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Integrated Regulation of Nonpoint Pollution: Combining 1 

Managerial Controls and Economic Instruments under 2 

Multiple Environmental Targets 3 

 4 

Abstract 5 

Regulators are often reluctant to rely solely on economic incentives to achieve 6 

environmental standards. We evaluate a "mixed approach" of economic instruments and 7 

management standards when two environmental objectives need to be met simultaneously: 8 

minimum river flow rates and reductions in nitrate pollution. We show how the relative 9 

efficiency of such mixed approaches can depend on exogenous factors, in this case weather 10 

conditions. Results indicate that mixed instruments outperform stand-alone economic 11 

incentives or managerial controls under wet weather conditions, but not in 'average' years. 12 

However, the relative cost-effectiveness of mixed approaches increases considerably at 13 

higher levels of environmental standard compliance. 14 
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1. Introduction 26 

Regulators have proved reluctant to use economic instruments as "stand alone" methods to 27 

address environmental problems, despite the strong case in favour of economic incentives 28 

made by economists over the last 30 years (Hahn 2000). Indeed, evidence shows that 29 

economic instruments still account for the minority of environmental measures employed 30 

within the OECD, although their use is increasing (OECD 1997; NCEE 2004). It can be argued 31 

this reluctance is due to the political economy of environmental regulation - for example, 32 

regulators may consider criteria other than economic efficiency
1
 as more important when 33 

designing policies to regulate an environmental externality. This is the case for both point 34 

and nonpoint source pollution (NPP), with multiple decision criteria and worries over the 35 

shortcomings of economic instruments combining to restrict the up-take of such policies 36 

(Hanley et al. 1990). Moreover, economists have identified circumstances when a 37 

combination of measures – such as a tax combined with regulation – are better suited to 38 

achieve regulatory outcomes, for example in the case of stochastic pollutants  (Baumol et al. 39 

1988) and when both the mean and variance of pollutant concentration is of concern 40 

(Braden et al. 1993). Studying the effects of combining economic instruments with 41 

managerial or regulatory measures may thus be more relevant than the traditional simple 42 

comparison of economic instruments with regulation.   43 

An important new policy context is the European Union's Water Framework 44 

Directive (WFD) (EU 2000). The WFD sets the target of ‘Good Ecological Status’ in surface 45 

waters throughout Europe. In some catchments this implies the joint imposition of 46 

minimum river flow restrictions (water quantity) and ambient pollutant standards (water 47 

                                                 
1
 Other criteria may include equity (distributional impacts), certainty of regulatory compliance, ancillary environmental 

benefits, simplicity, enforcement costs, political acceptability or perceived fairness. This is not to imply that economic 

instruments alone are necessarily most efficient, or cannot be perceived as fair or politically acceptable. 



3 

 

quality). A wider use of economic instruments is called for in the Directive, although not to 48 

the exclusion of managerial or direct regulatory approaches, whilst great stress is placed on 49 

cost-effectiveness of pollution control measures. Since the measurement of Good Ecological 50 

Status depends on a number of parameters, including nutrient status, biological oxygen 51 

demand and flow rates, then regulators are faced with the problem of achieving multiple 52 

environmental targets simultaneously (DEFRA 2007). This is an interesting context in which 53 

to assess the relative benefits of single versus combined instruments for environmental 54 

management, particularly since the processes which regulators are trying to manage are 55 

inherently stochastic. 56 

In this paper, we develop a multi-farm catchment model  which estimates the cost of 57 

improving water quality, where water quality depends both on diffuse-source nitrate 58 

pollution and river flows for a case study catchment in Scotland through combinations of 59 

management measures and economic instruments. The paper builds on Aftab et al. (2007)
2
 60 

and is more realistic in capturing multi-agent farm level heterogeneity. Both flow rates and 61 

nitrate levels are linked to agricultural land use, the former through irrigation. The 4,346 ha 62 

West Peffer catchment suffers from low flow problems in summer due to high rates of 63 

abstraction for potato farming and is presently subject to direct abstraction controls
3
, and 64 

has N levels in breach of the EU guideline standard of 11.3 mg/l N. Diffuse nitrogen 65 

pollution, which can result in eutrophication, contamination of potable water and 66 

acidification, is a widely acknowledged problem in Scotland (Darcy et al. 2000). High rates of 67 

surface water extraction can lead to periods of unusually low river flows, adversely affecting 68 

                                                 
2
 Aftab et al. (2007) quantifies the increase in social welfare from co-ordinating policies to maintain river flows and 

nonpoint nitrate pollution and the conditions under which it is beneficial.  
3
 The regulator stops abstractions through licence suspension when river flow falls to the 95%ile (or minimum acceptable 

flow) at specific gauging points. 
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river ecology and amenity values (Hanley et al, 2006). Responding to these two problems is 69 

likely to be best achieved by an integrated approach to catchment management: indeed, 70 

that is exactly what the WFD mandates for all catchments throughout the EU.  71 

Previous work on the economics of agricultural NPP control has largely focussed on 72 

this problem in hydrological isolation. Economic instruments are known to be relatively 73 

cost-efficient way of reducing ambient nitrate levels under a range of restrictive conditions 74 

