically 65 

discover and map relationships between risk knowledge that exists in the same or in different 66 

documents, and (3) the dependency of output quality on the recall accuracy of experts. Advanced 67 

risk identification techniques have also been proposed in the literature, such as case-based 68 

reasoning [2] and rule-based systems [4]. However, existing techniques (e.g., case-based 69 

reasoning [2]) can typically only consider higher-level project information and are limited by 70 

their inability to consider specific project details and contexts [2]. If capable of considering 71 

project specifics (e.g., rule-based models [4]), they are limited by the need to create long lists of 72 

mapping if-then rules for each new project. These if-then rules are used to associate the contexts 73 

of the project that require risk identification with the contextual information of previous projects 74 

so that risks can be identified as potential risk factors. Although models (e.g., case-based 75 

reasoning [2] and rule-based [4]) for automating the mapping of risk factors with project 76 
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characteristics have been developed, they focus on mapping risks at a high level and cannot 77 

consider the specific, contextual characteristics of individual projects. This is particularly 78 

important in wind farm construction, as the specific regulatory, environmental, social, and 79 

geographical context of a project can substantially impact the types and severity of risks on 80 

project outcomes. For example, a risk factor of damage to existing infrastructure that was 81 

identified in a previous risk register of an onshore wind project may not apply to another onshore 82 

wind project until the context of that project is defined and information about existing 83 

infrastructure is determined.  84 

Recently, risk ontologies were shown to rapidly map safety risks [7–9] to specific projects in 85 

construction. While promising, these studies [7–9] were limited to specific risk factors (e.g., 86 

safety risks) and cannot, therefore, be used to compile a comprehensive list of all risk factors 87 

(e.g., financial, environmental, etc.) present during the construction phase of wind farm projects. 88 

Building upon the current-state-of-the-art, the present study has developed a unified, ontology-89 

based model to automate the context-driven identification of risk factors in onshore wind farm 90 

construction. A domain-specific risk ontology model, which functions as a knowledge base for 91 

the storage, reuse, sharing, and recall of risk information, was built from historical project data 92 

and was validated by a group of subject matter experts. Once validated and verified, the model 93 

was used to develop a context-driven risk identification ontology.  94 

In recent years, there has been a large development of advanced quantitative risk 95 

management techniques due to their enhanced accuracy and usability over traditional techniques 96 

[10]. Despite these improvements, advanced techniques are rarely applied in construction 97 

practice [11]. Abdulmaten Taroun [10] conducted a comprehensive literature review of risk 98 

management techniques used in construction since 1980. In this study, Taroun concluded that, 99 
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while numerous theories and techniques for improving risk management in construction have 100 

been proposed, these theoretical advancements are not being translated into advances in 101 

construction practice. These findings align with those of a recent study by Jung and Han [12], 102 

which reported that, because of a lack of knowledge and real-world applicability, practitioners 103 

continue to rely on experienced-based, traditional risk management approaches. Advanced risk 104 

management techniques described in the literature are often presented using simple illustrative 105 

examples or generic project information [13]. Although this approach of presenting advanced 106 

risk management techniques was useful for demonstrating method generalizability, construction 107 

practitioners often have difficulty adapting and applying these generic methods to a specific 108 

project [13]. Domain-specific models allow for a better understanding of the model by industry 109 

practitioners and also facilitate model development and experimentation. This study presents the 110 

first reported application of an ontology-based approach to develop a domain-specific risk 111 

identification model that can easily be emulated and implemented by industry practitioners in 112 

any onshore wind project. The domain-specific model is used to identify the context-driven risk 113 

factors of wind farm projects.  114 

This study contributes to the body of knowledge by (1) proposing a domain-specific context-115 

driven approach for risk identification in onshore wind projects. Domain-specific techniques 116 

such as this are expected to facilitate the adoption and application of ontologies by industry 117 

practitioners to more effectively identify construction risks in onshore wind projects., (2) 118 

extending the application of ontology to the identification of risk factors associated with the 119 

construction of onshore wind projects, and (3) reducing the time and effort required to map risks 120 

to specific project contexts by automating the risk identification process, thereby improving the 121 

storage, reuse, and recall of risk-related knowledge. 122 
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2. Literature review 123 

2.1 Risk identification in onshore wind farm projects 124 

A risk factor is defined by the Project Management Institute (PMI) [14] as “an uncertain 125 

event or condition that, if it occurs, has a positive or negative effect on a project’s objectives”. 126 

Risk identification is the process of systematically and continuously identifying, categorizing, 127 

and assessing the initial significance of the risk factors associated with a construction project 128 

[15]. Risk identification is considered the most important step in the risk management process 129 

[16,17], as unidentified risk factors cannot be controlled or mitigated [18,19] and, therefore, 130 

impose unassessed threats to project objectives [18].  131 

Numerous research studies have focused on identifying the risk factors affecting the entire 132 

lifecycle of a wind farm project, including design, construction, operation, maintenance, and/or 133 

decommissioning. Many of these studies have relied on published literature and/or questionnaire 134 

surveys. For example, Gatzert and Kosub [3] presented the risk factors affecting onshore and 135 

offshore wind farm projects in Europe, including risk factors at different phases of the project 136 

lifecycle and risk mitigation strategies for the proposed risks. In a similar study, Angelopoulos 137 

and colleagues [20] investigated the risk factors affecting the planning, construction, and 138 

operation of onshore wind energy projects in Europe. Another study identified and presented the 139 

risks and challenges that face the design, planning, construction, and control of small wind 140 

turbine projects in Italy with respect to time, cost, and quality [21]. Other studies have reviewed 141 

the risk factors affecting the entire lifecycle of onshore wind farm projects [22], risk factors in 142 

implementing wind energy projects along with proposed mitigation strategies for those risks 143 

[23], and risks facing solar and wind energy projects along with the available risk mitigation 144 

strategies that can contribute to the sector’s growth and long-term sustainability [24].  145 



8 

Much of the risk identification literature in onshore wind farm construction has focused on 146 

the identification of the risks themselves as opposed to the development of advanced methods for 147 

identifying risks. As such, these studies have not addressed the challenges associated with the 148 

management and representation of knowledge for risk identification. The importance of project 149 

context and knowledge representation in risk identification is detailed in the following section. 150 

2.2 Project context and knowledge representation 151 

Context is defined by Dey [25] as “any information that can be used to characterise the 152 

situation of an entity. An entity is a person, place, or object that is considered relevant to the 153 

interaction between a user and an application, including the user and applications themselves”. 154 

With respect to the risk identification problem, entities are risk factors and the information used to 155 

identify the risk factors is the project context. From a construction perspective, Boukamp and 156 

Ergen [26] defined context as specific project conditions on site (such as the project components 157 

that are built), activities performed, and resources used. Dey [25] further outlined three important 158 

features of context-aware modeling techniques, specifically that (1) the system has the ability to 159 

present information and services to the user; (2) the system can automatically execute services for 160 

a user; and (3) the system can link context and information together to enable reasoning and 161 

retrieval. 162 

Consideration of project context can be achieved through knowledge representation, which is 163 

the process of recording and coding real-word domain knowledge using communicative media to 164 

allow reasoning [27,28]. The five main categories of representation techniques include object-, 165 

network-, frame-, logic-, and semantic web-oriented [29] representation. Object-oriented 166 

representation allows information to be organized as objects that communicate with each other 167 

[29]. Each object is defined by private properties (i.e., attributes) and methods (i.e., procedures) 168 
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[29]. Objects can only communicate with each other through messages [29]. Network-oriented 169 

representation allows knowledge to be represented visually through a network of interconnected 170 

nodes, each representing different entities that have various relationships [29]. Frame-oriented 171 

representation, which is often used in natural language processing, allows all information 172 

relevant to an entity to be arranged together in one structure associated with that entity [29]. 173 

Logic-oriented representation makes use of rules that deal with propositions, where a conclusion 174 

can be drawn based on different conditions. Lastly, semantic web was developed to represent 175 

generic knowledge, such as concepts, their relationships, and how they are semantically 176 

associated [27]. 177 

Risk management is often complicated in construction by the fragmented nature of 178 

construction data, where various data are stored in isolated data islands. As such, risk 179 

management in construction requires a systematic model for risk management that allows the 180 

consideration of complex risk sources and their causation mechanisms [30]. A change in project 181 

context can significantly influence the risk factors of a project [31]. Incorporating project context 182 

with risk factors allows risk analysts to identify context-oriented risk factors instead of relying on 183 

a generic list that may not apply to the current situation [4,32]. Considering context descriptors is 184 

beneficial for accurate recognition and for determining potential relationships between risk 185 

factors and their sources [30]. Ignoring project context information increases the burden on 186 

analysts due to the effort required to select the risk factors that are most relevant to the current 187 

project [4,32]. Furthermore, the use of knowledge acquired from previously-executed projects is 188 

often limited without an explanation by the practitioners involved in these projects regarding the 189 

context and relationships between data [33].  190 
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Recent work by Kifokeris and Xenidis [34] suggested that risk factors and sources should be 191 

contextually and methodologically integrated with other technical project information. Context 192 

modeling approaches were classified by Wang and colleagues [35] into formal and informal 193 

modeling. Formal context modeling adopts formal approaches for manipulating contexts to 194 

enable reasoning about contextual knowledge. Conversely, informal context modeling is often 195 

based on proprietary representation schemes that do not permit reasoning about contexts in a 196 

single system [36], nor share any understanding about context easily between different systems 197 

