
1

Dependency-Aware Service Migration for
Backhaul-Free Vehicular Edge Computing Networks

Qibing Fan, Li Chen, Senior Member, IEEE, Changsheng You, Member, IEEE,
Yunfei Chen, Senior Member, IEEE, and Huarui Yin, Member, IEEE

Abstract—Vehicular edge computing (VEC) is a promising
paradigm to improve vehicular services through offloading com-
plex computation tasks to the edge servers. However, the high
mobility of vehicles requires frequent service migration among
edge servers to guarantee uninterrupted services when vehicles
traverse multiple cells. This brings great challenges. In this paper,
we design a dependency-aware backhaul-free migration scheme
to enable service migration without relying on backhaul with con-
straints on task dependencies. Specifically, the vehicle proactively
fetches the migrated results based on task dependencies from
the original server and migrates the results to its dynamically
connected servers along the traveling path. Considering the
incurred intermittent communication and computation due to
vehicle mobility, a joint offloading and migration optimization
problem for determining the time to offload tasks and fetch
results is formulated with a time-varying Markov decision process
(MDP) to minimize the total energy consumption. Time-varying
transition probability functions are derived to characterize the
dynamics during intermittent offloading and fetching. Based on
the MDP framework, an efficient online value iteration algorithm
is developed by exploiting temporal correlation to estimate the
time-varying value functions. Simulation results demonstrate
that our proposed algorithm can achieve superior energy-saving
performance compared to the baseline online schemes.

Index Terms—Backhaul-free network, Markov decision pro-
cess, service migration, task dependency, vehicular edge comput-
ing.

I. INTRODUCTION

W ITH the rapid development of the Internet of Vehi-
cles (IoV) and autonomous driving, various vehicular

applications are emerging, such as image-aided navigation,
intelligent vehicle control, and augmented vehicular reality [1].
These high-complexity applications require explosive compu-
tation resources and stringent time delays, yet it is commonly
known that the computation capabilities of vehicles are limited
and insufficient to meet such requirements. Vehicular edge
computing (VEC) is proposed as a promising paradigm by
deploying computing services in the close proximity to the
vehicle to greatly reduce the latency [2]–[4].

This research was supported by Industrial Technology Basic Project of
MIIT (Grant No. TC220A04M). (Corresponding author: Li Chen)

Q. Fan, L. Chen and H. Yin are with CAS Key Laboratory of
Wireless-Optical Communications, University of Science and Technol-
ogy of China, Hefei 230027, China (e-mail: fanqibing@mail.ustc.edu.cn;
chenli87@ustc.edu.cn; yhr@ustc.edu.cn).

Changsheng You is with the Department of Electronic and Electrical
Engineering, Southern University of Science and Technology (SUSTech),
Shenzhen 518055, China (e-mail: youcs@sustech.edu.cn).

Y. Chen is with the Department of Engineering, University of Durham,
Durham DH1 3LE, U.K. (e-mail: Yunfei.Chen@durham.ac.uk).

The research of VEC can be traced back to the investigations
related to mobile edge computing (MEC), a more general
computing paradigm targeting not only vehicles but also other
mobile devices. The state-of-the-art works on MEC from the
communication perspective have been summarized in [5]. For
example, for a single-user MEC system, an energy-optimal
binary offloading strategy was proposed in [6], [7] by compar-
ison between the energy consumption of offloading and local
execution. To enable fine-grained computation offloading, bit-
wise independence in task partitioning was considered in [8],
[9] and a resource allocation scheme was proposed for a multi-
user MEC system. Liu et al. [10] proposed a new low-latency
and reliable communication-computing system design for en-
abling mission-critical applications. The joint task offloading
and resource allocation in the multi-user collaborative MEC
network was investigated in [11] to minimize the total energy
consumption under task delay constraints.

When the MEC technology is applied to the vehicular
network, VEC arises. For the architecture design, the vehicle-
assisted architecture that leverages vehicles as the infrastruc-
tures for communication and computation was first proposed
in [12] to make better use of the underutilized resources of
numerous vehicles. A cloud-assisted VEC architecture was
developed in [3] to enable collaborative computation across
cloud, edge, and vehicles. Based on various architectures,
optimal control under VEC is considered. Considering the
costs of both vehicles and edge servers, a dual-side offloading
decision and resource allocation scheme was proposed in [13]
for a single server system. To avoid performance degradation
due to overload, the authors in [14] proposed a joint load bal-
ancing and offloading algorithm for maximizing system utility
in a multi-server system. In [15], a task scheduling problem
was investigated under a highly dynamic vehicular network to
minimize the system energy consumption while satisfying task
latency constraints. For the consideration of VEC realization,
several enabling technologies have been introduced. Liu et al.
[16] proposed a VEC network enabled by software-defined
networking (SDN) to provide low-latency and high-reliability
communication. Considering the requirements of various ve-
hicle applications, network slicing was applied to VEC in [17]
to support network service differentiation and diversification.

As vehicles may traverse different cells due to high mobility,
a key topic in VEC-related research is service migration [18],
[19]. Specifically, the ongoing computation services need to
be migrated to the dynamically connected servers/BSs as
the vehicle travels to guarantee uninterrupted services. In
[20], an optimal migration policy was designed based on the

© 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE
by sending a request to pubs-permissions@ieee.org.

mailto:fanqibing@mail.ustc.edu.cn
mailto:chenli87@ustc.edu.cn
mailto:yhr@ustc.edu.cn
mailto:youcs@sustech.edu.cn
mailto:Yunfei.Chen@durham.ac.uk

2

Markov decision process (MDP) to achieve a good tradeoff
between the migration cost and quality of service (QoS). The
optimal policy was proved to be threshold-based in [21]. To
proactively reshape the distribution of resource demands, mo-
bility optimization was introduced into the service migration
problem in [22]. Using both vehicle-to-vehicle and vehicle-
to-infrastructure communications, Wang et al. [23] optimized
task offloading and migration decisions based on game theory.
As the service migration process involves BS handover, some
studies focus on handover management. A vertical handover
protocol based on Proxy Mobile IPv6 (PMIPv6) and IEEE
802.21 Media Independent Handover (MIH) standard is pro-
posed in [24], which uses the received signal strength (RSS)
and dynamic thresholds to trigger the handover. A blockchain-
based handover authentication protocol for Vehicular ad-hoc
networks (VANETs) is designed in [25] to guarantee the
security of V2I communications.

Most of the above-mentioned works have made two assump-
tions. First, all the base stations are required to be deployed
with backhaul. This will incur a significant infrastructure cost
due to installation obstacles of fiber backhaul links [26], [27],
especially in the dense VEC networks where base stations
are densely deployed to increase the network capacity and
provide ubiquitous services for vehicles. To avoid migration
by backhaul, Zhang et al. [4] proposed to pre-offload tasks by
multihop vehicle-to-vehicle connections, and the parked and
moving vehicles were utilized for computation and commu-
nication in [12], [28]. Second, the IoV applications consist
of independent subtasks [20], [29]. Nevertheless, in practice,
inter-task dependencies exist in most IoV applications, where
the outputs of some subtasks are the inputs of others. Taking
the example of monitoring abnormal driving behavior in public
safety [30], the vehicle first offloads various data collected
by the on-board sensors, such as in-vehicle audio, video, and
driving trajectory, to the edge for behavior feature extraction.
The edge then performs a fusion analysis and sends alerts
to the driver and passengers. Due to the continuity of the
behavior monitoring application, the behavior analysis sub-
task relies on behavior data extracted by both the current
and previous data processing subtasks, resulting in complex
inter-task dependencies. However, traditional service migration
methods generally only focus on whether to migrate [20], [29],
ignoring the question of how much to migrate. This is essen-
tially because they overlook inter-task dependencies, making
it impossible to provide an explicit mathematical description
of the migrated intermediate results. Consequently, achieving
fine-grained service migration without relying on backhaul
under the task dependency model is an urgent problem that
deserves attention.

In this paper, we consider a multi-cell VEC network without
backhaul and aim to jointly optimize computation offloading
and service migration with inter-task dependency. The joint
optimization addresses the following challenges. First, the
results of multiple associated subtasks need to be migrated
together to the same server due to task dependency. Second,
due to the high mobility of vehicles, intermittent wireless
connections may result in unsuccessful computation offloading
and service migration. To enable service migration without

backhaul but with task dependency, we propose an indi-
rect migration scheme, where the vehicle proactively fetches
intermediate results based on task dependencies from the
original server and migrates the results to its dynamically
connected servers/BSs along its traveling path. Accounting
for the possible unsuccessful migrations of dependent results,
some subtasks are recomputed after the BS handover, which
leads to intermittent computation. To tackle intermittent com-
munication and computation, the vehicle independently makes
online decisions on when to offload tasks and fetch results
based on the statistical information of the vehicular movement.
The joint optimization problem minimizes the accumulated
energy consumption under a highly dynamic environment of
computation and communication.

The main contributions of this paper are summarized as
follows.

• Dependency-aware indirect migration scheme. We first
model the sequential offloading process of a successive
task based on general task graphs. Based on this, we
propose a novel dependency-aware indirect migration
scheme to enable service migration without backhaul.
Considering the effects of intermittent computation and
communication, an indirect migration design on offload-
ing and fetching is proposed to achieve efficient offload-
ing and migration.

• Joint optimization of computation offloading and
results fetching based on MDP. We study the joint
offloading and migration problem to determine the time to
offload tasks and fetch results to minimize the total energy
consumption of completing all subtasks in a prior task
graph. The optimization problem is formulated based on
a time-varying MDP accounting for time-varying vehicle
movement and wireless channels. In the MDP, we first
map the vehicle location into the BS index to reduce
state dimensions. Then, time-varying transition probabil-
ity functions are derived to characterize the dynamics
during intermittent offloading and fetching.

• Energy-efficient online offloading and fetching policy.
The formulated energy minimization problem is solved
using an MDP-based online value iteration (OVI) al-
gorithm to obtain a real-time offloading and fetching
policy, where the time-varying value function in time-
varying MDP is estimated based on temporal correlation.
In the proposed algorithm, an extra constraint to the value
function is also used to avoid a selfish policy. Simulation
results confirm that our proposed algorithm can achieve
superior energy-saving performance compared to the or-
acle online schemes.