(Shortle et al. 2001). Numerous authors have previously considered the use of mixed 75 

approaches or policy 'packages': combining input taxes and a liability rule (Braden et al. 76 

1993); input and ambient taxes (Horan et al. 1998); emission and ambient taxes 77 

(Xepapadeas 1995); emission and output tax (Schmutzler 1996); ex post negligence liability 78 

and ex ante pigouvian taxation (Kolstad et al. 1990);  land use tax with an input tax (Goetz et 79 

al. 2006); and combining a subsidy/tax with marketable licences (Roberts et al. 1976). These 80 

studies report efficiency gains from the use of mixed instruments. However, although some 81 

studies have considered spatially untargeted land retirement (setaside) to reduce NPP from 82 

agriculture (Ribaudo et al. 1994)  the literature has not considered the integration of direct 83 

regulation or managerial approaches, such as setaside and stocking density reduction, with 84 

economic instruments. Likewise, although there are studies investigating the joint control of 85 

both water and nitrogen as inputs (Weinberg et al. 1993; Helfand et al. 1995; Larson et al. 86 

1996; Albiac et al. 2001), only one study to date has reported on the efficiency properties of 87 

economic instruments in the presence of river flow controls (Aftab et al. 2007).  88 

Previous work has established that the variability in NPP generation requires 89 

combining instruments that apply to specific moments of the pollution distribution to 90 
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ensure efficiency
4
 (Braden et al. 1993). Baumol and Oates, in their classic text propose 91 

Mixed Instruments (MI) combining economic instruments and discretionary 'direct' controls 92 

when regulating stochastic point source emissions
5
 (Baumol et al. 1988). Obviously, this is 93 

only possible with certain point source pollutants - the possibility of using direct control 94 

during a high pollution episode to control NPP is not feasible. The question thus remains as 95 

to which are the most cost effective instruments to combine, given the problems of 96 

implementing diffuse pollution controls. The main contribution of this paper to the 97 

literature is thus conceptual: in the context of NPP from agriculture and multiple 98 

environmental targets, is it better to use a combination of economic incentives and 99 

managerial measures, rather than economic incentives alone? This MI approach is relevant 100 

to the policy debate since the iterative approach to developing environmental policy which 101 

dominates OECD countries does not favour ‘drastic’ changes in policy choice e.g. from 102 

regulation only to economic instruments only. Efficiency requires regulation of NPP 103 

emissions at both the intensive and extensive margin (Shortle et al. 1998; Goetz et al. 2006). 104 

Moreover, the inclusion of transaction costs might make it cost effective to restrict the 105 

pollution reduction contribution from the extensive margin using managerial controls, such 106 

as setaside, in a MI setting. Weather variability turns out to be important in determining 107 

whether a MI approach is more cost-effective than using stand alone economic incentives. 108 

We use the same data set on which Aftab et al (2007) is based to investigate the efficiency 109 

gains from MI. However the focus of the paper is not on specific empirical results; but rather 110 

the conceptual contribution in a policy context. 111 

                                                 
4
 Unless emissions mean and variance are correlated a single instrument will not ensure social optimality. 

5
 "...we may realise the best of both worlds by taking advantage of  the efficiency properties of tax measures in normal 

circumstances and invoking direct controls to copy with temporary periods of accentuated environmental deterioration" 

(Baumol et al. 1988).  
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 112 

2. Model Construction  113 

The bio-physical-economic model improves on a previous model in the literature  114 

(Aftab et al. 2007) and differs in that the catchment is modelled as 4 separate profit 115 

maximising farms (f1 – f4). The 4 farms are hypothetical, as individual farm data is not made 116 

available due to confidentiality concerns, and represent variability in farm characteristics 117 

across the catchment. The farms differ in terms of 1) acreage, 2) proportion of 3 soil 118 

textures (hence crop mix and rotation), and 3) livestock production capacity
6
. The 119 

differences between the 4 farms serve as a proxy for catchment heterogeneity (Wossink et 120 

al. 2001) in terms of farming knowledge/experience, spatial characteristics, preferences and 121 

capital/infrastructure considerations. 122 

Four major arable crops (winter wheat, spring barely, winter oilseed rape, and 123 

potatoes), livestock production (dairy, sheep, lowland suckler and intensive beef), 124 

permanent grazing grass and silage production were modelled. Farms also had the option to 125 

purchase silage from the market. Catchment agronomic practices and parameters, crop 126 

rotations and the existing baseline scenario were taken from the literature and catchment 127 

level farm survey data. Farm subsidies for both arable cultivation and livestock (SOAEFD 128 