[35]. Although a majority of context models employ classification systems to structure 198 

contextual information, only a few allow association relationships between contextual 199 

information without considering the semantic relationships [36]. Existing methods for 200 

identifying risks in construction are detailed as follows. 201 

2.3 Risk identification techniques in construction 202 

Risk identification techniques can be classified as either traditional methods or advanced 203 

methods. Generally, traditional techniques implement the risk identification process manually 204 

without any support from information and communications technology (ICT) techniques [5], 205 

while advanced techniques tend to automate the risk identification process using some form of 206 

ICT techniques [6]. Brief descriptions of both traditional and advanced techniques, as well as 207 

promising developments in each category, are provided.   208 

2.3.1 Traditional techniques 209 

Manual documentation review, where risk factors are identified through a review of 210 

documents from the current project or similar projects, is one of the most common traditional 211 

risk identification approaches [17,19]. Time-consuming and laborious, documentation review 212 

relies heavily on the quality of both the documentation and expert judgment for identifying risk 213 
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factors, as well as on the ability of experts to discover relationships between knowledge that 214 

exists in the same or different documents. 215 

Other common traditional techniques rely solely on expert judgment for risk identification 216 

[19]. In the Delphi technique, a group of experts are asked individually about the relevance of 217 

each potential risk factor to the project; then, their opinions are aggregated and recirculated 218 

among the participants until a consensus is reached [37,38]. The brainstorming technique can 219 

also be applied. This technique begins with the presentation of the overall objectives, followed 220 

by a free and open dialogue to encourage the identification of risk factors [38–40]. Another 221 

common technique is one-to-one interviews. Here, interactive dialogue is used to elicit risk 222 

factors directly from interviewees [18], where experts are interviewed directly about the risk 223 

factors in a project. Although the Delphi technique, brainstorming, and interviews do not rely on 224 

project documents for risk identification, these techniques depend on expert recollection of 225 

previous experiences and their comparison to the project under study. A dependence on expert 226 

recall can result in certain risk factors being unintentionally omitted. Notably, Goh et al. [40] 227 

have recommended the implementation of a database interface between project team members to 228 

streamline communications during brainstorming sessions. 229 

Using checklists developed from previous projects [41], or lessons learned [37] as a memory 230 

aid, is another traditional technique for risk identification. Often used as a starting point in the 231 

risk identification process [17], checklists alone cannot link risk factors to specific project 232 

contexts. Risk registers, which use recorded data from previous projects including information 233 

about the risk factors, response strategies, required resources, risk impact, and risk allocation 234 

[4,42] to identify risk factors for a new project [19], may also be used for risk identification. 235 

Although risk registers provide more information compared to other traditional techniques, risk 236 
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registers, much like checklists, lack the capacity to automatically map risk data to each other. 237 

Lastly, diagramming or graphical techniques, including cause-and-effect diagrams, system or 238 

process flow charts, and influence diagrams, have been used to identify risks in construction 239 

projects [17,19]. These techniques are used relatively infrequently in construction [19,38], and 240 

similarly to other traditional risk identification techniques, the accuracy of diagramming 241 

techniques relies on the recall accuracy of experts. 242 

Traditional risk identification techniques are limited by several barriers, including (1) the 243 

requirements of experts to review a significant volume of project documents, (2) the inability to 244 

automatically discover and map relationships between risk knowledge that exists in the same or 245 

in different documents, and (3) the dependency of output quality on the recall accuracy of 246 

experts.   247 

2.3.2 Advanced techniques 248 

A number of studies have attempted to address the limitations of traditional risk 249 

identification techniques through the development of advanced risk identification methods. Some 250 

researchers have suggested the use of case-based reasoning for risk identification. For example, 251 

Somi et al. [2,43] proposed a fuzzy case-based reasoning model to support risk identification in 252 

onshore wind projects. However, the first study [2] focused only on a specific component of the 253 

project (i.e., tower assembly). Moreover, both studies [2,43] lack the ability to represent risk 254 

knowledge and project context information. Lastly, after retrieving a list of risk factors of a 255 

similar project, the risk analyst must decide which risks apply to the new project using their 256 

expert judgment, which takes additional time and effort. Zou et al. [44] proposed case-based 257 

reasoning and natural language processing to retrieve similar cases from previous projects. 258 

Although able to more rapidly identify project risks, these methods are unable to consider the 259 
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detailed context of a project during the identification process in addition to the need for manually 260 

determiningwhich risk factors are relevant to the project being analyzed.  261 

De Zoysa and Russel [4,32,45] suggested the use of project context to identify the risk 262 

factors of a construction project using a rule-based system. Their risk identification framework 263 

consists of three primary components: a standard library (standard templates), current project 264 

context, and rule sets. The standard library allows the user to define the project context for 265 

sources of risk factors, including financial, social, environmental, political, and regulatory 266 

aspects. The current project context component allows the user to define the attributes and 267 

parameters of the current project. The rule sets allow communication between the current project 268 

context and the standard library. Although able to consider the specific context of a particular 269 

project, the rule sets that link the current project to the standard library must be defined manually 270 

for each new project. Requiring considerable time and effort, existing rule-based systems do not 271 

represent a considerable improvement in terms of laboriousness and time. Recently, evidence 272 

demonstrating the potential of ontology-based approaches to address these gaps has been 273 

reported, with several studies demonstrating promising results in other application areas. For 274 

example, Xing et al. [7] developed an ontology model to identify risks in a metro construction 275 

project, Aziz et al. [46] proposed an ontology model to represent the knowledge of safety 276 

hazards during petrochemical operations, and Cao et al. [30] presented an ontology model to 277 

support the identification of accidents during railway operations. Osorio-Gómez et al. [47] 278 

proposed an ontology approach for risk identification of operational risk management in a supply 279 

chain with third-party logistics providers. Although promising, these studies were limited to a 280 

specific set of risk factors in other application areas. The ability of these existing approaches to 281 

identify and assess a comprehensive set of all risk factors present during construction, therefore, 282 
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remains limited. Although rule-based systems and ontology-based approaches are both 283 

considered knowledge-based systems, ontology-based approaches allow direct mapping and 284 

linking of contextual information with risk information. This feature of ontology-based 285 

approaches eliminates the need to develop a lengthy (and time-consuming) list of if-then 286 

mapping rules required for the development of a rule-based system. Although still in its infancy, 287 

the development of an ontology-based risk identification approaches has been described in a few 288 

studies. A description of ontological modeling in construction and for risk identification is 289 

detailed as follows. 290 

2.4 Ontologies in construction and risk management 291 

A fundamental key to proper and successful risk management is the ability to share 292 

information between different technical and management teams in a project [46]—a process 293 

requiring a unified language, terminology, and information [46]. Ontology, as a means for 294 

information storage and transfer, is a widely used approach for knowledge representation and 295 

modeling, especially when knowledge is highly interconnected and linked [48]. Key objectives 296 

that can be achieved by the development of ontologies have been described by Noy and 297 

McGuinness [49]. These include (1) to share a common understanding of the structure of 298 

information between people or software agents, (2) to enable the reuse of domain knowledge, 299 

and (3) to analyze domain knowledge.  300 

Ontology represents domain knowledge as a set of concepts along with the connections (i.e., 301 

relationships) between them [50–52]. Compared to a traditional database schema [7], ontologies 302 

enable the presentation of knowledge with explicit and rich semantics [52].. Ontology 303 

development typically begins with schema of the domain model, which describes the main 304 

components of knowledge to be considered [53]. Then, a taxonomy is used to organize sub-305 
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concepts contained within each of the main components [54]. A taxonomy allows for the 306 

organization of concepts into concept schemes through a hierarchy of classes and sub-classes 307 

[54]. A class is a collection of instances that can encompass sub-classes within its taxonomy. 308 