The remainder of this paper is organized as follows. The
VEC system model is described in Section II. The proposed
indirect migration scheme is depicted in detail in Section III.
The MDP formulation and the corresponding algorithm for
offloading and fetching decisions are discussed in Section IV.
Simulation results are provided to evaluate the performance
of the proposed algorithm in Section V. Finally, Section VI
concludes the work.

3

1t 1r

4t 4r

t T

T
r

Service migration

Vehicle movement Task offloading

Results fetching

Fig. 1. System model.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider a VEC system with a
moving vehicle, N base stations (BSs), denoted by set N =
{1, 2, . . . , N}. Each BS is equipped with a VEC server and
can provide edge computing services. We assume that there are
no overlapping coverage areas of BSs. Thus, the vehicle can
only connect to one BS during the movement. The vehicle’s
computing task, such as analyzing images of the surrounding
environment, needs to be offloaded to the BS due to the limited
computing capability of the vehicle. The notations used in this
paper are summarized in Table I.

The vehicle travels through multiple cells in the two-
dimensional (2-D) region A ⊂ R2, as shown in Fig. 1. Time is
discretized into multiple time slots, i.e., t ∈ T = {1, 2, · · ·T}
and each time slot lasts T0. The vehicle’s location at slot t
is denoted as rt. The mobility model can be described by a
known probability distribution of the vehicle location at each
time slot, denoted as fR(t)

(rt).
We consider a sequential offloading process of a successive

task. Specifically, it is assumed that the computing task can be
further divided into M subtasks. They will be offloaded in se-
quence during the movement and are indexed as [1, 2, · · · ,M]
according to their offloading priority. The computation of
a subtask requires the outputs of several previous subtasks,
which is referred to as task dependencies. Considering the
dependencies, we assume that the m-th offloaded subtask can
be parameterized by vm ≜ v (Lm, αm, Iw(m)), where Lm (in
bits) denotes the size of subtask vm, and αm is computation
intensity in terms of CPU cycles required to process a one-bit
task computation, and Iw(m) is the intermediate results that
get updated after the subtask vm is completed. Theoretically,
the output results of all completed tasks are included in the
intermediate results. However, from the perspective of task
dependencies, the intermediate results can be further simplified
to reduce unnecessary storage. Specifically, if a completed task
is not required by any subsequent task, it should be excluded
from the intermediate results, otherwise, it should be retained.
Therefore, the intermediate results Iw(m) can be updated as

Iw(m) =

m∑
i=1

wi · I (succ (vi) ∩ {vm+1, . . . , vM} ≠ ∅) , (1)

 ! " #

 $ %

 & '

(!
(" ("

(!

(%

($($
(%

('(&

(#

(a)

 # ! " #

 $ %

 & '

(!

(!,",#

(!,"

(!,",#,$

(!,$,%

($,%,&

(&,'

(b)

Fig. 2. An example task and the corresponding intermediate results for each
subtask. (a) A task topology diagram describing the dependencies among
subtasks. (b) The sequential offloading process graph with intermediate results
marked on the dotted line. We abbreviate

∑
i=j,k,... wi as wj,k,... for brevity.

where wi is the output size of each subtask vi, and succ(vi)
denotes the set containing all the successors depending on the
output of vi in the task topology diagram.

To illustrate the above sequential offloading process, we
give an example in Fig. 2. Figure 2(a) shows the topology
of the example task, where the directed arrow from node vi
to node vj indicates that subtask vj requires the output of
subtask vi, known as wi. Figure 2(b) shows the sequential
offloading process with corresponding intermediate results
Iw(m) marked on each dotted line, where the sum of outputs∑

i=j,k,... wi is abbreviated as wj,k,.... After all the subtasks
are offloaded and computed, the vehicle fetches the results of
the last subtask, i.e., the target results of the computation task.
The parameter information of all the subtasks is known a priori
in our successive task offloading model. Unless otherwise
specified, the tasks below refer to subtasks.

The mobility of the vehicle causes disruption to offloading.
Specifically, the vehicle may not be able to offload all the
tasks within the coverage area of a single BS considering the
vehicle’s mobility as well as the limited coverage of the BSs.
In this case, after the vehicle moves out of the original BS
coverage and connects to a new BS, the sequential offloading
process will be interrupted due to task dependency limitations.

In order to guarantee continuous computation, a direct way
is service migration [19], namely, migrating the intermediate
results Iw(m) from the original BS to the vehicle’s next BS
along the traveling path.1 Let nt ∈ N denote the vehicle’s
associated BS at slot t. Clearly, results migration is triggered
when nt ̸= nt−1. The intermediate results are generally mi-
grated via the backhaul network. However, providing backhaul
connectivity for BSs incurs significant infrastructure costs in
VEC networks. Therefore, we consider a backhaul-free sce-
nario where each BS works independently without backhaul
connectivity in this work. To support continuous computation

1The intermediate results are also referred to as running states in the liter-
ature related to service migration, including container or process migration.

4

TABLE I
DEFINITIONS OF NOTATIONS

Notation Definition
N The number of base stations

M The number of subtasks in a task

T The number of slots

T0 The slot length

zn The location of BS n

rt The location of the vehicle at t-th slot

dn(t) The distance between vehicle and BS n at slot t

fc(n) The computing rate of the server n

nt The index of BS connected by the vehicle at the slot t

mt The index of task to be offloaded at the slot t

kt The index of the latest fetched task at slot t

Lm The task size of task vi
αm The computation intensity of task vi
wm The output size of task vi
Iw(m) The updated intermediate results after completing task m

Bu/Bd The uplink/downlink bandwidth

Pu/Pr The vehicle’s transmit/receive power

PB The BS transmit power

N0 The white Gaussian noise power

ψt The small-scale fast fading power component

gt The log-normal shadowing coefficient

hv/hB The antenna heights of the vehicle/BS

A/γ The path-loss constant/exponent

Hn(t) The channel power gain of the vehicle to BS n at slot t

cun(t) The uplink transmission rate in the BS n at slot t

cdn(t) The downlink transmission rate in the BS n at slot t

st The composite state at slot t in time-varying MDP

at The action at slot t in time-varying MDP

Pt(s′|s, a) The state transition probability at slot t
Dm

t , D
u
t ,

Dw
t , D

d
t

The delay induced by migration, offloading, waiting,
and fetching operation.

Et (s, a) The energy cost at slot t

without backhaul, we propose an indirect migration scheme
that utilizes the connected vehicle to migrate intermediate
results.

III. PROPOSED INDIRECT MIGRATION SCHEME

In this section, an indirect migration method is first pro-
posed to achieve a more flexible migration without backhaul,
where the vehicle proactively fetches intermediate results from
the original BS and migrates them to the next BS as it travels.
Considering the changing channels during the movement, the
vehicle may experience channel distortion and suffer from
time-out failure during the offloading and fetching process. To
achieve efficient offloading and migration when intermittent
computation and communication occur, an indirect migration
design is proposed. After that, a detailed analysis of offloading
and fetching decisions is provided for online decision-making.

A. Indirect Migration

The proposed indirect migration, as depicted in Fig. 3, is
elaborated as follows. We denote mt ∈ M as the index of the

t

BS n

t

BS n
¢

t¢

Fetching

Migrating

Offloading

L L

Offloading

1
task task

t
m task

t
m task

t
m

Fetching

decision

tion

judgement
Offloading

 decision

Fetching

decision

0T

ration

judgement

1

t

Fig. 3. The illustration of the indirect migration method.

task to be offloaded at slot t. After the task vmt
is offloaded

and computed at a certain slot t, the vehicle proactively fetches
intermediate results Iw(mt) from the connected BS nt via
the downlink.2 We refer to the operation of fetching Iw(mt)
as setting a checkpoint, and mt is a checkpoint in successive
tasks. As the vehicle connects to a new BS at slot t′, it migrates
the fetched results Iw(mt) to the new BS via the uplink.
Compared with the direct migration scheme, our proposed
indirect migration can avoid the overhead of backhaul and
is more flexible due to wireless connectivity.

However, there are still some challenges. First, some of the
tasks may need to be recomputed after a handover. Specifically,
when the vehicle migrates the intermediate results Iw(mt) to
the new BS at slot t′, the BS can only start the computation
from the next task following the checkpoint mt, but not
from the interrupted task indexed by mt′ . This is because
the migrated intermediate results Iw(mt) cannot satisfy the
dependencies of tasks behind mt+1. In this case, tasks indexed
from mt + 1 to mt′ need to be recomputed, which is termed
as the move-out failure. In the highly dynamic scenario of
vehicle mobility, the computation process of successive tasks
is an intermittent computation process involving checkpoint
settings, since the computation service is interrupted due to
move-out and unfetched tasks need to be recomputed after a
handover.

Second, the channel variation due to high vehicular mobility
may lead to failures in offloading and fetching. In the proposed
indirect migration, the results migration, task offloading, and
results fetching are highly dependent on wireless channel
conditions. Considering the varying path loss, shadowing, and
multipath fading over time and space, the channel will change
dynamically with vehicle movement. Therefore, the vehicle
may experience severe channel distortion at some slots. We
consider a bandwidth-limited scenario where the latency of
task processing at a certain slot t may exceed slot length T0,
which is termed as the time-out failure. With the dynamic
channel, the computation process of a successive task is also
a process of intermittent communication. The channel power
gain of the vehicle to BS n at slot t, denoted as Hn(t), is
assumed to be frequency-flat block fading, i.e., the channel
remains static within each time slot but randomly varies over
different slots.

2The intermediate results are fetched only for future migration because the
vehicle itself doesn’t require intermediate results but final results Iw(M).

5

tm

tm

tk M= ?

1

1t

t

m

=

=

1t t= +

Migration

Operation

Move out

 or not

Offloading &

 Computing

 Operation

1

Update:

t tk m
+
=

 Update:

1t tm k= +

Begin

End

Time out

 or not

 Fetching

Operation
Fetch or not?

Yes

Yes

Yes

No

Yes

No

No

No

Offload

 or not?

Time out

 or not

1

1

Update:

1
t t

t t

k k

m m
+

+

=

= +

1

Update:

t tm m
+
=

Yes

No

Yes

No

 1Step 2Step

 3Step

Fig. 4. The indirect migration design, including migration judgment, offload-
ing decision, and fetching decision.