1997) were included. The farmer’s decision to apply nitrogen depends on crop production 129 

functions for each crop (separate for each soil type) and profitability. The model was 130 

calibrated to the 1997/98 price level (SAC 1997). Potatoes were assumed to be the only 131 

irrigated crop (they account for 85% of irrigated catchment land in reality) and the cost of 132 

irrigation per hectare was incorporated.  133 

                                                 
6
 Of the total catchment area 20% is categorised sandy, 16.8% as silty and 63% as loamy. The four farms make up 15%, 

30%, 34.6% and 20.4% of total catchment acreage;  and 15%, 0%, 60% and 25% of baseline catchment livestock at a 

stocking density of 2 LU/ha. 
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The model determines the most profitable land and nitrogen allocation to each farm 134 

activity.  Livestock waste is accounted for as a source of nitrate and is a substitute for 135 

artificial fertiliser on both types of modelled grassland. The model uses separate leaching 136 

functions to estimate the weekly average leaching for 3 ‘stylised’ years (dry, mean and wet
7
) 137 

based on the actual weather in the 1989-98 period. Leaching functions were derived by 138 

regressing the output of NITCAT (Lord 1992) for each crop/soil combination within a 139 

reasonable range of nitrogen applications. The IRRIGUIDE model (Bailey et al. 1996) was 140 

used to give crop-dependent weekly values of evapo-transpiration over winter; while 141 

elution was modelled using the SLIMMER algorithm (Anthony et al. 1996). Grass land 142 

leaching was estimated using NCYCLE (Scholefield et al. 1991; Lockyer et al. 1995). Here, 143 

leaching refers to the nitrogen not taken up by the plant which drains to the sub soil water. 144 

Some is lost to groundwater, while most drains to the river. The model assumes the 145 

nitrogen leachate moves via drains to the river instantaneously. This enables relatively 146 

accurate approximation of diffuse nitrogen pollution levels for every week.  147 

 In Eastern Scotland, irrigation contributes to potato yield and quality. The West 148 

Peffer catchment is extensively used for surface water extraction and is presently subject to 149 

controls whereby abstraction licences are suspended when river flow falls to the 95
th

 150 

percentile (MAF) one-day flow at specific gauging points (Crabtree et al. 2000). The 95
th

 151 

percentile flow defines a flow exceeded naturally on 95% of days in a ‘average’ year (1989 – 152 

1998 period) during which no abstraction took place.  The DIY hydrological model was used 153 

to estimate naturalised flows (Dunn 1998) and the water available for potato irrigation 154 

before the 90
th

, 95
th

 and 98
th

 percentile MAF target was breached (the 90
th

 percentile 155 

                                                 
7
 The mean weather scenario was based on the average weather data in the period, whereas the wet weather referred to 

the wettest in this period. The use of wet and mean ‘weather’ or ‘weather conditions’ refer to the wet and mean weather 

year in this period respectively. 
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imposes the greatest restriction on irrigation extraction while 98
th

 percentile imposes the 156 

smallest
8
). The absence of any river flow restriction was also considered. The temporal 157 

distribution of available water was then inputted to a potato growth model. It was assumed 158 

the farmer could subject his potato crop to 3 separate levels of irrigation: optimal, restricted 159 

and no irrigation. Separate nitrogen potato production functions under 4 river flow 160 

restrictions, 3 irrigation regimes and 3 weather conditions were then approximated 161 

(Crabtree et al. 2000).  162 

 163 

3. Economic Modelling of Control Policies 164 

The entire bio-physical economic model is summarised in figure 1. The non-linear 165 

optimization model was written in GAMS (Brooke et al. 1998) and solved using the CONOPT 166 

II solver (Stolbjerg-Drud 1993) and confirmed by the MINOS 5 solver. The catchment is 167 

modelled as four economic decision makers ( )f  who are assumed to maximise individual 168 

farm profits ( )ϖΠ r
f  by endogenously determining land and N fertiliser allocation to 169 

productive activities
9
 on each soil type. The regulator’s objective is to minimise the 170 

difference between the unrestricted catchment profit 
ϖ 

Π 
 
∑ r

f
f

and the catchment profit 171 

under different pollution control policies subject to environmental constraints on minimum 172 

river flows and maximum nitrate levels
10

. The regulator’s objective is: 173 

                                                 
8
 The minimum acceptable river flow percentile seems counter intuitive, but this is a hydrological term. A 98

th
 percentile 

one day flow is a less binding constraint, than the 90
th

 percentile, as it would restrict abstraction only when flow fell to that 

exceeded on 98% of days. 
9
 Productive activity refers to crops (including potatoes crops with different irrigation scheduling), livestock production 

(grassland) and setaside. Similar to previous bio-physical economic models in the economic literature. 
10

 A referee thankfully pointed out that even though the model is represented as minimising farmer’s abatement cost  

(Beavis et al. 1983; Kampas et al. 2004) , it is in effect forecasting farmer’s profit maximising behaviour under different 

regulatory controls – a positive analysis. 
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(1)  Minimise  ( )ϖ ϖ
Π − − + +