Relationships are used to describe the connections amongst the classes and sub-classes of the 309 

ontology. The various features and attributes of the classes and sub-classes are defined by 310 

properties. Instances are the basic components of an ontology, which fill the defined properties 311 

of the classes and sub-classes [49]. Ontology-based approaches have two advantages, 312 

specifically (1) they are able to model context variables and semantic relationships in one unified 313 

framework, and (2) they can be used for reasoning purposes to infer the characteristics of a 314 

system with new conditions.  315 

Ontologies have been widely applied in construction management to model the domain 316 

knowledge of construction concepts. Leading research in this area was originated by El-Diraby et 317 

al. [51], who proposed a domain taxonomy of construction knowledge that provided a foundation 318 

for the development of domain ontologies of urban civil infrastructure [55], highway 319 

infrastructure [56], and generic construction domain knowledge [50]. Existing ontology-based 320 

approaches to model risk knowledge in construction remain limited. One subset of ontology-321 

based studies has limited their scope to a specific set of risks; therefore, a comprehensive set of 322 

strategic project level risks cannot be identified using these methods proposed by the authors of 323 

the aforementioned studies. Examples include the use of ontologies to identify safety hazards 324 

related to specific construction methods, such as metro construction [7,8]; to model the safety 325 

requirements and standards for active fall safety hazards [9]; or to identify safety hazards in 326 

construction projects [57–59]. These ontologies were able to achieve the purpose they were 327 

created for, which is modeling knowledge of safety hazards related to a specific construction 328 
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method at the activity level. Although an ontology-based approach was used in the 329 

aforementioned studies, risk knowledge at the strategic project level was not modeled, and the 330 

studies overlooked other risk factors related to cost, time, quality, and the environment.  331 

A second subset of studies have focused on improving knowledge management and transfer 332 

between different phases of the risk management process at the project level. For example, 333 

Tserng and colleagues [60] proposed an ontology-based risk management model for representing 334 

risk factors’ knowledge to enhance information flow in both the identification and assessment 335 

phase of the risk management process. Importantly, however, their model did not consider the 336 

specific context of a project, limiting the ability of their model to support context-driven risk 337 

identification in practice. Meditskos and colleagues [61] and Angelides and colleagues [62] 338 

proposed an ontology model to facilitate the integration of risk assessment practices from various 339 

domains and to provide unified terminologies for managing risks in industrial projects. Similar to 340 

the study of Tserng and colleagues [60], the coverage and comprehensiveness of Meditskos and 341 

colleagues’ [61] model were limited (i.e., only a high-level ontology model with few details 342 

regarding the taxonomies in each sub-ontology was presented). Therefore, existing models are 343 

limited due to their inability to consider the semantics of the contextual information required for 344 

proper identification of risk factors. Nevertheless, these previous models laid the foundation for 345 

the current study by suggesting that ontology-based modeling may represent a potential approach 346 

capable of addressing the challenges related to context and semantic modeling in risk 347 

identification [36].  348 

Although no single ontology can fully cover all domains, nor can a single ontology satisfy 349 

the needs and preferences of all users [56,63], domain-specific ontologies for application to a 350 
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certain project type can be designed. An ontology for improving knowledge management during 351 

risk identification in onshore wind projects, however, has yet to be developed.   352 

2.5 Research gaps 353 

Several limitations of advanced risk identification techniques that must be addressed to 354 

progress the state-of-the-art have been recognized in the literature:  355 

1. While existing rule-based models [4,32,45] are capable of integrating risk factors 356 

with specific project contexts, the modeling approaches proposed require practitioners 357 

to exert a considerable amount of time and effort to develop the rules that map risk 358 

factors to their context. 359 

2. Although less laborious, existing case-based reasoning models [2,43,44] lack the 360 

capacity to consider detailed project contexts and, when mapping to corresponding 361 

risk factors, prevent automated reasoning and identification of related risk factors.  362 

3. Existing ontology models developed to support risk identification in construction 363 

focus on only: 364 

a. a specific set of risk factors [7,30,46,47,60–62], or 365 

b. risks at the activity level [57,58].  366 

4. Ontologies designed to support risk identification in onshore wind projects have not 367 

yet been developed. 368 

3. Proposed framework 369 

To address the aforementioned gaps, the present study has developed a domain-specific risk 370 

ontology for onshore wind farm projects that is capable of identifying a context-driven list of 371 

project risks relevant to the execution phase of construction projects. The risk ontology was then 372 

incorporated into a framework designed to enable the rapid, automatic identification of various 373 
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risks in consideration of detailed project contexts. The proposed framework consists of three 374

steps as shown in Fig. 1: (1) ontology population, (2) current project data collection and input, 375

and (3) risk factor identification. The methodology used to develop the ontology, as well as a 376

description of the proposed framework, are detailed in Sections 3.1 and 3.2, respectively.  377

378

Fig. 1. Proposed ontology-based framework for risk identification.379

3.1 Ontology development380

First, the domain-specific risk ontology that is incorporated into the framework was developed 381

using the method proposed by Noy and McGuinness [49]. The methodology consisted of a 382

conceptual formulation stage and an implementation stage. The conceptual formulation stage (Stage 383

1) included six steps (Fig. 2). The first was a knowledge extraction step, where the domain and scope 384

of the ontology was determined. This was followed by ontological preparation steps, where 385

important terms were enumerated, and the following terms were defined: classes and class hierarchy,386

relationships between classes, properties of classes, and instances within classes. Conversely, the 387

implementation stage (Stage 2) consisted of two steps, specifically ontology implementation and 388

evaluation. An overview of the methodology used to develop the ontology is presented in Fig. 2.389
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Fig. 2. Ontology development methodology.391

3.1.1 Knowledge extraction392

In the knowledge extraction step, competency questions that focus on determining the 393

purpose, scope, level of formality, intended uses, and end-users of the risk ontology were 394

established based on those recommended in literature [55,56]. Questions in the present study 395

included “What is (are) the purpose(s) of the ontology?”, “What parts of the risk management 396

process should be covered by the ontology?”, “What information should be captured in the 397

ontology?”, and “Who are the end-users of the ontology?”. Competency questions formulated as 398

queries are presented in Table A.1.399

It was determined by the present authors that the ontology should focus on the identification 400

stage of the risk management process to support the project planners, project managers, and 401

decision makers involved in the risk identification of onshore wind projects. As such, 402

information related to the drivers or sources of the risk factor, the response strategy developed to 403
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mitigate the impacts of risk factors if they occurred, and their effect on the project and objectives 404 

of the project were included as classes of this particular ontology. 405 

Once the scope was defined, a schema of the domain model of the ontology was developed to 406 

support knowledge extraction and modeling. The schema of the domain model was developed 407 

using competency questions and by reviewing previous research related to knowledge-based risk 408 

identification [4,31,47,61]. Common classes found across multiple studies, or classes used in 409 

previous studies that were well-suited to onshore wind farm construction were identified, as 410 

summarized in Table 1. Based on these findings from competency questions and previous 411 

research, seven key classes, including (1) risk factors, (2) project, (3) risk drivers, (4) risk 412 

classification, (5) project objectives, (6) project work packages, and (7) response strategy, were 413 

used to establish the schema of the domain model illustrated in Fig. 3. 414 

Table 1. Summary of classes in previous studies. 415 

Reference Primary Classes Used 

[4] Risk factors, risk factor classification, response strategies, and physical 

components 

[31] Risk factors, risk factor classification, work breakdown structure of affected 

project components 

[61] Case study, risk case, risk, risk variable, category, and impact category 

[47] Risks, sources of risk, frequency, impact, managerial strategies, and logistics 

companies 

It is also common practice for domain experts (groups of 3–10 experts) to be involved in the 416 

iterative development and evaluation of ontologies (in contrast to using a mass survey approach) 417 

[56]. Here, a focus group consisting of six experts in risk management, as detailed in Table 2, 418 

evaluated the schema of the domain model and confirmed that the content analysis was complete 419 

and that ontology development could begin.  420 
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Table 2. Demographic information of focus group experts. 421 

No. Position 
Industrial Experience 

(years) 
Education 

1 Vice President 20 M.Sc. 

2 Project Manager 18 B.Sc. 

3 Project Manager 15 B.Sc. 

4 Risk Analyst 12 B.Sc. 

5 Wind Turbine Engineer 10 Ph.D. 

6 Project Coordinator 7 B.Sc. 

 422 
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Fig. 3. Schema of the domain model of onshore wind farm risk knowledge in Protégé®. 425 

3.1.2 Ontological preparation 426 

After establishing the schema of the domain model and the main classes that should be 427 

modeled in the risk ontology, detailed descriptions of the classes, relationships, and properties 428 

were developed. Content analysis was applied to discover the existence of classes within texts, to 429 

understand their meanings, and to analyze the relationships between the classes [54]. Following a 430 

content analysis of related project records, historical data, and project documents, the classes 431 
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taxonomy was identified. Consultations with domain experts were used to periodically evaluate 432 

the representativeness of the developing taxonomies. In the following sub-sections, each 433 

taxonomy is defined. Then, semantic relationships between the classes of the schema of the 434 

domain model are detailed. Finally, data properties of the classes and sub-classes are described. 435 