B. Indirect Migration Design

Considering the intermittent computation and communica-
tion, a key question is whether to offload and fetch at each
slot. On one hand, in order to avoid an invalid offload resulting
from a time-out failure, an offloading decision on whether to
offload the task at each slot should be taken. On the other
hand, after a task is offloaded and computed, the vehicle will
make a fetching decision at each slot on whether to fetch
the intermediate results for future migration to reduce the
possibility of a move-out failure. We assume that the time-
out failure is likely to occur during offloading and fetching
phases, whereas the migration operation will not time out. It
is reasonable because the migrated results are usually smaller
than offloaded tasks in size and the migration operation is
performed earlier compared with the fetching operation within
a slot.

Based on the above intermittent offloading and fetching,
we propose an indirect migration design to achieve efficient
computation of M tasks under possible time-out failure and
move-out failure, which is summarized in Fig. 4. To simplify,
we denote the latest fetched task (checkpoint) up to slot t
as kt. It indicates the state of fetching and is updated after
a successful fetch. For example, if the intermediate results
Iw(mt) are fetched at slot t without time-out, the kt+1 is
updated to mt, otherwise, it is not updated. At each slot t,
there are three steps in our design:

1) Step 1. Migration Judgement: The vehicle system
observes at the current slot t whether there is a BS
handover. If the handover is observed, i.e., nt−1 ̸= nt, a
migration of intermediate results Iw(kt) is first performed
at the new BS and thus the index of the task mt is updated
to kt + 1.

2) Step 2. Offloading Decision: The system makes deci-
sions at slot t whether to offload the task mt. If it decides
to offload mt and it doesn’t time out for the offloading
and computing operations, the next task in the sequence

1BS

2BS

3BS

(2)
w
I

1 1m =

1t =

2t =

3t =

4t =

6t =5t =

3 2m =

T

M

T M

4 3m =

(2)
w
I

5 4m =
6 3m =

(3)
w
I

L

vehicle movement task offloading results fetching results migration

time-out failure move-out failure

(2)
w
I

Fig. 5. An exemplary intermittent offloading and fetching process under the
indirect migration design.

will be offloaded at t + 1, i.e., mt+1 = mt + 1.3 On
the contrary, if it times out or the system decides not to
offload, the task needs to be recomputed at the next slot,
i.e., mt+1 = mt. Moreover, we keep kt+1 = kt until it
is updated after a successful fetch.

3) Step 3: Fetching Decision: After a successful offload, the
system decides whether to fetch the intermediate results
Iw(mt). If the system chooses to fetch the results and
doesn’t have a time-out failure in the fetching operation,
the latest checkpoint kt+1 is updated to mt. A failed fetch
or a negative fetching decision will lead to a failure in
updating kt+1, that is, kt+1 = kt.

After the results of the last task, Iw(M) is fetched at a certain
slot t0, i.e., kt0+1 = M , the computation of M tasks is
completed.

To illustrate the indirect migration design, an exemplary
intermittent offloading and fetching process in the VEC net-
work is given in Fig. 5.4 First, located in the coverage of
BS1, the vehicle offloads task v1 at slot t = 1 but offloads
no task at slot t = 2 on account of the predicted time-out
for offloading. After that, when the vehicle moves away from
the BS1 at slot t = 3, it offloads the task v2 and fetches the
intermediate results Iw(2), thus the latest fetched task at slot
t = 4 is updated to k4 = 2. Then, when it comes to t = 4, the
vehicle moves out of the coverage of BS1 and connects to BS2.
It migrates the latest fetched intermediate results Iw(2) and
offloads task v3 with the intention of fetching Iw(3), but ends
up with a time-out failure during the fetching phase. At slot
t = 5, the vehicle offloads the task v4 without fetching Iw(4).
As a result, a move-out failure occurs when the vehicle moves
into the coverage of BS3 at slot t = 6, and the tasks indexed
after k6 = 2, i.e., tasks v3, v4 are required to be recomputed.
In other words, the process of task offloading rolls back to the
offloading of task v3 at slot t = 6.

C. Analysis of Offloading and Fetching Decisions

It is easy to see that the performance of the proposed scheme
depends on the decisions on whether to offload and fetch.
Furthermore, in order to adapt to the time-varying environment
in real-time, we focus on online decision-making without

3For simplicity, we will regard the case of timing out during the computa-
tion operation as an offloading time-out.

4The trajectory in the example is hindsight.

6

requiring future information on user trajectory and wireless
channel states in this work.

1) Offloading Decision Analysis: At first, it’s difficult to
determine whether to offload in real-time with limited channel
information. Considering that no energy is consumed if a task
is not offloaded, the vehicle can put off offloading to some
future slots with higher transmission rates to achieve lower
energy consumption. However, the global channel states are
unknown to the vehicle in an online decision system.

In addition, the coupling between offloading and fetching
decisions should also be considered. In particular, when the
vehicle moves away from the BS, it is likely that it will
suffer from an increasingly poor channel condition. Therefore,
it becomes increasingly difficult for the vehicle to fetch
intermediate results before moving out. If the computation of
M tasks cannot be completed before the move-out, subsequent
offloads are meaningless since the updated intermediate results
cannot be fetched for migration.

2) Fetching Decision Analysis: For fetching decisions, the
future movement trajectory is not available beforehand. There-
fore, it is difficult to precisely locate the move-out slot t′ and
fetch the latest intermediate results Iw(t′−1) at one slot before
to avoid recomputation. Even if a correct fetching decision
is made, the fetching operation may be timed out when the
vehicle suffers from a bad channel.

The optimization problem of offloading and fetching de-
cisions is a sequential decision problem. Two commonly
accepted powerful analytical tools for sequential decisions are
Lyapunov optimization and Markov decision process (MDP).
The Lyapunov method assumes a deterministic decision-
making process, whereas in intermittent communication and
computing systems caused by random vehicle movements, the
decision-making process becomes stochastic. Fortunately, the
latter one, MDP, is a promising approach to model sequential
decision problems with probabilistically dynamic transitions
in highly stochastic environments. Moreover, the Markov
property in MDP that the result of an action does not depend
on the previous actions and visited states, but only depends on
the current state, can be satisfied in our problem after adjusting
the state variables. Therefore, the MDP will be used to solve
the problem.

IV. MDP-BASED OFFLOADING AND FETCHING DESIGN

In this section, the problem of offloading and fetching
will be formulated based on a discrete-time MDP model to
optimize the performance of the proposed indirect migration
scheme. First, we define the system states and actions. Time-
varying state transition probabilities and immediate costs are
then derived. Afterward, the joint optimization is formulated
as a finite-horizon time-varying MDP problem to minimize
the accumulated energy consumption and it is solved by
employing an online value iteration algorithm.

A. State Space and Action Space

State space is not only the characterization of all possible
system states but also the key to the curse of dimensionality
for the MDP model. We map the vehicle’s location into the

TABLE II
THE STATE AND ACTION FOR THE EXAMPLE IN FIG. 5 FROM SLOT 1 TO T

Slot: t State: st = ((nt, nt−1) ,mt, kt) Action: at

t = 1 s1 = ((1, 1) , 1, 0) a1 = 1

t = 2 s2 = ((1, 1) , 2, 0) a2 = 0

t = 3 s3 = ((1, 1) , 2, 0) a3 = 2

t = 4 s4 = ((2, 1) , 3, 2) a4 = 2

t = 5 s5 = ((2, 2) , 4, 2) a5 = 1

t = 6 s6 = ((3, 2) , 3, 2) a6 = 2

corresponding BS, that is, transform an infinite-scale state
space into a finite-scale state space, thereby leading to lower
state dimensions [31]. Specifically, the state space is defined as
S = Φ×M×K, where Φ = {1, 2, . . . , N}×{1, 2, . . . , N} is
the set of BSs connected by the vehicle at the latest two slots,
and M = {1, 2, . . . ,M} is the set of tasks to be offloaded
and K = {0, 1, 2, . . . ,M} is the set of the latest fetched tasks
in which the element 0 implies that no task has been fetched
before t. 5 Correspondingly, the state can be characterized by
a composite state st = (nt,mt, kt) ∈ S, where nt,mt, kt
denote the index of the BSs, the task to be offloaded and
the latest fetched task at slot t, respectively. The sub-state
nt = (nt, nt−1) denotes the indexes of BSs to which the
vehicle is connected at slot t and t − 1. Note that nt−1 is
introduced into st to indicate a BS handover at slot t. In
this case, the result of an action does not depend on the
previous actions and visited states but on the current state,
which satisfies the Markov property.

Then, the offloading and fetching decision at each slot t is
expressed as action at in MDP. The action space A = {0, 1, 2}
represents the set of possible actions. The system will decide
to be on standby (i.e., at = 0), or offloading without fetching
(i.e., at = 1), or performing both offloading and fetching (i.e.,
at = 2) at slot t. Table II provides the detailed state and action
information for the example in Fig. 5.

B. Time-Varying State Transition Probability

By applying action at ∈ A in state st ∈ S, the system
makes a transition from st to a new state st+1 ∈ S. Con-
sidering the highly dynamic environment with time-varying
channels and mobility patterns, we characterize the dynamics
using time-varying transition functions. The transition function
at slot t is defined as Pt : S ×A × S → [0, 1] and the state
transition probability of ending up in state st+1 after taking
action at in state st at slot t is denoted as Pt (st+1 | st, at) or
Pt (s

′ | s, a). It can be shown as

Pt(s
′ | s, a)=Pt(n

′,m′, k′ | s, a)
=Pt(n

′ | s, a)Pt(k
′ | n′, s, a)Pt (m

′ | n′, k′, s, a) .
(2)

where Pt (s
′ | s, a) is decomposed into three items, the BS

transition probability, the offloading task transition probability,

5The state space of channel variations is not included in S because the
channel is part of the external environment and its variation regularity is
unknown to the vehicle. Furthermore, the continuity of the channel variations
will also lead to an unacceptable infinite-scale state space.

7

and the latest fetched task transition probability in turn. Their
detailed derivations are given below.