∑ ∑ ∑∑ ∑∑ ∑r n r

f fcs c fcs fcs fij j fb b
f f c s i j b

Y p w n l h p a p  174 

     
ϖ ϖη λ µ

 − − − + Τ  
  
∑ ∑∑n r r

fi fi fts fts f f
i t s

w m C               175 

where ϖ is the prevailing weather condition (dry, mean, or wet) and r is the catchment 176 

MAF restriction (no flow restriction or 98
th

, 95
th

 or 90
th

 percentile river flow restriction) 177 

enforced by the regulator. f
ϖκΠ  for each rϖ combination is the outcome of an unrestricted 178 

run of the model without any regulation on farm f . The catchment profit in the objective 179 

function is defined as the sum of the return to each producer’s management and allocation 180 

of resources minus the cost of total farm nitrogen consumption ( n
fcs fcs

c s

w n l∑∑ (arable 181 

crops), n
fi fi

i

w η λ∑ (potatoes), µ∑∑n
fts fts

t s

w m (silage and grazing grass)) and all other 182 

secondary costs of farming fC .  Exogenous terms in (1) include cp
 
the market price of 183 

arable crop c , jp
 
the market price of potato quality j  and bp is the market return from one 184 

livestock unit
11

 (LU) of livestock type b . The number of livestock on each farm is 185 

represented by fba . 
nw  refers to the cost of nitrogen fertiliser, fcsn and fcsl is the nitrogen 186 

applied and land allocated to arable crop c (excluding potatoes and grassland) c on soil type 187 

s . ftsm
 

and ftsµ  refer respectively to land and nitrogen allocated to grassland type t  188 

(grazing and cutting). 
r

fi
ϖλ and 

r
fi
ϖη refer to land allocated and nitrogen applied to the potato 189 

crop under irrigation regime i (optimal, restricted or un-irrigated) resulting in potato yield 190 

ϖ r
fijh  differentiated by quality j . fΤ  refers all transfer payments, positive for input and 191 

                                                 
11

 A livestock unit is defined in terms of the metabolised energy requirement. With one unit being the maintenance of a 

mature 625kg Friesian cow and the production of a 40-45 kg calf, and 4,500 litres of milk at 36 g/kg of butterfat and 86 g/kg 

s.n.f. Based on this the LU units of all livestock is calculated, e.g.: suckler cow (1 LU), ewe (0.15 LU), male cattle less than 2 

years (0.6 LU), male cattle over 2 years (1 LU).   
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emission taxes and negative for subsides related to enforcing setaside or stocking density 192 

reductions, where relevant. Such transfer payments are not included in estimates of 193 

abatement costs (Kampas et al. 2004).  194 

Thus, (1) estimates the social cost of regulation under different regulatory policies 195 

and weather conditions
12

. The model’s baseline allocation was calibrated
13

 to farm survey 196 

data on cropping and livestock intensities. The model’s mean weather (no MAF restriction) 197 

base run predictions were similar to actual catchment data. The percentage deviation 198 

between the two being: -7.15% for arable crops, 4.90% for grassland, -11.79 % for set-aside 199 

land and -4.05% for catchment livestock units (LU)
14

.  The model allocates slightly more land 200 

to grassland at the expense of arable land and setaside. 201 

Depending on the most profitable land use and nitrogen input allocation, the model 202 

calculated the total nitrate emissions generated and the volume of water transporting them 203 

to the river, for different weather scenarios and MAF river flow restrictions (met via 204 

restrictions on the extraction of water for irrigation). The transaction costs of enforcing MAF 205 

river flow restrictions and NPP control policies are not included in our model and is an 206 

obvious limitation. The policy objective in all model runs was to reduce ambient nitrate 207 

concentrations below the EU 50mg 
−
3NO /l (or 11.3 mg N/l) limit for a variable number of 208 

weeks while achieving various minimum river flow restrictions
15

. Nitrate concentrations vary 209 

naturally through the year due to fluctuations in rainfall and crop demands. We thus 210 

                                                 
12

 Further details of modelling can be found at: WEB ADDRESS. 
13

 Calibration involved using proportional ratios and bounds, total grassland acreage was not fixed and allowed to vary to 

reflect changes in stocking density. Under some regulatory policy packages certain livestock constraints were relaxed to 

allow achieving stricter regulatory targets. In such circumstances we undertook appropriate sensitivity analysis in relaxing 

constraints. Standard agricultural modelling techniques were used (Barnard et al. 1973) 
14

 For arable activities (grassland and setaside) percentage average deviation (PAD) = 20.58 and for livestock (LU) PAD = 

10.13.  
15

 MAF river flow restrictions were set independently of pollution control policy. The regulator could not resort to irrigation 

controls beyond those required to meet MAF river flow restrictions for the purpose of controlling NPP generation. 