3.1.2.1 Development of class taxonomy 436 

The taxonomy development process typically includes varying degrees of judgments 437 

regarding classification and the balance between depth and coverage [51]. A review of existing 438 

literature provided the foundation for taxonomy development. Moreover, ontology development 439 

best practices proposed by El-Diraby et al. [51], specifically (1) iterative development and (2) 440 

involvement of domain experts, were used to support this process. After the first set of expert 441 

interviews (i.e., held after the development of the schema of the domain model), a set of 442 

preliminary taxonomies, based on available literature, was developed. Then, a second set of 443 

interviews with the domain experts listed in Table 2 were held. Subject experts reviewed and 444 

evaluated the proposed taxonomy, ultimately resulting in the final taxonomies illustrated in Fig.  445 

It is important to note that similarities of classes between different types of construction 446 

projects are expected when developing risk ontology for strategic project-level risk 447 

identification. However, it is also expected that certain classes will differ from one project to 448 

another. Onshore wind projects are a unique type of construction project that are characterized 449 

by repetitive construction, where each project has several turbines that are constructed in a 450 

similar way. A typical onshore wind farm project was found to be comprised of eight major work 451 

packages: site preparation, pre-construction work, foundation, turbine delivery, turbine assembly, 452 

collection system, commissioning, and site rehabilitation [64–67]. This uniqueness of onshore 453 

wind projects was considered while developing the risk ontology: sub-classes of two classes 454 
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were specifically designed for this type of project, namely the “Processes” class and the “Project 455 

work package” class as shown in Fig. 4. The sub-classes of these two classes will differ from one 456 

project type to another depending on the project work breakdown structure. The reader should 457 

consider this distinction when developing risk ontologies for different project types. The 458 

development process of each class is detailed as follows. 459 

3.1.2.1.1 Risk drivers taxonomy 460 

Understanding the relationships between the risk factors and their drivers is crucial for 461 

effective risk identification. The taxonomy of the risk drivers class was developed based on 462 

previous research [4,7,31,32], which proposes that risk identification can be classified into 463 

external and internal project contexts. This sub-classification was applied to the risk drivers class 464 

of the current ontology, as illustrated in Fig. 4.  465 

Here, the external project context class represents the characteristics surrounding a project, 466 

including physical, economic, social, political, and regulatory contexts [4,45]. The first external 467 

project context sub-class is the physical class, which represents both the natural and artificial 468 

objects surrounding a project. The physical sub-class is further divided into the natural objects 469 

sub-class, which includes living organisms and inorganic objects such as geological features and 470 

natural resources [4,45], as well as the artificial objects sub-class, which represents man-made 471 

objects including existing structures such as buildings, utilities, and other infrastructure. The 472 

second external project context sub-class is the economic sub-class, which refers to financial 473 

conditions such as inflation, exchange rate, and labor market. The third sub-class is the political 474 

context sub-class, which represents federal, state (or provincial), and municipal government 475 

characteristics. The fourth sub-class, the regulatory class, refers to the various regulations 476 

imposed by the federal, state (or provincial), and municipal governments on project execution, 477 
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such as environment protection laws, labor and safety regulations, and other municipal by-laws. 478 

The final sub-class, the social class, refers to the demographic profile of the project in terms of 479 

cultural characteristics of local and First Nations communities. 480 

The internal project context class contains two sub-classes, the process sub-class and the 481 

organizational structure sub-class, as detailed in Fig. 4. The process sub-class refers to the various 482 

work packages executed during the construction phase of the project that are represented in a 483 

typical work breakdown structure. A typical onshore wind farm project was found to be 484 

comprised of eight major work packages: site preparation, pre-construction work, foundation, 485 

turbine delivery, turbine assembly, collection system, commissioning, and site rehabilitation [64–486 

67]. The sub-classes of “Process” class is specific to the project under study; thus, it will differ 487 

from one project type to another. For example, while Bonduel [68] developed a construction task 488 

ontology, it cannot be used here as it was developed for heritage buildings. The organizational 489 

structure sub-class represents the different stakeholders involved in the project and, importantly, 490 

the relationships between them [69,70].  491 

3.1.2.1.2 Risk classification taxonomy 492 

Risk factors in onshore wind farm projects can be classified into a number of risk categories. 493 

The risk factor classification taxonomy developed here, and as illustrated in Fig. 4, was adopted 494 

from the generic taxonomy for risk factors in construction projects proposed by Siraj and Fayek 495 

[19]. Risk factors themselves are instances of the risk factor class and are linked to the risk 496 

classification class through a “hasType” relationship, as detailed in Section 3.1.2.2 below. 497 

3.1.2.1.3 Project objectives taxonomy 498 

The aim of all construction projects includes the execution of the project with a high level of 499 

quality, within planned budgets and schedules, with zero incidents, and with little, if any, harm to 500 
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the environment [4]. When a risk factor occurs, it has the potential to impact one or more of 501 

these five objectives. As such, five sub-classes, namely cost, time, quality, safety, and 502 

environmental objectives, were included in the taxonomy of the project objectives class, as 503 

illustrated in Fig. 4. 504 

3.1.2.1.4 Project work packages taxonomy 505 

In certain conditions, risk factors are known to affect select portions of the project. Based on 506 

the work breakdown structures of onshore wind farm projects developed by Hao et al. [64] and 507 

Mohamed et al. [13], the construction activities of onshore wind farm projects were represented 508 

in the current ontology by eight primary work package sub-classes, as shown in Fig. 4. 509 

3.1.2.1.5 Risk response strategy taxonomy 510 

Risk response strategies in construction projects are commonly-grouped under five 511 

categories [71]. Accordingly, risk acceptance, risk elimination, risk transfer, risk retention, and 512 

risk reduction sub-classes for the risk response strategy class were developed in the ontology, as 513 

shown in Fig. 4. 514 

 515 

 516 
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Fig. 4. An abstract UML class diagram of the risk ontology classes. 518 
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3.1.2.2 Relationship establishment 519 

Semantic relationships emulate how two or more concepts are associated [9]. Relationships are 520 

often defined by a verb-containing phrase that describes the semantics of the relationship [9] to 521 

enable their reasoning [36]. Two of the five methods proposed by El-Diraby et al. [51] were applied 522 

to identify relationships in the current ontology, specifically (1) a review of related ontologies and 523 

their approaches to build relationships, and (2) expert review during the development phase of the 524 

research. All of the relationships defined between classes, in addition to the domain and range for 525 

each, are illustrated in Table 3 and Fig. 4. Details of this process are described as follows. 526 

In the present research, relationships between classes and associated sub-classes were 527 

established using Hyponym–Hyperonym relationships. Hyponym–Hyperonym relationships, 528 

which have been referred to by a number of alternate terms including IS-A (is-a), a-kind-of, 529 

genus-species, and class-subclass relationships, are commonly-used to establish relationships 530 

[72]. Here, classes (i.e., hyperonyms) are related to sub-classes (i.e., hyponyms) using verb-531 

containing phrases. For example, the risk drivers are divided into internal and external risk 532 

drivers, thus “internal risk drivers are a-kind-of risk drivers”. Cause-and-effect relationships 533 

between concepts were described by a number of causative verbs, such as Cause, 534 

hasConsequenceOn, hasEffectOn, hasType, and hasResponse (as shown in Table 3 and Fig. 4). 535 

For example, “risk drivers cause risk factors”. Finally, concept-object relationships were used to 536 

specify relationships between classes and their instances as, for example, “accidental damage of 537 

archaeological finds is-instance-of risk factor”. 538 

  539 
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Table 3: Identified object properties between classes  540 

No. Domain 
Object Properties 

(Relationship) 
Range 

1 Risk Factor hasResponse Response strategy 

2 Risk Factor hasEffectOn Project work-package 

3 Risk Factor hasType Risk Classification 

4 Risk Factor hasConsequenceOn Project Objective 

5 Risk Driver Cause Risk Factor 

 Risk Factor CausedBy Risk Driver 

6 Risk factor OccuredIn Project 

3.1.2.3 Properties identification 541 

Properties were used to represent the detailed characteristics of the predefined classes [63], as 542 

defined in Table 4. The inclusion of properties is particularly important for the project context 543 

class, as the associated risk factors depend on the specific characteristics (i.e., properties) of the 544 

project context. 545 

3.1.2.4 Expert review of risk ontology 546 

Once the class taxonomy, relationships, and properties were established, a second focus 547 

group meeting was organized to collect feedback from domain experts. Experts were asked to 548 

indicate whether or not they believed that the ontology was being developed in a manner that 549 

was representative of real operations and was capable of fulfilling the intended purpose. Each 550 

taxonomy was discussed in depth with the focus group, along with the associated relationships 551 

and properties. Questions that were asked in this meeting included, “Do you think the taxonomy 552 

depth comprehensively covers the knowledge in this class?”, “Do you think the relationships are 553 

logical and capture the association between classes?”, and “Is the hierarchy of the taxonomy 554 

reasonable?”. 555 
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3.1.3 Ontology implementation 556 