1) The BS Transition Probability: The BS transition prob-
ability Pt(n

′ | s, a) can be simplified as Pt(n
′ | n, a) because

the BS state n′ is independent of k and m. n′ at slot t+ 1 is
related to the location of the vehicle at t, so Pt(n

′ | n, a) can
be derived according to the Law of Total Probability as

Pt (n
′ | n, a) =

∫
rt∈An

Pt (n
′ | n, a, rt) fR(t)

(rt | n, a) drt,
(3)

where rt is the vehicle’s location in the t-th slot, and
fR(t)

(rt | n, a) is the conditional probability distribution func-
tion (pdf) of the vehicular location variable R(t) given by the
current BS state n and action a, and An denotes the coverage
range of BS nt. The location-based conditional state transition
probability Pt (n

′ | n, a, rt) can be derived as

Pt (n
′ | n, a, rt)

= Pt (n
′(1),n′(2) | n, a, rt)

= Pt (n
′(2) | n, a, rt) · Pt (n

′(1) | n′(2),n, a, rt)

= Pt (n
′(2) | n(1)) · Pt (n

′(1) | n′(2),n, a, rt)

=

{
Pt (nt+1|nt, a, rt) , n′(2) = n(1)

0, otherwise,

(4)

where n′(i),n(i) denote the i-th term of n′ and n, and
nt+1 is independent of nt−1 in the markov process. Further,
Pt (nt+1 | nt, a, rt) is derived as

Pt (nt+1|nt, a, rt)=Pt(nt+1|rt)

=

∫
rt+1∈Ant+1

fR(t+1)|R(t)
(rt+1|rt)drt+1

=

∫
rt+1∈Ant+1

fR(t+1),R(t)
(rt+1, rt)

fR(t)
(rt)

drt+1,

(5)
where fR(t)

(rt) is the pdf of vehicle’s location in the t-th slot
and fR(t+1),R(t)

(rt+1, rt) is the joint pdf of vehicle’s locations
in the t-th and (t+ 1)-th slot.

Further, we can use the Bayes theorem to derive the
probability of the vehicle’s location at slot t in (3) conditioned
on the BS state and action as

fR(t)
(rt | n, at) = fR(t)

(rt | nt)

=
Pt (nt | rt) · fR(t)

(rt)

Pt(nt)

=
Pt (nt | rt) · fR(t)

(rt)∫
rt∈Ant

fR(t)
(rt)drt

,

(6)

where Pt (nt|rt) indicates whether the location rt belongs to
the coverage range of the BS nt. It returns the value of one
if rt is in the coverage range of BS nt, otherwise zero, i.e.,

Pt (nt | rt) =

{
1, rt ∈ Ant

0, rt /∈ Ant .
(7)

Then, we substitute (4), (5), (6) and (7) into (3) to obtain
the BS state transition probabilities Pt(n

′ | n, a),

Pt(n
′ | n, a)

=

∫
rt∈Ant

Pt (nt+1 | nt, a, rt) fR(t) (rt | nt) drt

· I(n′(2) = n(1))

=

∫
rt∈Ant

(∫
rt+1∈Ant+1

fR(t+1),R(t)
(rt+1, rt)

fR(t)
(rt)

drt+1

)
Pt (nt | rt) fR(t)

(rt)∫
rt∈Ant

fR(t)
(rt) drt

drt · I(n′(2) = n(1))

=

∫
rt∈Ant

∫
rt+1∈Ant+1

fR(t+1),R(t)
(rt+1, rt) drt+1drt∫

rt∈Ant
fR(t)

(rt) drt

· I(n′(2) = n(1)).
(8)

The BS state transition probability for any mobility model can
be computed by (8), once fR(t)

(rt) and fR(t),R(t+1)
(rt, rt+1)

are given.
2) The Latest Fetched Task Transition Probability: Ac-

cording to the proposed indirect migration design in Fig.
4, k′ is updated only when a task is fetched without the
time-out failure, otherwise, it will still equal to k. Therefore,
the transition of k is independent of n′ and the transition
probability can be expressed as

Pt (k
′ | n′, s, a) = Pt(k

′ | s, a)

=


(1− I tout

t (s, a)) I (a = 2) , k′ = m

1− (1− I tout
t (s, a)) I (a = 2) , k′ = k

0, otherwise,

(9)

where I(·) returns the value of one if the condition in the
bracket holds, and zero otherwise, and I tout

t (s, a) indicates
whether a fetching operation times out at slot t. Considering
that the fetching operation is the last step in the edge compu-
tation process within a slot, I tout

t (s, a) can be expressed as

I tout
t (s, a) = I (Dt(s, a) > T0) , (10)

where Dt(s, a) is the duration of a series of operation process
at slot t including migration, computation offloading, compu-
tation waiting, and fetching operations, i.e.,

Dt (s, a) = Dm
t (s, a) +Du

t (s, a) +Dw
t (s, a) +Dd

t (s, a) ,
(11)

where Dm
t (s, a), Du

t (s, a), Dw
t (s, a) and Dd

t (s, a) are the
migration, offloading, waiting and fetching delays in the t-th
slot, respectively. These delays are presented in Section IV-C.

3) The Offloading Task Transition Probability: In the in-
direct migration design, there are three possible values for
the task m′ which will be offloaded at slot t + 1, namely
the recomputed task k′ + 1, the next task m + 1, and the
original task m. Specifically, if there is a move-out at t + 1,
the task m′ will be updated to k′+1. Conversely, if the vehicle
stays in the original BS coverage area, m′ is updated based on
offloading decisions and time-out possibilities. On one hand,

8

if the task m is offloaded and successfully computed, denoted
as Isucc

t (n′, s, a) = 1, m′ is updated to be m+ 1, where

Isucc
t (n′, s, a)

= I (a ̸= 0) · I (Dm
t (s, a) +Du

t (s, a) +Dw
t (s, a) ≤ T0) .

(12)
On the other hand, if the task m is not offloaded or the
offloading operation is timed out, i.e., Isucc

t (n′, s, a) = 0,
the task m will be recomputed at slot t + 1, i.e., m′ = m.
Notice that when offloading the final task M without suffering
from the move-out failure, the vehicle will keep offloading
it until the termination condition k′ = M is met, namely
m′ = m = M . Given the above-mentioned considerations,
the offloading task transition probability Pt(m

′ | n′, k′, s, a)
can be given by (13), where Imout

t+1 indicates whether the vehicle
moves out of the coverage of the original BS at t+1, namely

Imout
t+1 (n

′) = 1− I (nt+1 = nt) . (14)

Note that an additional restriction, m′ ̸= k′ + 1, is added to
the first two conditions in (13) to avoid overlapping conditions
when k′ is equal to m or m − 1 in the third condition.
Furthermore, it can be seen from (13) that the next state mt+1

is related to the current migration delay Dm
t (s, a). The current

migration delay is incurred when the vehicle moves out of
the coverage area of the original BS nt−1, i.e., nt ̸= nt−1.
Therefore, the next state mt+1 depends on the past BS index
nt−1. To satisfy the required Markov property in MDP, we
unbind mt+1 from the past state st by introducing the nt−1

into the state st, as described in Section IV-A.

C. Time-Varying Immediate Cost

The vehicle needs to consume energy for data transmission
after taking some action in a state. The cost function at
slot t is defined as Et : S × A → R which specifies the
immediate communication energy cost for action at in state
st, abbreviated as Et (s, a). The uplink transmission rate of
the vehicle to BS n at slot t is given by [32]

cun(t) = Bu log2

(
1 +

PuHn(t)

N0

)
,

cdn(t) = Bd log2

(
1 +

PBHn(t)

N0

)
,

(15)

where Bu, Bd represent the uplink and downlink bandwidths
and Pu, PB denote the transmit power for the vehicle and BS,
respectively, and N0 is the noise power. Hn(t) is the channel
power gain between vehicle and BS n as [33]

Hn(t) = ψtgtAdn(t)
−γ (16)

where ψt is the small-scale fast fading power component,
assumed to be exponentially distributed with unit mean [34],
gt is a log-normal shadowing with a standard deviation ξ, A
is the path loss constant, dn(t) is the distance between the
vehicle and BS n at slot t, and γ is the decay exponent. The
distance dn(t) can be calculated as

dn(t) =

√
∥rt − zn∥2 + (hv − hB)

2
, (17)

where rt is the location of the vehicle at slot t, zn is the
location of the connected BS n, and hv, hB represent the
antenna heights of the vehicle and BS n, respectively. It is
worth noting that the location rt of the vehicle is updated in
real-time. In addition, we assume that the vehicle can acquire
the uplink and downlink transmission rates cun(t) and cdn(t)
in real-time before taking an action in the state st. Based
on the above communication model, the delay of migration,
offloading, computation waiting, and fetching operations can
be given as follows.

First, the migration delay is incurred by the uplink transmis-
sion of the intermediate results Iw(k) if there is a move-out,
i.e.,

Dm
t (s, a) =

Imout
t (n) · Iw(k)

cun(t)
. (18)

The offloading delay, induced by the uplink transmission of
the task m, can be expressed as

Du
t (s, a) =

Lm · (1− I (a = 0))

cun(t)
. (19)

After that, the waiting delay is incurred by waiting for the task
computation, which can be denoted by

Dw
t (s, a) =

Lm · αm

fc(n)
· (1− I (a = 0)) , (20)

where αm is the required computation intensity of task m and
fc (n) is the computing rate of the server n, which represents
the available CPU cycle frequency of the VEC server for task
processing. Finally, the fetching delay in the t-th slot is

Dd
t (s, a) =

Iw(m) · I (a = 2)

cdn(t)
. (21)

Given the above four operation delays, the immediate en-
ergy cost under all the possible time-out cases can be given
as
Ec

t =I (flag=1) (PuT0)

+I (flag=2) (Pu (D
m
t +Du

t))

+I (flag=3) (Pu (D
m
t +Du

t)+Pr (T0−Dm
t −Du

t −Dw
t))

+I (flag=4)
(
Pu (D

m
t +Du

t)+PrD
d
t

)
(22)

Pt (m
′ | n′, k′, s, a)

=


(
1− Imout

t+1

)
· Isucc

t , m′ = m+ 1 ≤M,m′ ̸= k′ + 1(
1− Imout

t+1

)
· (1− Isucc

t + I (m =M)) , m′ = m ≤M,m′ ̸= k′ + 1

Imout
t+1 +

(
1− Imout

t+1

)
· (Isucc

t · I (k′ = m) + (1− Isucc
t) · I (k′ = m− 1)) , m′ = k′ + 1 ≤M

0, otherwise,

(13)

9

where Pu and Pr are the vehicle’s transmit and receive power,
respectively, and the indicator function flag (s, a), which indi-
cates different cases of time-out failure under (s, a), is defined
as

flag (s, a)

=


1 Dm

t +Du
t ≥T0

2 Dm
t +Du

t <T0, D
m
t +Du

t +D
w
t ≥T0

3 Dm
t +Du

t +D
w
t <T0, D

m
t +Du

t +D
w
t +Dd

t ≥T0
4 Dm

t +Du
t +D

w
t +Dd

t <T0.
(23)

From the perspective of uplink and downlink transmissions,
(22) can be written as follows,

Et (s, a) =Pu ·min (Dm
t +Du

t , T0)+

Pr ·min
(
Dd

t ,max (T0 −Dm
t −Du

t −Dw
t , 0)

)
.