Irrigation control by itself is not a cost effective pollution control option as only potatoes are irrigated. However the slight 

reduction in NPP generation due to MAF restrictions was considered in the design of pollution control regulation.   



11 

 

implement the nitrate standard as the number of weeks in which ambient concentrations 211 

are predicted to exceed the EU standard (a zero exceedance target is unrealistic).  212 

A set of ‘stand alone’ policy options based on the literature and current policy 213 

discussions were chosen. These were: 1)  estimated emission taxation 2) nitrogen input 214 

taxation (IT) (Kampas et al. 2004), 3) emission quotas, 4) nitrogen input quotas (Wu et al. 215 

1995), 5) managerial restrictions resulting in farm livestock stocking density reduction 216 

(FSDR) and, 6) restriction on the minimum area of farm set-aside (farm land retirement - 217 

FLR
16

), since land retirement if correctly managed can be used to reduce diffuse pollution 218 

(Burt et al. 1993a; Ribaudo et al. 1994).  219 

 The main contribution of this paper, as noted earlier, is in evaluating environmental 220 

control strategies which combine economic incentives with managerial approaches – that is, 221 

in evaluating mixed instrument strategies in the presence of multiple environmental targets. 222 

Four types of mixed instrument policy packages were simulated. These were: a) FLR with IT, 223 

b) FLR with FSDR, c) FSDR and IT and d) both FLR and FSDR with IT. All policy options were 224 

considered both with and without a 90
th

 percentile river flow restriction (the most stringent 225 

of those modelled), as illustrative of the impacts on policy choice of having multiple 226 

environmental targets, rather than a single target. All of the above control instruments were 227 

uniformly applied across the four farms (i.e. not modelled as farm specific targeted policies) 228 

and simulated as iterative runs of the model for each ϖκ  combination. For example the 229 

catchment emission quota was incrementally decreased until the target compliance with 230 

the environmental standard was achieved. The managerial control options were also 231 

                                                 
16

 FLR was modelled both as a) a percentage of total farm area, and b) as a percentage of total arable area (winter wheat, 

spring barley, winter oilseed rape and FLR itself). The later measurement is used to qualify for subsides under the EU 

Common Agricultural Policy (CAP). In 1997/98 obligatory FLR was 5% of total arable area.  
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modelled as gradual increases in FLR and decreases in farm stocking density until the 232 

number of weeks the river nitrate concentration exceeded the EU standard was acceptable. 233 

 234 

4. Results 235 

Figures 2 and 3 represent the social cost of regulation as the percentage reduction from 236 

baseline catchment resource profit under different nitrate pollution control policies without 237 

river MAF restrictions in mean and with/without a MAF restriction in wet weather 238 

conditions respectively. A figure for mean weather conditions with MAF restrictions is not 239 

presented as it is consistent with the conclusions deduced from analysing figures 2. The 240 

nitrate standard was not breached under dry weather conditions
17

. The baseline profit 241 

under mean weather conditions without a MAF restriction was £8.91m while in the wet year 242 

it was £9.04m. The severity of nitrate controls increases when moving from left to right 243 

along the x-axis in each Figure, since this implies fewer weeks when the standard is 244 

breached
18

. Mixed instruments combining economic and managerial controls are 245 

represented by discontinuous lines (3 instrument mixes by dotted lines and 2 instrument 246 

mixes by dashed lines). The maximum pollution for each stimulated regulatory policy is 247 

represented by its starting point (left-most point).  248 

The 8 and 4 week standard compliance ‘regulatory targets’ were arbitrarily chosen to 249 

illustrate the effect of progressively tightened regulatory targets, with the 4-week target 250 

being the tightest (see Tables 1, 2 and 3). The percentage reduction in social cost due to 251 

regulation relative to the baseline for each modelled scenario is provided in Table 1. It is 252 

interesting to note that in Table 1, both three-instrument MIs display the least variation in 253 

                                                 
17

 In some catchments with different soils, slope, topography, weather patterns etc. the nitrate standard maybe more likely 

to be breached in dry weather conditions because less water is available for dilution. However, here the dilution factor is 

offset by the reduced rainfall-induced runoff and leaching under dry weather conditions. 
18

 Figures 2 and 3 in order represent increasing soil profile water drainage and hence more NPP generation. 
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catchment resource cost across the modelled scenarios. With a stand- alone IT, catchment 254 

resource cost varies between 1.7% and 28.5% whereas for a combined FSDR(40% LU/ha) + 255 

FLR(35% ha) + IT the range is only between 14.7% and 18.2%. Although Table 2, a ranking of 256 

policies based on social resource cost, simplifies the results it masks the magnitude of social 257 

resource cost differences between policies. Uniform (estimated) emission taxation is 258 

superior to other controls (Johnson et al. 1991) and outperforms input taxation provided 259 

the emission function exhibits increasing returns to scale (Stevens 1988).  There are nominal 260 

differences between nitrogen IT and nitrogen quotas - a result which is likely if 261 

heterogeneity in leaching or production functions is present (Wu 1999; Wu et al. 2001). 262 