Following the review by domain experts, the ontology was modeled using a knowledge-557 

domain modeling platform to transform the ontology from a conceptual model to an 558 

implementable format for testing and application. Designed to facilitate the development, 559 

navigation, and visualization of knowledge-domain models, the free, widely used, and open-560 

source ontology platform, Protégé, was applied to implement the risk identification ontology in 561 

the present study [73]. Notably, other ontology platforms may also be used. 562 

Table 4. Data properties defined for the risk driver class. 563 

Class (Domain) Data Property Data Type Units 

Project Project name String – 

Project location  String – 

Project size  Float MW 

Project duration  Float months 

Roads and railways Road category String – 

Average daily traffic Float vehicle/day 

Existing buildings Heritage significance Boolean – 

Closest construction activity String – 

Distance to closest activity Float m 

Utilities (pipelines/cables) Closest construction activity String – 

Distance to closest activity Float m 

Botany Name  String – 

Closest construction activity String – 

Distance to closest activity Float m 

Temperature Min. winter temperature (5-yr. avg.) Float °C 

Max. winter temperature (5-yr. avg.) Float °C 

Average winter temperature (5-yr. avg.) Float °C 

Precipitation Average snowfall (5-yr. avg.) Float cm 

Maximum snowfall (5-yr. avg.) Float cm 

Average rainfall (5-yr. avg.) Float mm 

Maximum rainfall (5-yr. avg.) Float mm 

Wind Maximum wind speed (5-yr. avg.) Float m/s 

Average wind speed (5-yr. avg.) Float m/s 

Archaeological heritage Closest construction activity String – 

Distance to closest activity Float m 

Heritage significance Boolean – 

Land use Purpose  String  

Affected area size Float m2 

Soil Type  String – 

Groundwater level Float m 

Hydrography Closest construction activity String – 

Distance to closest activity Float m 

Earthquake Return period Integer years 
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Magnitude  Float Richter 

Zoology Closest construction activity String – 

Distance to closest activity Float m 

Breed in the area Boolean – 

Animal name String – 

Political Overall stability Boolean – 

Support for the project Boolean – 

Regulatory Responsible agency String – 

Approval status Boolean – 

Social Attitude toward project String – 

Participation in public consultation Boolean – 

Organizational Cooperation level  String – 

Risk attitude String – 

Clear responsibility Boolean – 

Response strategy Description String – 

Risk factor Probability  String – 

Impact  String – 

3.1.4 Ontology verification 564 

Two evaluation methods were used in the present study to verify the implementable version 565 

of the risk ontology. First, an automated consistency check was applied to ensure that the 566 

ontology was free from contradicting facts [74], which can result in inconsistencies and, 567 

ultimately, in incorrect conclusions. Second, criteria-based evaluation was used to verify the 568 

content of the ontology using a predefined set of criteria proposed for ontology evaluation in 569 

previous research [7,9]. The verification processes are detailed as follows. 570 

3.1.4.1 Automated consistency check 571 

The Pellet reasoner [75] in Protégé was used to perform an automated consistency check for 572 

inconsistent and disjointed class assertions, domains, and ranges of relationships. Results of the 573 

final consistency check are shown in Fig. 5, indicating that inconsistencies were not found. 574 
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 575 

Fig. 5. Consistency check in Protégé. 576 

3.1.4.2 Criteria-based evaluation 577 

Criteria-based evaluation was conducted through interviews with domain experts using a focus 578 

group approach. Experts were selected based on the following criteria: (1) years of experience in 579 

the risk management of construction projects, and (2) familiarity with risk identification in wind 580 

farm projects. To reduce bias, experts that did not participate in the ontology development review 581 

process performed the evaluation. Three experts, namely a project manager, estimator, and risk 582 

analyst, with an average of 15 years of experience in industry were selected. 583 

The goal of the criteria-based evaluation was to test the adequacy of the semantics and the 584 

ease of use of the ontology [55]. Once selected, experts were asked to rate their satisfaction with 585 

the proposed risk ontology across several criteria using a 5-point Likert scale. An open-ended 586 

question asking the experts to indicate other areas of the ontology that may require further 587 

investigation was also included. Results of the criteria-based evaluation are summarized in Table 588 

5 and are described below. 589 

  590 
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Table 5. Overall evaluation by experts. 591 

Criteria Sub-Criteria Average Std. Dev. 

Coverage Core concepts are incorporated 4.33 0.57 

All relationships are incorporated 4.00 1.00 

Completeness Definitions of classes, taxonomy, and relationships are complete 4.33 0.57 

The ontology explicitly includes all that should be included 4.67 0.57 

Clarity All concepts in the ontology are clear 5.00 0 

Concepts are in agreement with literature 4.33 0.57 

Conciseness Ontology does not contain unnecessary concepts 4.67 0.57 

Ontology does not contain explicit redundancy between concepts 5.00 0 

3.1.4.2.1 Coverage 592 

Coverage assesses whether the ontology incorporates the main concepts and relationships 593 

within the domain or lacks certain classes and relationships [63]. This criterion was also 594 

examined throughout the conceptual formulation stage as the taxonomies and relationships of the 595 

schema of the domain model were established. Based on the results of the evaluation, subject 596 

experts “agreed” that core concepts and all relationships are incorporated in the developed wind 597 

farm risk ontology. The overall average evaluation of this criterion was 4.16 (Table 5), with a 598 

standard deviation of less than one, indicating that the evaluation was consistent amongst the 599 

experts. The experts proposed that other concepts could be added to benefit the risk 600 

quantification stage.  601 

· Completeness 602 

Completeness determines if the classes, taxonomies, and relationships defined in the 603 

ontology are complete and appropriate for use in the application stage [74]. The ontology is 604 

considered adequate to support specific data needs if two conditions are satisfied: (1) each 605 

definition is complete, and (2) the ontology explicitly includes all that should be included [74]. 606 
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To achieve this, a top-down approach is used to assess if each top class is complete with respect 607 

to its sub-classes (taxonomy) and if the domain and range for each relationship is defined. The 608 

overall average evaluation of this criterion was 4.50 (Table 5), indicating that the experts “agreed 609 

to strongly-agreed” that the classes, taxonomies, domain, and range of the relationships were 610 

complete. There were no open-ended comments regarding completeness.  611 

· Clarity 612 

Clarity of ontology indicates if an ontology can clearly exhibit the intended meanings of the 613 

developed classes and their taxonomies without ambiguity. This criterion was also examined 614 

throughout the conceptualization stage as concepts and standards for defining and setting the 615 

meaning of each concept/class were extracted from literature. The clarity criterion was evaluated 616 

based on the two items: (1) concepts are clear, and (2) intended concept definition was consistent 617 

with definitions from literature and practice. The overall average evaluation of this criterion was 618 

4.67 (Table 5), indicating that the experts “agreed to strongly-agreed” that all concepts and their 619 

intended meanings were consistent with definitions from literature and practice. There were no 620 

open-ended comments regarding clarity. 621 

· Conciseness 622 

Conciseness assesses if the information collected in the ontology is useful and precise [74]. 623 

Gómez-Pérez [74] indicated that an ontology is concise if the following two conditions are met: 624 

(1) it does not contain unnecessary and useless concepts, and (2) explicit redundancy does not 625 

exist between concepts. The overall average evaluation of this criterion was 4.84 (Table 5), 626 

indicating that the experts “agreed to strongly-agreed” that the ontology did not contain 627 

redundancies or unnecessary concepts. There were no open-ended comments regarding 628 

conciseness. 629 
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3.2 Proposed framework 630 

After development, the domain-specific risk ontology was integrated into the proposed 631 

framework. Application of the framework involves three primary steps: (1) ontology population, 632 

(2) current project data collection and input, and (3) risk factor identification, as shown in Fig. 1. 633 