(24)
It is worth noting that the above delays under all the state-

action pairs (s, a) can be computed based on known task
parameters and real-time acquired transmission rate before
a specific action is taken. In this way, the immediate cost
function Et as well as the transition function Pt is also
available before the system takes an action based on (2), (8),
(9), (13) and (24). Notice that in (8), the BS state transition
function is computed based on the prior statistical knowledge
of vehicle mobility.

D. Online MDP-Based Offloading and Fetching Algorithm

Based on the MDP model, we formulate an MDP op-
timization problem to minimize the expected accumulated
communication energy consumption during T slots under the
state transition function, which is given by

min
π

J π = E

(
T∑

t=1

E′
t (s, πt(s))

)
(25)

where πt is a time-related deterministic policy, defined as πt :
S → A, that is, at = πt(st) ∈ A, and π = {πt}t∈T , and the
expectation E (·) is taken to average all possible accumulated
energy consumption in the random process, and E′

t (s, a) is
defined as

E′
t (s, a) =

{
Et (s, a) , s ∈ Sn-end

0, s ∈ Send,
(26)

where Send is the set of ending states with Send =
{s ∈ S | s(4) =M} and Sn-end is the set of non-ending states
with Sn-end = {s ∈ S | s(4) < M}. Notice that we replace
Et(s, a) with E′

t(s, a) in (25) because no more energy will be
consumed once the final task is fetched. Correspondingly, the
ending state will not be transferred, i.e.,

P ′
t (s

′ | s, a) =

{
Pt(s

′ | s, a), s ∈ Sn-end

0, s ∈ Send.
(27)

Due to the time-varying transition probabilities and costs as
well as finite slots, the problem in (25) is a finite-horizon
time-varying MDP problem. The MDP problem follows the
following procedures. At each slot t = 1, 2, . . . , T ,

Algorithm 1 Online Value Iteration (OVI)
Input: Initial values V0(s),∀s ∈ S. Initial time: t = 1. The

number of iterations K.
Output: Generated policy πt,∀t ∈ T .

1: while (t ≤ T) do
2: Step 1: update value Vt(s) by K iterations of value

iteration
3: Set V 0

t (s) = Vt−1(s), s ∈ S.
4: for k = 1 : K do
5: Update V k

t (s), s ∈ S as follows:

V k
t (s)=min

a∈A

{
E′

t(s, a)+
∑
s′∈S

P ′
t (s

′ |s, a)V k−1
t (s′)

}
,

6: end for
7: Set Vt(s) = V K

t (s), s ∈ S.
8: Step 2: generate the policy πt at the current slot t to

minimize the estimated Q function

πt(s)= argmin
a∈A

Qt(s, a)

=argmin
a∈A

{
E′

t(s, a)+
∑
s′∈S

P ′
t (s

′ | s, a)Vt (s′)

}
.

9: Set t = t+ 1.
10: end while

1) the system observes the current state s and computes the
cost function E′

t and the transition probability function
P ′
t ,

2) the system takes an action a = πt(s) based on the policy
πt and takes a cost E′

t(s, a),
3) the new state s′ ∈ S is drawn based on the transition

probability distribution P ′
t (·|s, a).

The optimal policy at each slot t, denoted as π∗
t , can be

determined by the Bellman optimality equation [35] as

Vt(s)=min
a∈A

{
E′

t(s, a)+
∑
s′∈S

P ′
t (s

′ | s, a)Vt+1 (s
′)

}
, (28)

where the optimal value Vt(s) indicates the expected accu-
mulated cost when starting in s at slot t and taking optimal
actions thereafter. The optimal policy, given the current state
s, is given by

π∗
t (s)=argmin

a∈A

{
E′

t(s, a)+
∑
s′∈S

P ′
t (s

′ | s, a)Vt+1 (s
′)

}
.

(29)
Unfortunately, Vt+1(s) is unavailable at the current slot t

for any online system. To address the problem, we propose an
Online Value Iteration (OVI) algorithm, which is inspired by
the work in [36]. The main idea is to leverage the time-adjacent
value Vt(s) to approximate the value Vt+1(s) considering the
similarity of the environment at adjacent slots. In this way,
(28) can be rewritten as

Vt(s)≈min
a∈A

{
E′

t(s, a)+
∑
s′∈S

P ′
t (s

′ | s, a)Vt (s′)

}
, (30)

10

which can be solved by employing the well-known value
iteration algorithm [35]. As illustrated in Algorithm 1, there
are two steps at each slot t in the OVI algorithm.

1) Step 1: The algorithm runs K iterations of value iteration
based on the immediate cost function E′

t, the transition
probability function P ′

t , and the previously estimated
value function Vt−1, and generates a new estimate of the
value function Vt.

2) Step 2: The algorithm generates an online policy on the
basis of the current estimate of value function Vt and
the immediate cost function E′

t and transition probability
function P ′

t .

Because there is no energy consumption if no task is
offloaded, the algorithm may tend not to offload any task at
each slot t (i.e., πt(s) = 0), referred to as a selfish offloading
policy. To avoid this, we set the initial value V0(s) as

V0(s) =

{
1, s ∈ Send,

H, s ∈ Sn-end.
(31)

where H is a constant satisfying H ≫ J π . In this case, the Q-
value function Q1(s, a) under the selfish offloading policy will
always be as large as H since the initial state cannot be trans-
ferred to the ending states. Likewise, the subsequent Qt(s, a)
from t = 2 will be indirectly influenced by V0(s). Using this,
the algorithm tends to choose a policy that can eventually
guide the state to an ending state to avoid excessive costs,
thus avoiding selfish offloading. Notice that the algorithm will
dynamically adjust the offloading and fetching policy to adapt
to the varying environments. For example, when the vehicle
speed becomes larger or the channel becomes worse, a fetch
decision (at = 2) will be preferred.

It can be proven that the proposed OVI algorithm converges,
and the proof is presented in Appendix 1. Based on the pseudo-
code presented in Algorithm 1, the computational complexity
for each slot t is determined by the product of the complexity
required to update the value function and the number of
iterations. For an MDP problem with |S| states and |A|
actions, the computational complexity required to update the
value function V k

t (s) for each state s ∈ S is O (|S| · |A|).
Therefore, the total computational complexity of the OVI al-
gorithm for each slot t is O

(
|S|2 · |A| ·K

)
. Through mapping

the vehicle’s locations into the corresponding BS under the
prior mobility information, we transform an infinite-scale state
space into a finite-scale state space, which contributes smaller
|S| and lower algorithm complexity.

V. NUMERICAL RESULTS AND DISCUSSION

This section provides some simulation results to illustrate
the performance of the proposed OVI scheme. We consider
a highway scenario with a length of L, where N = 5 BSs
are placed evenly on the roadside, as depicted in Fig. 6. The
vehicle moves according to the ordered uniform distribution
model [37], that is, the probability distribution of the vehicle’s

2t1t 1t T t T

1
BS

2
BS

5
BS

3
BS

Fig. 6. An illustration of highway scenario.

location variable in the t-th timeslot during Tm movement
timeslots is given by

fR(t)
(rt) =

Tm!

(t− 1)!(Tm − t)!
[FR (rt)]

t−1

[1− FR (rt)]
Tm−t

fR (rt) ,

(32)

where fR(rt) and FR(rt) are the probability density function
(pdf) and the cumulative distribution function (cdf) under the
uniform distribution of the vehicle location. Furthermore, the
joint pdf of the location variable at slot t and slot t+1 can be
derived based on the statistics knowledge on order statistics
[38] :

fR(t),R(t+1)
(rt, rt+1) =

Tm!

(t− 1)!(Tm − t− 1)!
[FR (rt)]

t−1

· [1− FR (rt+1)]
Tm−t−1

fR (rt) fR (rt+1).
(33)

In our simulation, the vehicle’s movement trajectory is
randomly generated 1000 times according to its mobility
model in (32). The segment length and the movement timeslot
length are set to be L = 2000 m and Tm = 40, respectively.
The number of timeslots T equals to the number of vehicle
movement timeslots Tm. The slot length is T0 = 2 s and
the average speed of the vehicle equals to v = L

Tm×T0
= 90

km/h. For the task parameters, the number of divided subtasks
is set to be M = 7. The subtask size is Lm ∈ [8, 12] Mbits
and the computation intensity is αm ∈ [100, 1000] cycles/bit.
The output size of each subtask is wm ∈ [1, 1.5] Mbits. The
task topology is generated by reference [39]. Given the task
topology, the offloading priority in the sequential offloading
scenario can be determined by a topological sorting algorithm
[39], and the corresponding intermediate results Iw(m) is
generated according to (1).