However the cost-effective difference between the two becomes more apparent at higher 263 

regulatory targets. 264 

Table 3, which is a comparison of instrument levels required to induce compliance 265 

under the modelled scenarios, is intuitively consistent in that instruments levels required to 266 

control pollution at the 8 week target are lower than those required for the 4 week target. 267 

Similarly the instrument levels required to achieve any target under mean weather 90
th

 268 

percentile MAF are lower than those required under mean weather without any MAF 269 

restriction, which in turn are lower than those required under wet weather. 270 

 271 

4.1 Ranking under mean weather conditions 272 

Mean weather results (Figures 2) illustrate the superiority of economic instruments when 273 

compared to stand-alone managerial approaches such as set-aside and livestock density 274 

reduction. It is interesting to note that although single instrument economic approaches 275 

generally perform better than MI policies there are exceptions.  A FSDR (1.4 LU/ha) + IT mix 276 

out performs IT at the 2 week regulatory target and onwards in the mean year without any 277 
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MAF restriction. Mixed managerial policies do better than single managerial policies at 278 

higher levels of standard compliance. A combination of FSDR and FLR is more cost effective 279 

at meeting the 5 week ambient pollution standards than FLR alone. In addition the 280 

managerial combination achieves the 4 week regulatory target whereas each managerial 281 

instrument by itself does not.  282 

 283 

The difference in cost-effectiveness between economic and managerial policies increases as 284 

the regulatory target is tightened, i.e. managerial control lines exhibit a greater negative 285 

slope. FSDR does slightly better than FLR on the whole. However the difference in social cost 286 

between the two is reduced at higher levels of standard compliance and undergoes a ‘cross-287 

over’ at the 5 week regulatory target in the case without MAF (figure 2). Interestingly, both 288 

combinations of FLR (14%) + IT and the FSDR (1.4LU/ha) + IT outperform IT alone at the 4 289 

and 2 week regulatory target respectively. These results confirm that the relative cost-290 

effectiveness of mixed instruments improves as the regulatory target is tightened.  291 

 292 

4.2 Ranking under wet weather conditions  293 

Since flow rates are higher in wetter years, abstraction constraints do not affect control 294 

instruments in the wet weather scenario. However, some interesting results still emerge. 295 

Although estimated emission taxes remains the most cost effective policy in a wet year, the 296 

relative efficiency of other policies changes considerably (figure 3 and table 2). In wetter 297 

conditions, nitrogen leaching rates (emissions) are considerably higher with a leaching 298 

baseline of 18 weeks of river nitrogen levels in excess of the standard, compared to 14 299 

weeks in the mean year (compare the baseline water quality statistics in table 4 and 5). 300 

Another notable change under wetter conditions is that economic controls targeting inputs 301 
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(input taxation and quota) do not perform as well, especially at high standard compliance 302 

levels (refer to the 4 week target - figure 3).  In comparison, mixed instrument policies 303 

perform considerably better in wet weather conditions. The cost effectiveness of FLR/set-304 

aside mix policies increases as the regulatory target is tightened - consider the difference in 305 

the social costs between input taxation and FLR/set-aside mix polices at 10, 8, 6 and 4 week 306 

standard compliance target (or compare ranking in table 2). In fact from the 8 week 307 

regulatory and onwards (stricter compliance) FLR + IT mixes are second only to estimated 308 

emission taxation. 309 

The most dramatic cost-effective ‘cross-over’ involves FLR improving relative to IT as 310 

the regulatory target is tightened. At best in figure 3 IT outperforms FLR left of the shaded 311 

zone (figure 3) at the 10 week target by 7.29%, however right of the shaded zone FLR 312 

delivers the 4 week regulatory target with an improvement of  8.05% over IT. In figure 3 the 313 

shaded zone represents the 9-5 week regulatory target zone in which 2 instrument mixes 314 

prevail over single input based instruments. Both FSDR + IT and FLR + IT combinations 315 

manage to be more efficient than IT by itself. The FLR + IT combinations dominate the 316 

stricter end of this zone. Interestingly, 3 instrument mixes comprising of FSDR + FLR + IT 317 

extend the cost-effective lead of mixed instruments over the best feasible stand alone 318 

instrument, IT. In fact 3-instrument mixes dominate the strict end of the regulatory target 319 

spectrum, i.e. from the 5 week regulatory target onwards
19

.  320 

 321 
 322 
 323 
 324 

                                                 
19

 To illustrate, at the 4 week target a FSDR (40% LU/ha) + FLR (35%) + IT mix confers a catchment resource cost gain of 

13.373% over IT (table 1 and figure 3). Other mixed instruments provide further efficiency gains at the more stringent end 

of the regulatory target spectrum. E.g. a policy mix of FLR (50%) + IT provides an efficiency gain of 10.792% over IT at the 3 

week regulatory target (not shown in figure 3). 
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4.3 Impact of policies on water quality metrics 325 