3.2.1 Ontology population 634 

Historical data of previous projects are input into the domain-specific risk ontology to 635 

establish instances of each class in a process known as a ontology population or instance 636 

extraction [76,77]. The contextual information of previous historical projects, together with the 637 

risk information of these projects, are then used to extract the instances of the developed risk 638 

ontology. Instance extraction can be performed either manually or using certain automated 639 

information extraction frameworks [76,77]. Enriching the contextual information of the ontology 640 

is expected to improve risk identification in future projects. Thus, once constructed, project data 641 

should be populated into the ontology as new instances. 642 

3.2.2 Current project data collection 643 

After inserting the instances into related classes, the ontology—now enriched with 644 

knowledge—can be used to fetch information for risk identification purposes. It is important to 645 

note that if project data are confidential and should not be published publicly, instances’ data and 646 

the ontology should be stored in separate repositories to ensure data security and then these 647 

separate repositories can be queried. Current project data are then input into the populated 648 

ontology. Required inputs for this process include the contextual information about the project 649 

for which risk factors must be identified. This information can be collected once the context of 650 

the project is established (i.e., scope of the project and surrounding environment) from various 651 

project documents, such as construction plan reports, financial reports, built heritage 652 
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assessments, and environmental assessments. Examples of input data collection are described in 653 

Section 4.2 of the case study. 654 

3.2.3 Risk factor identification 655 

Once the current project data are collected, the contextual information is fed, using queries, 656 

into the ontology. The queries that input the contextual project information are responsible for 657 

fetching and retrieving context-specific project risk factors for the project under study. The 658 

ontology can be accessed through a standard query language, which uses a standard code (e.g., 659 

Python, C#) and a triple store/graph database (e.g., ontotext graphdb, etc.) to fetch and identify 660 

context-based information. One common standard query language is the Standard Protocol and 661 

RDF Query Language (SPARQL), which is used to query graph data represented as RDF triples 662 

[78]. Also, A Decision Logic (DL) query is a class expression that uses a user-friendly syntax for 663 

OWL DL constructed using constructs such as ‘and’ and ‘some’ to collect information about a 664 

particular class, property, or individual [79]. The DL query language, supported by a user-665 

friendly syntax plug-in for OWL DL, is designed to collect all information about a particular 666 

class, property, or individual [79]. SPARQL queries, in contrast, have greater flexibility and 667 

applicability than DL queries. Readers are referred to the online SPARQL reference site [78] for 668 

a detailed explanation of SPARQL queries. Various risk-related information can be retrieved 669 

based on the structures of the queries and descriptors of the project context. Examples of these 670 

queries are presented in Section 4.3. 671 

Once risk factors for the new project have been identified, risks can be further analyzed by 672 

determining their impacts, probabilities, and proposing appropriate response strategies. Risk 673 

management literature includes a large body of work; readers are referred to the work of Somi et 674 
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al. [2], Mohamed et al. [13], and Mohamed et al. [80] for a review of current risk management 675 

approaches in onshore wind farm construction. 676 

4. Case study 677 

Publicly-available data from seven real wind farm projects were used to demonstrate the 678 

functionality and applicability of the proposed framework. The onshore wind project, Settlers 679 

Landing [81], was chosen as the study project to which the proposed risk identification 680 

framework was applied. Historical projects used to develop the class instance representations and 681 

populate the ontology are listed in Table 6. Protégé, a free, widely used, and open-source 682 

ontology platform, was used to implement the risk identification ontology. The reader is referred 683 

to the user guide [82] of Protégé for a detailed overview of the development steps. 684 

4.1 Ontology population 685 

A dataset of six onshore wind farm projects located in Ontario, Canada, was collected and 686 

used to fill and build the instances of the proposed ontology. A description of these projects is 687 

provided in Table 6; all are onshore wind farms. Project documents that were available included 688 

project descriptions, construction plans, cultural heritage assessments, natural heritage 689 

assessments, and noise assessments.  690 

Instances for each class were extracted from these documents, including the risk factors, 691 

context of the project (i.e., risk drivers), risk response strategies, and attributes of the instances. 692 

Public disclosure of project documents is often limited to risks pertinent to the public. As such, 693 

the majority of extracted information was related to environmental or social risk factors. These 694 

included environmental risk factors with the potential to cause damage or harm to the 695 

surrounding environment of the projects, or social risk factors such as traffic congestion and 696 

noise disturbances due to construction activities. A manual instance representation approach was 697 
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adopted in the current case study. First, related documents from different sources were reviewed; 698 

then, instances were extracted and input into the related class in the ontology. Historical risk 699 

knowledge was implemented and coded in Protégé platform [83], as shown in Fig. 6. The 700 

extracted risk concepts and taxonomies were modeled as “classes” (Fig. 6; red box); 701 

relationships between concepts were modeled as “object properties” (Fig. 6; blue box); and 702 

attributes of the classes were modeled as “data properties” (Fig. 6; green box).  703 

Table 6. Details of the projects used for class instance representation. 704 

No.       Project Project Size (MW) No. of Risk Factors 

1 Belle River Wind Project [84] 73.5 8 

2 Bornish Wind Energy Centre [85] 72.9 8 

3 Grey Highlands Clean Energy [86] 18.5 7 

4 Grey Highlands Zero Emission [87] 10.0 6 

5 K2 Wind Project [88] 270 6 

6 Port Ryerse Wind Power [89] 10.0 4 

 705 
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Individuals Data Properties Object Propertiesp j p

706
Fig. 6. Screenshot of the risk ontology in Protégé.707

Examples of the populated instances for one risk factor, as well as an example of populated 708

instances of the risk factors for an entire project are provided as Figures 8 and 9, respectively. 709

The semantic structure of the risk factor “Accidental Damage of Archaeological Finds” from the 710

Belle River Wind Project is shown in Fig. 7. This risk factor has six drivers (CausedBy, Cause), 711

which are the foundation excavation activity and the presence of five archaeological artefacts 712

near the construction activities. This risk factor is classified (hasType) as an environmental risk 713

factor (P1_Environmental_Risk) and is an instance of the class “Risk_Factor”. This risk factor 714

can impact (hasConsequenceOn) the project time objective (P1_time) because regulations 715

require that work must stop immediately. This risk factor occurred in (OccuredIn) the Belle 716

River Wind Project, or Project 1. The attributes of the archaeological finds in the project study 717

area are provided in Table 7. The example provided in Fig. 7 illustrates the advantages of using 718
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ontologies to model risk information, specifically (1) the ability to model information at the risk-719 

level precisely, and (2) the elegance and simplicity of the resulting visualization. 720 

hasConsequenceOn hasType hasResponseInstanceofOccuredInCause CausedBy
 721 

Fig. 7. Semantic structure of archaeological damage risk in Protégé. 722 

Table 7. Data properties of archaeological finds. 723 

Artifact Name Closest Activity Distance to Activity (m) Heritage Significance 

Aboriginal Artifact Turbine 1 200 Yes 

Aboriginal Artifact 1 Turbine 2 285 Yes 

Aboriginal Artifact 2 Turbine 3 30 Yes 

Euro-Canadian Artifact Turbine 1 131 Yes 

Euro-Canadian Artifact 1 Turbine 3 140 Yes 

 724 

All remaining risk factors in the Belle River Wind Project were modeled and implemented 725 

using an approach similar to the detailed risk example. Fig. 8 illustrates the semantic structure, 726 

risk drivers (context), and the response strategies of the eight risk factors identified in Project 1. 727 

The other five projects were modeled and added to Protégé using a similar approach. 728 
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729 
 730 

Fig. 8. Semantic structure of Project 1 risk factors along with their context in Protégé. 731 

4.2 Current project data collection 732 

Then, contextual project information from the project under study (i.e., risk identification 733 

project) was collected and prepared for input into the ontology. Information was retrieved from 734 

project data available in the Settlers Landing project repository [81] and summarized as shown in 735 

Table 8.  736 

  737 
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Table 8. Project context information. 738 

Item  Class Data Property (Attributes) Data Value Unit 

New wind project Project Project name Project A – 

Project location Ontario, Canada – 

Project size 8 MW 

Project duration 5 months 

Stone farmhouse Existing buildings Heritage significance Yes – 

Closest construction activity Access Road – 

Distance to closest activity 750 m 

Plant 1 Botany Name Sugar Maple – 

Closest construction activity Turbine 3 – 

Distance to closest activity 33 m 

Plant 2 Botany Name White Oak – 

Closest construction activity Turbine 3 – 

Distance to closest activity 33 m 

Plant 3 Botany Name White Birch – 

Closest construction activity Turbine 3 – 

Distance to closest activity 33 m 

Amphibian 1 Amphibian Animal name Amphibian Breed. Habitat – 

Closest construction activity Underground Cable – 

Distance to closest activity 230 m 

Breed in the area Yes – 

Reptile 1 Reptiles Animal name Snake Hibernacula  

Closest construction activity Underground Cable – 

Distance to closest activity 46 m 

Breed in the area Yes – 

Mammal 1 Mammals Animal name Bat Maternity Colony – 

Closest construction activity Access Road – 

Distance to closest activity 18 m 

Breed in the area Yes – 

 739 

4.3 Risk factor identification 740 

Seven separate SPARQL queries were designed for each of the defined project contexts 741 

provided in Table 8. Queries were directly expressed and written in the separate SPARQL tab in 742 