We follow the simulation setup on the channel for the
highway case detailed in 3GPP TR 36.885 [40]. The vehicle’s
transmit power is Pu = 23 dBm [33] and the receive power
is Pr = 26 dBm [41]. Besides, the uplink and downlink
channel bandwidth are Bu = Bd = 20 MHz [31] and the
noise power is N0 = −114 dBm [33]. In terms of the
edge, the BS transmit power is PB = 30 dBm [33] and
the computing rate of each VEC server is fc = 10 GHz
[31]. On each generated movement trajectory, the transmission
rate at each timeslot is randomly generated according to
the communication model. Notice that the vehicle movement
causes Doppler spread and random signal variations, posing
a challenge to vehicular communication. Nevertheless, since
the 3GPP TR 36.885 protocol has already used enhanced De-
modulation Reference Signal (DMRS) technology to deal with
high Doppler effects in vehicle communications, we assume

11

TABLE III
SIMULATION PARAMETERS

Parameter Value

Highway segment length, L 2000 m

Movement timeslot length, Tm 40 slots

Simulation timeslot length, T 40 slots

Slot length, T0 2 s

Number of BSs, N 5

Size of the subtask, Lm [8, 12] Mbits

Computation intensity of the subtask, αm [100, 1000] cycles/bit

Output size of the subtask, wm [0.8, 1.2] Mbits

Number of subtasks, M 7

Uplink/Downlink bandwidth, Bu/Bd 20 MHz

Vehicle antenna height, hv 1.5 m

Vehicle antenna gain 3 dBi

Vehicle receiver noise figure 9 dB

BS antenna height, hB 25 m

BS antenna gain 8 dBi

BS receiver noise figure 5 dB

Pathloss model
128.1 + 37.6 log10 d,

d in km
Shadowing distribution Log-normal

Shadowing standard deviation, ξ 8 dB

Fast fading Rayleigh fading

Vehicle average speed 90 km/h

Transmit power of the vehicle, Pu 23 dBm

Receive power of the vehicle, Pr 26 dBm

Transmit power of the BSs, PB 30 dBm

Noise power, N0 −114 dBm

Computation rate of the VEC server, fc 10 GHz

that the impact of Doppler effects has been compensated for
through the enhanced DMRS technology and will not have
a significant impact on the simulations. The main parameters
used in the simulations are summarized in Table III. Note that
some parameters may change in different figures.

We compare the performances of the proposed MDP of-
floading and fetching scheme with other three online baseline
schemes :

• Adventurous scheme [6]. The system never fetches in-
termediate results at any slot to lower the current energy
consumption unless the last task is offloaded. This scheme
is widely adopted in the traditional task-indivisible sce-
nario in which tasks computed at the edge are fetched
only after they have all been processed.

• Conservative scheme [42]. The system always fetches
intermediate results at each slot to avoid extra recomputa-
tions as much as possible. This is the traditional scheme
in the task-divisible scenario.

• Threshold-based scheme [43]. In the scheme, the sys-
tem weighs offloading and fetching to balance the en-
ergy consumption of recomputation and frequent fetches.
Specifically, considering that the negative fetching de-
cisions may incur more potential energy consumption
due to the retransmission of recomputed tasks, the future
recomputation energy cost is reflected into the current

cost to guide the current decision, referred to as risk
cost Cr

t (s, a). The system makes an online decision to
minimize the weighted cost, i.e., Ct(s, a) = βE′

t(s, a) +
(1− β)Cr

t (s, a), where E′
t(s, a) is an immediate com-

munication cost defined in (26). We set β = 0.5 in the
simulation. Additionally, if the last task is offloaded, the
system will fetch its results. This scheme can be written
in the form of a threshold-based,

πt (s) =

{
1, Cr

t (s, 1) < Et(s)
2, Cr

t (s, 1) > Et(s) || s(3) =M.
(34)

where the Et(s) is the dynamic threshold, Et(s) =
β

1−β (E′
t(s, 2)− E′

t(s, 1)).
In the above three schemes, an additional constraint should
be imposed on the decision-making. Considering that the
delay under all state-action pairs is available before a decision
is made, the standby decision (a = 0) will replace the
offloading or fetching decision (a = 1, 2) to avoid invalid
energy consumption when the offloading or fetching operation
is predicted to time out.

For comparison, we also figure out the lower bound of the
total energy consumption expectation. We consider an offline
case [31] and thus J π can achieve global optimum because
the cost function E′

t and transition function P ′
t at each slot

are revealed. For optimal offline decisions, the system picks
optimal slots for offloading or fetching from all the given slots
so that J π is minimized. The classic backward induction (BI)
algorithm [44] is adopted to determine the optimal policy. The
algorithm consists of the following three steps:

1) the algorithm first sets VT (s) = minaE
′
T (s, a) for all

s ∈ Send and VT (s) = H for all s ∈ Sn-end to avoid a
selfish offloading policy as (31) does.

2) the algorithm computes Vt(s), s ∈ S in reverse chrono-
logical order from t = T − 1 to t = 1 based on the
equation (28),

3) the algorithm determines the optimal policy according to
(29) for t = 1, · · · , T − 1 and the optimal policy for
t = T is π∗

T (s) = argmina∈AE
′
t(s, a).

For the above online and offline policies π in a movement
trajectory, the expectation of the total energy consumption
J π is obtained by iteratively updating the following Bellman
Equation [35] in reverse chronological order from t = T − 1
to t = 1,

Vt(s) = E′
t(s, πt(s)) +

∑
s′∈S

P ′
t (s

′ | s, πt(s))Vt+1 (s
′) , (35)

where VT (s) equals to E′
T (s, πT (s)). The J π in a simulation

trajectory is equivalent to V1(s0), where s0 is an initial state
fixed to (1, 1, 1, 0), and J π is averaged over 1000 simulation
trajectories in the simulation.

A. Performance Analysis of Proposed OVI for Different Task
Parameters

In order to evaluate the performance of the proposed OVI
scheme in different task scenarios, three task parameters are
examined, i.e., the task size, the number of tasks, and the ratio
of output size to task size.

12

10 11 12 13 14 15 16 17

Average task size (Mbits)

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

T
o
ta

l
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

Offline 31

OVI

Threshold 43

Adventurous

Conservative 42

Fig. 7. The total energy consumption in different task sizes.

3 4 5 6 7 8 9 10

Number of tasks

0

0.05

0.1

0.15

0.2

0.25

T
o

ta
l
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

Offline 31

OVI

Threshold 43

Adventurous

Conservative 42

4 4.5 5

0.04

0.05

0.06

Fig. 8. The total energy consumption in the different number of tasks.

1) Impact of the task size: The total energy consumption
J π of the five schemes for different task sizes is shown in
Fig. 7. With the increase in the average task size, the total
energy consumption also gradually increases. This is because
when the task size increases, the transmission delay increases,
thereby incurring more energy consumption. Furthermore,
our OVI scheme is superior to other online schemes with
lower total energy consumption for different task sizes. The
superiority of our scheme lies in the long-term consideration of
the energy costs in a real-time environment, and the offloading
and fetching policy for each slot is determined by minimizing
the state value function (30) that takes into account the
state transition probabilities derived from the vehicle mobility
model and the acquired real-time transmission rates, rather
than by myopic optimization of each slot.

As the task size approaches the limit of what can be suc-
cessfully transferred within T0, the number of slots available
for successful offloading decreases. In this case, our OVI
scheme, similar to the offline scheme, basically maintains
steady growth. In contrast, the performances of the threshold-
based scheme and the adventurous scheme are worse, requir-
ing frequent recomputations and sharply increasing energy
consumption due to the increased likelihood of moving out
as the task completion period is lengthened. Note that the
performance of the conservative scheme in the limit case is
even worse because the vehicle does not offload tasks if it
cannot fetch the intermediate results, therefore decreasing the
number of completed tasks during T slots, which accounts for
the significant reduction in energy consumption in Fig. 7.

2) Impact of the number of tasks: The total energy con-
sumption for the different numbers of tasks is shown in Fig.
8. The total energy consumption of our proposed scheme
increases more slowly as the number of tasks M increases,
compared with other online schemes. Specifically, the possi-
bility of completing all tasks within a single BS decreases
as the number of tasks increases, therefore significantly in-
creasing the energy consumption imposed by frequent move-
outs and recomputations for the adventurous scheme. For the
conservative scheme, frequent fetches incur greater energy
consumption in downlink transmission for a small number

of tasks, while more recomputation overhead is avoided at
a relatively small fetch cost for a large number of tasks.
Therefore, the consumption of the conservative scheme is
lower than that of the adventurous scheme from M = 5. The
threshold-based scheme avoids blind offloading or fetching by
compromising in recomputation and communication to a cer-
tain extent. However, it generates an energy loss by focusing
excessively on whether to fetch and neglecting the selection
of the optimal offloading slots. Furthermore, the superiority
of our OVI scheme is due to the joint consideration of the
immediate communication cost (the first term in (30)) and
the potential recomputation cost in the real-time environment
(the second term in (30)), and the policy is determined by
minimizing the joint costs.

3) Impact of the ratio of output size to task size: At last,
we evaluate the performance of OVI schemes for different
ratios of output size to task size. We consider a general case
where the size of output results wm is smaller than the task
size Lm, and set the upper limit of the ratio to 50% to
avoid the impact of migration timeouts on the experiment due
to oversized migration results. As can be seen from Fig. 9,
our proposed scheme outperforms other online schemes at all
ratios, that is, our scheme is adapted to various task scenarios
with different output ratios. This is because our scheme takes
the fetch energy consumption into account in the cost function
(24), and thus adaptively reduces the number of fetches when
the fetch energy consumption is large (corresponding to a
large output size). It also explains why the consumption of
our proposed OVI scheme gradually approaches that of the
adventurous scheme as the ratio increases.

B. Performance Analysis of Proposed OVI for Different Num-
bers of BSs

In Fig. 10, we show the total energy consumption perfor-
mance of the proposed OVI scheme for different numbers of
BSs. It can be seen that the total energy consumption increases
as the number of BSs increases. This is because the move-
out probability of the vehicle, or the BS handover probability
increases as the BSs are deployed more densely with a fixed
average speed of the vehicle, thus incurring a greater energy

13

0 10 20 30 40 50

Average ratio of output size to task size (%)

0.05

0.1

0.15

0.2

T
o

ta
l
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

Offline 31

OVI

Threshold 43

Adventurous

Conservative 42

Fig. 9. The total energy consumption in different ratios of output size to task
size.

3 4 5 6 7 8 9 10

Number of BSs

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
o

ta
l
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

Offline 31

OVI

Threshold 43

Adventurous

Conservative 42

Fig. 10. The total energy consumption in different numbers of BSs.