Even though the same regulatory target can be achieved at varying cost by different policies 326 

the actual impact on water quality is likely to differ. Mean weather river N concentration 327 

metrics (mg N/l) at the 8 regulatory standard are presented in table 4.  Economic 328 

instruments have a lower maximum, 90
th

 percentile and standard deviation than MI and 329 

stand alone managerial controls. Water quality effects from economic instruments are also 330 

negatively skewed whereas managerial and most mixed instruments are positively skewed. 331 

Interestingly the 3 instrument MI policies are notably different in that there is conspicuous 332 

reduction in a) the mean, b) the degree of negative kurtosis, and c) the 80
th

 percentile river 333 

concentration relative to other policies. Wet weather river water metrics (table 5) reflect 334 

higher pollution levels relative to mean weather, e.g. mean > median and positive skewness. 335 

However the greatest increase in positive skewness is associated with the 3 instrument MI 336 

policies. Interestingly, in table 5, the 3 instrument mixes are leptokurtic (positive kurtosis) 337 

whereas all other instruments are platykurtic (negative kurtosis). This implies that the 3 338 

instrument mixed instruments have more acute peaks with fatter tails relative to a normal 339 

distribution. They also exhibit the lowest 80
th

 percentile value (table 5).  340 

Both FLR and FSDR exhibit greater positive skewness and relatively positive excess 341 

kurtosis across the weather conditions when compared to stand alone economic controls. 342 

Thus, in both weather conditions, the presence of FLR in any mixed policy tends to result in 343 

more positive skewness and kurtosis. This Implies that although FLR mix policies allow 344 

higher value outliers for ambient pollution levels they also exhibit a tendency to be tightly 345 

clustered around the mean. In other words, in weeks the standard is violated river N 346 

concentration is likely to be higher under FLR mix policies than under stand alone economic 347 

instruments. However there is more clustering of weeks around the mean N concentration. 348 
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For example the 80
th

 percentile in table 5 falls near the 11.3 mg/l N standard for most 349 

economic instruments, but coincides with lower concentrations of 10.528 and 9.853 mg/l N 350 

for the two 3 instrument policy mixes. 351 

 The trade off between catchment resource cost and water quality is more apparent 352 

when water quality metrics are considered. The 3-instrument MIs are nearly 10 times more 353 

expensive than IT under mean weather conditions because they ‘over-abate’ pollution 354 

(consider the lower mean, 80
th

 percentile and relatively higher excess kurtosis). River water 355 

quality with both 3 instrument MI is, on the other hand, far better than under IT alone in 356 

mean weather conditions – even though they meet the same regulatory target.  However, 357 

our results for water quality metrics dismiss the notion that stand-alone managerial policies 358 

are less efficient because they ‘over-abate’. In actual fact they are both costly to farmers 359 

and do not over-abate pollution to ensure compliance with regulatory targets.  The mean 360 

and standard deviation of ambient pollution with pure managerial policies remain 361 

consistently higher than all other controls.  362 

 363 
 364 
4.4 Discussion  365 
 366 
In a second best world instruments which regulate indirectly by controlling a subset of 367 

production choices (inputs or management practices) which are relatively easy to observe 368 

and correlated with emissions.  However regulating the intensity of one input affects the 369 

intensity of all other inputs, thus an input tax (intensive margin) should be accompanied by 370 

a restriction on land acreage (extensive margin) (Shortle et al. 1998). This may take the form 371 

of a lump sum tax on extra-marginal land/firms or some managerial restriction.  372 

 Our main results, summarised in Table 6, indicate a change in policy ranking in 373 

wetter conditions which can be intuitively explained by the difference in the impacts of each 374 
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instrument at the intensive and extensive margin. In a second best world,  as both the 375 

allocation of land to particular uses and N fertiliser application intensity effect diffuse 376 

pollution moments, both should be regulated to ensure social welfare (Braden and 377 

Segerson, 1993). Economic and managerial controls limit pollution generation in different 378 

ways.  While set-aside removes land from agriculture (i.e. acts at the extensive margin), 379 

input quotas and taxation do not. Although input taxation and quotas provide an incentive 380 

to decrease nitrogen consumption per hectare (intensive margin), farmers still apply 381 

nitrogen and the incentive to take land out of production is too low
20

. Thus the potential to 382 

leach remains in a wet year. During a high rainfall pollution episode setaside confers a 383 

dilution effect, i.e. the N concentration from leachate and run-off is very low and offsets the 384 

higher concentration diffuse pollution from intensively used agricultural land (low FSDR 385 

grassland offers  less of a dilution  – depending on the stocking density). If the regulator sets 386 

an input tax based on expected (mean) nitrate loss then the ambient nitrate target (number 387 

of weeks exceeding standard) will only be met on average. If wetter weather prevails more 388 

nitrate is leached and the required compliance level is not achieved
21

. Thus single 389 

instruments based on mean emissions do not account for the risks of stochastic loads, and 390 

may  be neither efficient nor effective (Shortle et al. 1998; Elofsson 2003).  391 