Protégé. The query itself was written in the top part of the tab, while query results were 743 

displayed in the bottom portion of the tab as shown in Fig. 9, Fig. 10, and Fig. 11. Query 1 744 

extracted the risk factors and their response strategies that could be implemented to mitigate risks 745 

resulting from the presence of existing buildings surrounding the project. The results of the query 746 

are shown in Fig. 9. Here, one risk factor, “Damage to Existing Infrastructure” was identified 747 
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and recalled based on the similarity of the current project (i.e., Settlers Landing) to historical 748 

Project 1. Project 1 (i.e., Belle River) had three existing buildings (Farmhouses 1-3) located 749 

within the project area within varying distances of construction activity. Using the context of the 750 

current project, which also is characterized by the presence of a farmhouse, the framework was 751 

able to automatically recall and identify the risk factor “Damage to Existing Infrastructure” as 752 

well as the associated response strategies. 753 

Query 2 was designed to fetch and retrieve instance data for risk factors associated with the 754 

existence of sugar maple trees in the project area based on the contextual information specified 755 

in Table 8. Fig. 10 shows the results of the query. Here, two risk factors “Accidental Vegetation 756 

Damage/Removal” were recalled from Projects 2 and 5 based on their contextual similarity to the 757 

current project (i.e., Settlers Landing). 758 

 759 

Fig. 9. SPARQL query of existing buildings related risk factors. 760 
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 761 

Fig. 10. SPARQL query of risks related to sugar maple trees. 762 

Similarly, Queries 3 and 4 were designed to identify risks associated with white oak and 763 

white birch trees in the project area by entering the associated contextual information (e.g., 764 

botany name, closest construction activity, and the distance to the closest activity) into the query. 765 

Queries 5 through 7 were also developed to identify risk factors resulting from the existence of 766 

amphibians, snakes, and bats. Implementation of Query 5 is illustrated in Fig. 11. Queries 6 and 767 

7 were implemented using a similar approach, with the animal name, closest construction 768 

activity, and distance to activity changed as applicable. The six risk factors recalled and 769 

identified using the proposed framework for the construction of the Settlers Landing onshore 770 

wind project are detailed in Table 9. 771 
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 772 

Fig. 11. SPARQL query of amphibian related risks. 773 

Table 9. Identified risks of the Settlers Landing wind project during construction. 774 

No. Risk Factors Retrieved from Response Description 

1 

 

Damage to  

existing buildings 

 

Project1 

 

· Install a 20 m protective buffer zone to avoid these sites 

· No ground alteration activities will take place inside of the 20 m protective 

zone 

· Adhere to best practices regarding the operation of construction equipment 

and delivery of construction materials 

2 

 

Accidental damage 

to sugar maple 

trees 

 

Projects 2 and 5 

 

· Directional drilling will occur at a depth of 4-5 ft. below surface to avoid 

impacts on critical root zones 

· Any vegetation removal required along roadside collector lines or 

transmission lines should be minimized and occur completely within the 

road right-of-way 

· Clearly delineate work area within 30 m of significant natural features or 

wildlife habitats using erosion fencing, or similar barrier, to avoid 

accidental damage to species to be retained 

· Demarcate construction areas 

· Restoration of vegetation if any is removed 

· Excavation of soils will occur at the minimum distance of 5 m away from 

the drip line of any significant woodland 

3 

 

Accidental damage 

to white birch trees 

 

Project 5 

 

· Excavation of soils will occur at the minimum distance of 5 m away from 

the drip line of any significant woodland 

· Restoration of vegetation if any is removed 

· Demarcate construction areas 

4 

 

Accidental  

damage/mortality 

of amphibians 

 

Project 1 

 

· If construction activities must occur during the bird breeding period (May 

1–July 31), a biologist will conduct nest searches, in areas where natural 

vegetation will be removed, to ensure there will be no impact to breeding 

birds 

· Implement and enforce on-site speed limits 

· If construction activities within 30 m of significant woodlands must occur 

outside of daylight hours, spotlights will be directed downward and/or away 

from the woodland to limit potential light disturbance to breeding birds 
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5 

 

Mortality of snake 

and damage of  

hibernaculum 

Project 3 · Construction personnel will be educated about the location and significance 

of these features 

· Flag and demarcate the 30 m area around each hibernaculum 

6 Disturbance and/or 

mortality of bat 
Project 2 · Propose a lighting scheme to that will minimize potential risk to bat 

collisions while fulfilling Transport Canada requirements 

· Clearly delineate work area using erosion fencing, or similar barrier, to 

avoid accidental damage to potentially significant bat roosting trees 

4.4 Framework evaluation and anticipated benefits 775 

The risk factors identified by the proposed framework (Table 9) were compared with risks 776 

extracted from the publicly-available project documentation on which the case study was based 777 

[81]. All of the risk factors discussed in the documentation were successfully identified by the 778 

proposed framework, demonstrating the ability of the proposed framework to generate 779 

comprehensive, representative results in shorter duration.  780 

The proposed framework was compared to previous risk identification techniques. This 781 

comparison was completed by the authors. Differences and advantages to using the ontology-782 

based approach are summarized in Table 10. 783 

Table 10. Comparison of the ontology-based approach with previous risk identification 784 

techniques.  785 

Item 

Risk Identification Technique 

Delphi 

technique 
Brainstorming Interviews Checklists Risk register 

Rule-based 

system [70] 

Case-based 

reasoning [2] 

Current study 

(ontology-based 

approach) 

Reliance on manual  

review of prior project data  
✔ ✔ ✔ ✔ ✔ x x x 

Automatically maps the 

project contextual 

information to risk 

information 

x x x x x x x ✔ 

Consideration of detailed 

contextual information of 

the project 

x x x x x ✔ x ✔ 

Require intensive 

time and effort  
✔ ✔ ✔ ✔ ✔ ✔ ✔ x 

 786 
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To perform traditional risk identification, a risk analyst would have needed to review project 787 

documents for four historical projects with similar contexts and review the documents for the 788 

project under study. This laborious process was easily and rapidly performed using the proposed 789 

framework once the new project context is determined. Traditional risk identification techniques 790 

lack the capability to map contextual project information to risk factors. The risk analysts, 791 

therefore, are required to manually screen and identify which risk factors are relevant to the new 792 

project. Although the rule-based system [70] does not require a manual review of project 793 

documents and, instead, considers detailed contextual project information, the risk analyst is still 794 

required to define a lengthy list of if-then rules to map the contextual project information to risk 795 

factor information for reasoning and identifying related risk factors. The ontology-based 796 

approach proposed in this study eliminated the need for these if-then rules because the contextual 797 

and risk information is already mapped and linked through the object properties. The framework 798 

was also compared to the fuzzy case-based reasoning method for risk identification in onshore 799 

wind projects proposed by Somi et al. [2,43]. The case-based reasoning approach makes use of 800 

two project characteristics—project type and project work packages—to retrieve similar projects. 801 

All risk factors in similar projects are then extracted based on the calculated similarity between 802 

the two projects without screening. The last step in case-based reasoning risk identification is 803 

that a risk analyst must screen the risk factors and determine which risks should apply to the 804 

project under study. Notably, the fuzzy case-based reasoning approach could not consider and 805 

model the detailed project context in addition to other risk factors information such as the 806 

response strategies and risk drivers—a major advantage of the proposed methodology. The 807 

ontology-based approach proposed in this study extracts the risk factors simultaneously based on 808 

the detailed contextual information that is used in reasoning about the risk factors. 809 
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Risk ontology represents a unified knowledgebase of risk information where risk analysts can 810 

share and use concepts and terminologies related to risk factors, project context, and response 811 

strategies. The benefits of considering project context and contextual information during risk 812 

identification were demonstrated in the case study presented here. The incorporation of detailed 813 

contextual project information and risk factor information in one semantic model capable of 814 

automatically reasoning and identifying risk factors considerably reduces the effort and time 815 

required to identify risk factors for a new project when compared to previous models. 816 

Furthermore, the ability of the ontology to identify risk factors based on historical information 817 

rather than expert recall is anticipated to increase the accuracy of risk identification results, 818 

thereby improving risk management efforts for both current and future projects. 819 