0 5 10 15 20

Shadowing standard deviation (dB)

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

T
o

ta
l
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

Offline 31

OVI

Threshold 43

Adventurous

Conservative 42

Fig. 11. The total energy consumption in different levels of channel variation.

60 70 80 90 100 110 120 130 140

Average speed of the vehicle (km/h)

0.05

0.1

0.15

0.2

T
o

ta
l
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

Offline 31

OVI

Threshold 43

Adventurous

Conservative 42

Fig. 12. The total energy consumption at different speeds of the vehicle.

cost of recomputations. Compared to other schemes, our
proposed OVI scheme yields lower total energy consumption
for different numbers of BSs. This is attributed to the fact
that the potential recomputation cost is considered. When the
recomputation cost increases due to more frequent handovers,
our scheme adaptively increases the number of fetches to
reduce the amount of recomputed tasks. However, since the
recomputation cost is not considered for the adventurous
scheme, the total energy consumption grows approximately ex-
ponentially with the increasing number of BSs. In contrast, the
conservative scheme and the threshold-based scheme consider
recomputation costs but ignore the selection of optimal offload
timeslots as stated before. It is concluded that our OVI scheme
performs better in the random move-out scenario, especially
with dense BSs deployments.

C. Performance Analysis of Proposed OVI for Different Vari-
ation Levels of SNR

In Fig. 11, we show the total energy consumption per-
formance of the proposed OVI scheme with respect to the
variation of signal-to-noise ratio (SNR), considering the highly
dynamic characteristics of the channel when the vehicle is

moving. We characterize the variation level of SNR in terms
of the standard deviation of shadowing from a large-scale
propagation effect. Note that we keep the average speed of
the vehicle constant to avoid the interference of the variation
of move-out probability on the simulation. Also, the effect
of path loss on the channel is essentially consistent among
experiments due to the fixed mobility model. We can observe
that for all the schemes, the total energy consumption is
insensitive to the increase in shadowing standard deviation
when ξ < 10 while it begins to increase when ξ > 10.
The reason is that, when ξ is small, the channel is lightly
fluctuating and can guarantee task transmission and results
fetch; when ξ becomes large, the transmission rate may suffer
from severe degradation, thus leading to more failures in
fetching as well as more recomputed tasks. The gain in
transmission rate from channel fluctuation is not sufficient to
offset the negative impact of recomputations. Nevertheless, the
total energy consumption of our proposed scheme increases at
a lower rate than that of the online benchmark schemes, thanks
to its efficient failure-aware migration mechanism to balance
the fetching energy and recomputation energy.

14

D. The Performance Analysis of Proposed OVI for Different
Speeds of the Vehicle

Fig. 12 shows the influence of the average speed of the
vehicle on the total energy consumption. In the scenario of
intermittent computation and intermittent communication, the
variation of the average vehicle speed induces changes in both
the move-out probability as well as the channel. We can see
that the total energy consumption increases with the average
speed in all the schemes, due to the growth in recomputation
tasks. Compared to the other online schemes, our proposed
scheme has lower energy consumption at different vehicle
speeds, especially in high-speed scenarios, which implies a
higher move-out probability and a faster channel change. This
is because our scheme takes into account both the fetch cost
and the potential recomputation cost, and adaptively adjusts
the offload and fetch decisions to channel variations and move-
out possibilities by minimizing the joint costs.

VI. CONCLUTION

In this paper, we have studied the problem of dependency-
aware computation offloading and service migration under
the scenario without backhaul. We have developed a novel
dependency-aware indirect migration scheme and have jointly
optimized offloading and fetching decisions based on a time-
varying MDP model. The general expression of time-varying
transition probabilities has been derived to characterize the
dynamics of intermittent offloading and fetching under the
scenarios of temporally varying vehicular mobility patterns
and channel qualities. To solve the MDP problem with both
time-varying transitions and immediate costs, we have de-
signed an online algorithm, called OVI, based on an online
implementation of value iterations. Taking both immediate
communication cost and potential recomputation cost into
consideration, our proposed algorithm can optimize energy
consumption performance while satisfying task dependency
constraints. Simulations have shown that our proposed OVI
algorithm can achieve superior energy performance compared
to the oracle online schemes, especially when the vehicle
mobility is high.

APPENDIX
PROOF OF CONVERGENCE FOR THE OVI ALGORITHM

The proposed online value iteration (OVI) algorithm can
converge to the optimal value at each slot t. We first prove
the convergence of a general value iteration algorithm and
then prove the convergence of the proposed OVI algorithm
based on this convergence theorem.

Theorem 1 (Convergence theorem for value iteration). For
the following value iteration, Uk(s) converges to the unique
value U∗(s) when k → ∞.

Uk+1(s) :=max
a∈A

∑
s′∈S

p (s′|s, a) [r (s,a,s′)+γUk (s
′)] ,γ∈ [0, 1).

(36)

Proof. We first define a Bellman optimality backup operator
B∗ as

B∗U(s) := min
a∈A

∑
s′∈S

p (s′|s, a) [r (s, a, s′) + γU (s′)] , (37)

where s ∈ S = {s1, s2, · · · , sn}. Define two vec-
tors U1 = [U1(s1), U1(s2), · · · , U1(sn)]

T , and U2 =
[U2(s1), U2(s2), · · · , U2(sn)]

T , then

∥B∗U1 − B∗U2∥∞

= max
s

{∣∣∣∣∣max
a1∈A

∑
s′∈S

p (s′|s, a1) [r (s, a1, s′)+γU1 (s
′)]

− max
a2∈A

∑
s′∈S

p (s′|s, a2) [r (s, a2, s′)+γU2 (s
′)]

∣∣∣∣∣
}

≤ max
s

{
max
a1∈A

∣∣∣∣∣ ∑
s′∈S

p (s′|s, a1) [r (s, a1, s′) + γU1 (s
′)]

−
∑
s′∈S

p (s′|s, a1) [r (s, a1, s′) + γU2 (s
′)]

∣∣∣∣∣
}

≤ γmax
s

{
max
a∈A

∣∣∣∣∣∑
s′∈S

p (s′|s, a) [U1 (s
′)− U2 (s

′)]

∣∣∣∣∣
}

≤ γmax
s

{
max
a∈A

[∑
s′∈S

p (s′|s, a) |U1 (s
′)− U2 (s

′)|

]}

≤ γmax
s

{
max
a∈A,s′

{|U1 (s
′)− U2 (s

′)|}
}

= γ ∥U1 −U2∥∞ .
(38)

Therefore, B∗ is proved as a contracting mapping. Define
B2
∗U = B∗ (B∗U), B3

∗U = B∗ (B∗ (B∗U)), · · · , Bm
∗ U =

B∗
(
Bm−1
∗ U

)
, then∥∥Bm+1

∗ U−Bm
∗ U

∥∥
∞ =

∥∥B∗(Bm
∗ U)− B∗(Bm−1

∗ U)
∥∥
∞

≤ γ
∥∥Bm

∗ U− Bm−1
∗ U

∥∥
∞

≤ γ2
∥∥Bm−1

∗ U− Bm−2
∗ U

∥∥
∞

· · ·
≤ γm ∥B∗U−U∥∞

(39)

So, with m→ ∞, limm→∞ (Um+1 − Um) = 0. The sequence{
U,B∗U,B2

∗U, · · ·
}

will converge to a fixed value U∗.
The above proof proves the existence of the fixed point, and

we next prove the uniqueness by contradiction.
Assuming U,V are both fixed points with U ̸= V, then,

∥B∗U− B∗V∥∞ = ∥U−V∥∞, (40)

and according to (38), we can conclude that

∥B∗U− B∗V∥∞ ≤ γ∥U−V∥∞ < ∥U−V∥∞ (41)

According to the contradiction of (40) and (41), the hypothesis
is false, that is, the fixed point V∗ is unique.

For the proposed OVI algorithm, K iterations of the following
value iteration are performed at each slot t.

V k
t (s) = min

a∈A

{
E′

t(s, a)+
∑
s′∈S

P ′
t (s

′|s, a)V k−1
t (s′)

}
(42)

The value iteration in (42) is a special case of the general
value iteration in (36), where the reward function r(s, a, s′)
is replaced by a negative cost function −E′

t(s, a). Therefore,

15

Theorem 1 guarantees that the algorithm converges to the op-
timal value as K approaches infinity. In practical simulations,
since p(s′ | s, a) in the algorithm is sparse, meaning that for
most state-action pairs (s, a, s′), p is equal to 0, a small value
of K can lead to convergence to the optimal value.

REFERENCES

[1] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proc. IEEE, vol.
107, no. 8, pp. 1697–1716, 2019.

[2] K. Zhang, Y. Mao, S. Leng, S. Maharjan, and Y. Zhang, “Optimal delay
constrained offloading for vehicular edge computing networks,” in Proc.
IEEE Int. Conf. Commun. (ICC), 2017, pp. 1–6.

[3] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading
and resource allocation for cloud assisted mobile edge computing in
vehicular networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–
7956, 2019.

[4] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. ZHANG, “Mobile-edge
computing for vehicular networks: A promising network paradigm with
predictive off-loading,” IEEE Veh. Technol. Mag., vol. 12, no. 2, pp.
36–44, 2017.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tutor., vol. 19, no. 4, pp. 2322–2358, 2017.

[6] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, 2013.

[7] C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud
computing powered by wireless energy transfer,” IEEE J. Sel. Areas
Commun., vol. 34, no. 5, pp. 1757–1771, 2016.

[8] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, 2017.

[9] C. You and K. Huang, “Exploiting non-causal CPU-state information for
energy-efficient mobile cooperative computing,” IEEE Trans. Wireless
Commun., vol. 17, no. 6, pp. 4104–4117, 2018.

[10] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency edge
computing,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4132–4150, 2019.

[11] L. Tan, Z. Kuang, L. Zhao, and A. Liu, “Energy-efficient joint task
offloading and resource allocation in OFDMA-based collaborative edge
computing,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1960–
1972, 2022.

[12] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular fog
computing: A viewpoint of vehicles as the infrastructures,” IEEE Trans.
Veh. Technol., vol. 65, no. 6, pp. 3860–3873, 2016.

[13] J. Du, F. R. Yu, X. Chu, J. Feng, and G. Lu, “Computation offloading
and resource allocation in vehicular networks based on dual-side cost
minimization,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1079–1092,
2019.

[14] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and
offloading in vehicular edge computing and networks,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4377–4387, 2019.

[15] X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning enabled
task scheduling for online vehicular edge computing,” IEEE Trans. Mob.
Comput., vol. 21, no. 2, pp. 598–611, 2022.

[16] J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, and M. Qiu, “A scalable and
quick-response software defined vehicular network assisted by mobile
edge computing,” IEEE Commun. Mag., vol. 55, no. 7, pp. 94–100,
2017.

[17] K. Hejja, S. Berri, and H. Labiod, “Network slicing with load-balancing
for task offloading in vehicular edge computing,” Veh. Commun., vol. 34,
p. 100419, 2022.

[18] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration in
mobile edge computing,” IEEE Access, vol. 6, pp. 23 511–23 528, 2018.

[19] Z. Rejiba, X. Masip-Bruin, and E. Marı́n-Tordera, “A survey on
mobility-induced service migration in the fog, edge, and related com-
puting paradigms,” ACM Comput. Surv., vol. 52, no. 5, sep 2019.

[20] T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-me cloud: When
cloud services follow mobile users,” IEEE Trans. on Cloud Comput.,
vol. 7, no. 2, pp. 369–382, 2019.

[21] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Mobility-induced service migration in mobile micro-clouds,” in Proc.
IEEE Mil. Commun. Conf., 2014, pp. 835–840.

[22] Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, “A joint
service migration and mobility optimization approach for vehicular edge
computing,” IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 9041–9052,
2020.

[23] H. Wang, T. Lv, Z. Lin, and J. Zeng, “Energy-delay minimization of task
migration based on game theory in MEC-assisted vehicular networks,”
IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 8175–8188, 2022.

[24] N. Omheni, I. Bouabidi, A. Gharsallah, F. Zarai, and M. S. Obaidat,
“Smart mobility management in 5G heterogeneous networks,” IET
Netw., vol. 7, no. 3, pp. 119–128, 2018.

[25] S. Son, J. Lee, Y. Park, Y. Park, and A. K. Das, “Design of blockchain-
based lightweight V2I handover authentication protocol for VANET,”
IEEE Trans. Netw. Sci. Eng., vol. 9, no. 3, pp. 1346–1358, 2022.

[26] T. M. Nguyen, A. Yadav, W. Ajib, and C. Assi, “Resource allocation
in two-tier wireless backhaul heterogeneous networks,” IEEE Trans.
Wireless Commun., vol. 15, no. 10, pp. 6690–6704, 2016.

[27] Q.-V. Pham, L. B. Le, S.-H. Chung, and W.-J. Hwang, “Mobile edge
computing with wireless backhaul: Joint task offloading and resource
allocation,” IEEE Access, vol. 7, pp. 16 444–16 459, 2019.

[28] W. Fan, J. Liu, M. Hua, F. Wu, and Y. Liu, “Joint task offloading and
resource allocation for multi-access edge computing assisted by parked
and moving vehicles,” IEEE Trans. Veh. Technol., vol. 71, no. 5, pp.
5314–5330, 2022.

[29] Z. Liang, Y. Liu, T.-M. Lok, and K. Huang, “A two-timescale approach
to mobility management for multicell mobile edge computing,” IEEE
Trans. Wireless Commun., vol. 21, no. 12, pp. 10 981–10 995, 2022.

[30] J. Yu, Z. Chen, Y. Zhu, Y. Chen, L. Kong, and M. Li, “Fine-grained ab-
normal driving behaviors detection and identification with smartphones,”
IEEE Trans. Mob. Comput., vol. 16, no. 8, pp. 2198–2212, 2017.

[31] X. Zhang, J. Zhang, Z. Liu, Q. Cui, X. Tao, and S. Wang, “MDP-based
task offloading for vehicular edge computing under certain and uncertain
transition probabilities,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp.
3296–3309, 2020.

[32] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, 2016.

[33] Q. Shen, B.-J. Hu, and E. Xia, “Dependency-aware task offloading
and service caching in vehicular edge computing,” IEEE Trans. Veh.
Technol., 2022.

[34] L. Liang, G. Y. Li, and W. Xu, “Resource allocation for D2D-enabled
vehicular communications,” IEEE Trans. Commun., vol. 65, no. 7, pp.
3186–3197, 2017.

[35] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34–37, 1966.

[36] Y. Li, A. Zhong, G. Qu, and N. Li, “Online markov decision processes
with time-varying transition probabilities and rewards,” in ICML work-
shop on Real-world Sequential Decision Making, 2019.

[37] D. N. Alparslan and K. Sohraby, “A generalized random mobility model
for wireless ad hoc networks and its analysis: One-dimensional case,”
IEEE ACM Trans Netw, vol. 15, no. 3, pp. 602–615, 2007.

[38] G. C. and R. L. B., Statistical inference. Cengage Learning, 2021.
[39] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, “Multi-user offloading

for edge computing networks: A dependency-aware and latency-optimal
approach,” IEEE Internet Things J., vol. 7, no. 3, pp. 1678–1689, 2019.

[40] 3rd Generation Partnership Project (3GPP), “Technical specification
group radio access network: Study LTE-based V2X services: (release
14),” Standard 3GPP TR 36.885 V2.0.0, Jun. 2016.

[41] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, 2016.

[42] S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal joint
scheduling and cloud offloading for mobile applications,” IEEE Trans.
on Cloud Comput., vol. 7, no. 2, pp. 301–313, 2019.

[43] D. Wang, X. Tian, H. Cui, and Z. Liu, “Reinforcement learning-based
joint task offloading and migration schemes optimization in mobility-
aware MEC network,” China Commun., vol. 17, no. 8, pp. 31–44, 2020.

[44] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

16

Qibing Fan received the B.E. degree in electronic
and information engineering from Nanjing Univer-
sity of Science and Technology (NJUST), Nanjing,
China, in 2021. He is currently pursuing the M.S. de-
gree with the Department of Electronic Engineering
and Information Science, University of Science and
Technology of China. His research interests include
edge computing and the Internet of Vehicles.

Li Chen (Senior Member, IEEE) received the B.E.
degree in electrical and information engineering
from the Harbin Institute of Technology, Harbin,
China, in 2009, and the Ph.D. degree in electrical
engineering from the University of Science and
Technology of China, Hefei, China, in 2014. He
is currently an Associate Professor with the De-
partment of Electronic Engineering and Information
Science, University of Science and Technology of
China. His research interests include integrated com-
munication and computation, integrated sensing and

communication, and wireless IoT networks.

Changsheng You (Member, IEEE) received his
B.Eng. degree in 2014 from University of Science
and Technology of China (USTC) and Ph.D. de-
gree in 2018 from The University of Hong Kong
(HKU). He is currently an Assistant Professor at
Southern University of Science and Technology,
and was a Research Fellow at National University
of Singapore (NUS). His research interests include
intelligent reflecting surface, UAV communications,
edge learning, mobile-edge computing. Dr. You is an
editor for IEEE Communications Letters (CL), IEEE

IEEE Transactions on Green Communications and Networking (TGCN), and
IEEE Open Journal of the Communications Society (OJ-COMS). He received
the IEEE Communications Society Asia-Pacific Region Outstanding Paper
Award in 2019, IEEE ComSoc Best Survey Paper Award in 2021, IEEE
ComSoc Best Tutorial Paper Award in 2023. He is listed as the Highly Cited
Chinese Researcher, Exemplary Reviewer of the IEEE Transactions on Com-
munications (TCOM) and IEEE Transactions on Wireless Communications
(TWC).

Yunfei Chen (Senior Member, IEEE) received the
B.E. and M.E. degrees in electronics engineering
from Shanghai Jiaotong University, Shanghai, China,
in 1998 and 2001, respectively, and the Ph.D. de-
gree from the University of Alberta in 2006. He is
currently a Professor with the Department of En-
gineering, University of Durham, U.K. His research
interests include wireless communications, cognitive
radios, wireless relaying, and energy harvesting.

Huarui Yin (Member, IEEE) received the B.E.
and Ph.D. degrees in electronic engineering and
information science from the University of Science
and Technology of China (USTC), Hefei, Anhui, in
1996 and 2006, respectively. Since 2010, he has been
with the Department of Electronic Engineering and
Information Science, USTC, as an Associate Pro-
fessor. His research interests include digital signal
processing, low-complexity receiver design, multiple
access for massive connections, and the throughput
analysis of wireless networks.

To cite this article: Fan, Q., Chen, L., You, C.,

Chen, Y., & Yin, H. (in press). Dependency-

Aware Service Migration for Backhaul-Free

Vehicular Edge Computing Networks. IEEE

Transactions on Vehicular Technology

Durham Research Online URL:

https://durham-repository.worktribe.com/output/1726390

Copyright statement: © 2023 IEEE. Personal use of this material is permitted.

Permission from IEEE must be obtained for all other uses, in any current or

future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

https://durham-repository.worktribe.com/output/1726390

	Introduction
	System Model
	Proposed Indirect Migration Scheme
	Indirect Migration
	Indirect Migration Design
	Analysis of Offloading and Fetching Decisions
	Offloading Decision Analysis
	Fetching Decision Analysis

	MDP-Based Offloading and Fetching Design
	State Space and Action Space
	Time-Varying State Transition Probability
	The BS Transition Probability
	The Latest Fetched Task Transition Probability
	The Offloading Task Transition Probability

	Time-Varying Immediate Cost
	Online MDP-Based Offloading and Fetching Algorithm

	Numerical Results and Discussion
	Performance Analysis of Proposed OVI for Different Task Parameters
	Impact of the task size
	Impact of the number of tasks
	Impact of the ratio of output size to task size

	Performance Analysis of Proposed OVI for Different Numbers of BSs
	Performance Analysis of Proposed OVI for Different Variation Levels of SNR
	The Performance Analysis of Proposed OVI for Different Speeds of the Vehicle

	Conclution
	Appendix: Proof of Convergence for the OVI algorithm
	References
	Biographies
	Qibing Fan
	Li Chen
	Changsheng You
	Yunfei Chen
	Huarui Yin