 820 

5. Discussion 821 

Risk identification for onshore wind farm projects is a burdensome task for risk analysts in 822 

construction companies because (1) risk factors have multi-source drivers that must be defined 823 

accurately [70], (2) information related to risk factors, risk drivers, and response strategies are 824 

fragmented across various documents, increasing the time and effort required to review these 825 

documents [4], and (3) for the information to be useful in future projects, data related to the risk 826 

factors must be saved in a manner that can be easily shared and reused. Indeed, as the risk 827 

knowledge maintained by risk analysts increases, so too does the accuracy of risk identification 828 

processes. The risk ontology will also facilitate the development of a unified understanding 829 

among engineers of the risks and related concepts, increasing the consistency of risk knowledge 830 

between new and old projects and across company teams. 831 
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Current risk identification practice still relies on spreadsheets and text documents, limiting 832 

the communication of risk knowledge in practice. A knowledge model that can overcome these 833 

challenges can represent a real benefit to risk experts and analysts. Ontology and semantic web 834 

technology have been applied successfully to solve a wide range of knowledge modeling 835 

problems. Building on these findings, an ontology-based approach to address existing risk 836 

identification knowledge limitations was developed. The ontology was evaluated by domain 837 

experts who agreed with the validity and practicality of the model. 838 

Although there will be similarity between classes across different construction projects when 839 

developing risk ontology for strategic project-level risk identification, certain classes will differ 840 

from one project to another. Onshore wind projects are a unique type of construction project that 841 

are characterized by repetitive construction, as each project has several turbines that are 842 

constructed in a similar way. This uniqueness of onshore wind projects was considered while 843 

developing the risk ontology: two classes were specifically designed for this type of project, 844 

namely the “Processes” class and the “Project work package” class as shown in Fig. 4. These two 845 

classes will differ from one project type to another depending on the project work breakdown 846 

structure. The reader should consider this distinction when developing risk ontologies for 847 

different project types. 848 

The following limitations should be considered in parallel with the findings of the study. 849 

First, the ontology model was developed based on project data from the Canadian wind energy 850 

sector. While it is expected that the model can be successfully applied to any onshore wind 851 

project using the proposed methodology, the adaptability of the approach was not directly tested 852 

in the present study. Second, the quality of output results is highly dependent on the quality of 853 

the input data. In the case study, risk factors related to the presence of white oak trees in the 854 
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project area were not detected, as similar contexts were not identified within the five historical 855 

projects used to populate the ontology. Third, with the current development, the ontology 856 

included only risk knowledge related to environmental risk factors, which was the only 857 

information accessible in publicly-available project documents. In practice, however, there is no 858 

limit to the amount of information that construction companies can input (i.e., as instances) to 859 

enrich the ontology. In the future, the onshore risk knowledge stored in the model should be 860 

expanded. Application of the framework to additional onshore wind farm projects will assist in 861 

further validating the model. Future work can also focus on the development of methods capable 862 

of automating ontology population and insertion of instances. 863 

6. Conclusion 864 

Risk identification is an important yet challenging task. While unidentified risks must be 865 

identified, analyzed, and managed, the abundance of fragmented information that must be 866 

considered for risk identification renders this process time-consuming, prone-to-error, and 867 

challenging. Accordingly, this research has developed an ontology-based approach to overcome 868 

limitations in the risk identification process. Identification-related information—which includes 869 

risk factors, risk drivers, risk response strategies, consequence on project objectives, and effect 870 

on project work packages—are modeled semantically using ontologies. The proposed approach 871 

was validated using an automated consistency check, criteria-based evaluation, and application-872 

based evaluation of a real project. The evaluation demonstrated that the proposed methodology 873 

was beneficial and valuable for risk identification in onshore wind farm projects by decreasing 874 

the burden on risk analysts. Risk analysts can use the proposed ontology-based approach to 875 

easily and accurately save, communicate, and reuse the knowledge required for risk 876 
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identification. Reuse of the ontology also allows identification of context-based risk factors when 877 

a new project is defined.  878 
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Appendix A 884 

Table A.1. Competency questions formulated in Query format. 885 

CQ CQ answer SPARQL Query 

What is (are) the 

purpose(s) of the 
ontology? 

The purpose of this risk 

ontology is to identify the 

context-driven strategic project-

level risk factors that affect 

project objectives, that have 

specific drivers, thathave 

response strategies, and 

thatoccurred in similar context 

of previous wind projects where 

the project size is less than 20 
megawatts. 

SELECT ?Risk  ?Driver ?Project ?ProjectSize ?Response 

?Description 

WHERE {  ?Risk a :Risk_Factor . 

                   ?Risk :CausedBy ?Driver . 

                   ?Risk :OccuredIn :Project_ID. 

                   ?Project :Project_Size ?ProjectSize . 

                   ?Risk :hasResponse ?Response . 

                   ?Response :Response_Description ?Description. 

                   FILTER (?ProjectSize < "20"^^xsd:float)} 

What parts of the risk 

management process 

should be covered by 
the ontology? 

The risk ontology is focused on 

the risk identification stage of 

the risk management process. 

Other stages of risk 

management process, such as 

risk quantification, are not part 

of the risk ontology. For 

example, the shown query.  

SELECT Distinct ?individual  ?class 

 WHERE { 

                     ?individual a :Risk_Factor . 

                      ?individual rdf:type ?class .} 

      

  

How risk factors will be 

identified? 

A context-based approach will 

be used to identify the risk 

factors where information about 

the project will be used to 

retrieve risk factors information 

from previous projects. Thus, 

the concept of risk drivers will 

be used to represent contextual 

risk information. 

SELECT ?Risk  ?Driver ?Name  

WHERE {   

                    ?Risk a :Risk_Factor . 

                      ?Risk :CausedBy ?Driver . 

                      ?Driver :Driver_Name ?Name } 
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What types of risks 

should be included? 

Different types of risks should 

be included in the ontology, 

including internal project risks 

and external project risks. 

Internal risks include technical, 

financial, managerial, and site-

related risks. External risks 

include social, economic, legal, 

political, and environmental-
related risks. 

  

SELECT ?Risk   

WHERE {   ?Risk a :Risk_Factor . 

                    ?Risk : hasType :Financial_Risks. 

                    ?Risk :hasType :Management_Risks. 

                    ?Risk :hasType :Technical_Risks. 

                    ?Risk :hasType :Site_Risks. 

                    ?Risk :hasType :Social_Risks. 

                    ?Risk :hasType :Economic_Risks. 

                    ?Risk :hasType :Legal_Risks. 

                    ?Risk :hasType :Polotical_Risks. 

                    ?Risk :hasType :Environmental_Risks. 

                    ?Risk :hasType :Global_Risks} 

What information 

should be captured in 
the ontology? 

The risk ontology should 

contain all the information 

required for risk identification, 

including risk factors; the 

information of previous 

projects where these risks 

occurred, such as project name 

and size; risk drivers of the risk 

factors; response strategies 

taken for the risk factors; 

project objectives affected by 

the risk factors; and which 

project components may be 
affected by the risk factors. 

SELECT ?Risk  ?Project ?ProjectSize ?Driver ?Name 

?Response ?Description 

WHERE {   

                    ?Risk a :Risk_Factor . 

                     ?Risk :OccuredIn ?Project . 

                     ?Risk :hasResponse ?Response . 

                     ?Response :Response_Description ?Description. 

                     ?Risk :hasConsequenceOn ?Objective . 

                     ?Objective :Objective_Name ?Name . 

                      ?Risk :CausedBy ?Driver . 

                      ?Driver :Driver_Name ?Name . 

                       ?Risk :hasEffectOn ?Project_Workpackage 

                      ?Project :Project_Size ?ProjectSize . 

                      FILTER (?ProjectSize < "100"^^xsd:float)} 

What is needed to 

perform the risk 

identification 
processes? 

The specific project 

information which represents 

the context of the project that 

will be used to retrieve risk 

factor information from similar 

previous projects. This 

information will be used in 

queries to extract the related 

risk information. For example, 

this query attempts to extract 

the risk factors that may occur 

due to the existence of 

buildings in the vicinity of 

access road construction 
activity. 

SELECT ?Risk  ?Project  ?Driver ?Sig ?Distance  ?Activity 

?Description 

WHERE {   

                ?Risk a :Risk_Factor . 

               ?Risk :OccuredIn ?Project . 

               ?Risk :CausedBy ?Driver . 

               ?Risk :hasResponse ?Response . 

               ?Response :Response_Description ?Description. 

               ?Driver a :Existing_Buildings . 

               ?Driver :Heritage_Significance ?Sig . 

               ?Driver :Distance_To_Closest_Activity ?Distance . 

               ?Driver :Closest_Construction_Activity ?Activity . 

                FILTER regex(str(?Activity), "road") . 

                FILTER regex(str(?Driver), "house") . 

                FILTER (?Distance < "750"^^xsd:float)} 

Who are the end-users 

of the ontology? 

The risk ontology is intended to 

be used by project managers, 

risk analysts, and project 
engineers. 

 

  886 
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