In contrast, farm stocking density reduction (FSDR) reduces the intensity of land use 392 

(intensive margin) by either re-allocating land from arable crops to grassland or by reducing 393 

the number of livestock in production or both. Both changes would reduce nitrogen input 394 

use on grassland. Very low stocking density rates are associated with near-zero N input to 395 

                                                 
20

 Provided the benefit of growing a crop exceeds the cost - everything considered. Goetz et al.(2006) note that the crop 

mix  may change as a result of levying an input tax.   
21

 To illustrate, the optimal tax level ensuring standard compliance at the 4 week regulatory target given mean weather 

conditions is an after tax input cost of £1.50/kg nitrate (see table 3). However in wet conditions this results in the standard 

being violated in 11 weeks. The  significantly higher after tax input cost of £25.53/kg nitrate is required to achieve the 4 

week target in wet weather conditions. 
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grassland, which is in effect similar to taking land out of production, similar to setaside. 396 

FSDR therefore performs relatively better under wet conditions than mean weather 397 

conditions when compared to an input tax or quota. (compare the 6-week standard in 398 

Figures 2 and 3)
22

.  Obviously the greater the livestock density in a catchment, the more 399 

effective leverage FSDR policies exert.  400 

Overall  our results imply  the existence of  cross-overs in the relative efficiency 401 

ranking of policies across weather scenarios
23

. NPP is determined by land management, 402 

physical soil properties, topography and weather - pollution episodes are highly correlated 403 

with periodic flash rainfall (Burt et al. 1993b) . Thus evidence for efficiency ‘cross overs’ 404 

from mean to wet weather, or that cost-effective regulation may vary depending on 405 

weather makes sense intuitively.   Previous empirical studies have reported such cross-overs 406 

across abatement cost frontiers (Miltz et al. 1988; Braden et al. 1989) but not across 407 

weather scenarios.  It should be noted that although estimated emission taxes remain the 408 

least cost option in all weather/flow requirement scenarios, their supremacy is misleading 409 

as in reality they are impractical
24

.  410 

The results are best explained by the difference in incentives provided by economic 411 

and managerial instruments at the intensive and extensive margin. It is likely that the 412 

efficiency of MI would improve further if the managerial components were spatially 413 

targeted to more 'leaky' soils
25

, unfortunately our modelling did not permit such analysis. 414 

This superiority of MI  at higher regulatory target levels is encouraging if one takes the view 415 

                                                 
22

 Additionally a FSDR (1.4 lu/ha) + IT mix, which is second to input based policies, in the 15 – 10 week regulatory target 

range manages to outperform IT from the 9 week target onwards (Fig. 3).   
23

 In a stochastic model with probabilistic environmental constraint this would be the equivalent of saying that policy 

ranking is not consistent across reliability (target) levels. 
24

 Estimated emission taxation is off the political agenda because it assumes farmers: a) perfectly understand the 

regulator’s modelled relationship between management practices, nitrogen applications, weather  patterns and emissions,  

b) are risk neutral (Schmutzler 1996), and c) have the same weather expectations as the regulator (Shortle et al. 1986). 

Models at present cannot estimate emissions accurately enough to withstand legal challenges and the transaction costs of 

complex models can be substantial (Shoemaker et al. 1993).  
25

 Land retirement, if appropriately targeted, can generate sufficient benefits to outweigh social costs (Ribaudo et al. 1994). 
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that regulators are likely to prefer integrating economic instruments with 416 

managerial/regulatory approaches, rather than relying entirely on either alone, since 417 

environmental objectives are often ratcheted up over time.  418 

 We also considered the impact of the weather variability on policy choice. Ultimately 419 

the regulator faces the difficult decision of choosing a policy instrument level(s) which 420 

meets the regulatory target cost effectively across a variety of weather conditions, or of 421 

setting instrument level(s) and choices on the basis of “most sensitive” conditions. As nitrate 422 

loadings are highly variable both within and among different years  (Halstead et al. 1991), 423 

i.e. weather is stochastic, the regulator’s decision should be based not only on the expected 424 

weather but also its variance (Braden et al. 1993; Teague et al. 1995; Shortle et al. 1998). 425 

However, another important consideration is the required level of standard compliance and 426 

the regulator’s aversion to the regulatory target being exceeded in wet years or, in the 427 

extreme case, at all.  If the regulator wants to ensure the standard is achieved most of the 428 

time with certainty and adopts the precautionary principle, instrument levels should be 429 

based on the wet weather scenario, albeit at a greater compliance cost. The greater the 430 

aversion to the standard’s violation the more likely the regulator will favour policies which 431 

perform better in wet years
26

. Thus the trade-off between regulatory certitude of 432 

compliance in wet weather versus increased social cost of compliance in mean weather 433 

conditions. By implicit implication a regulator’s risk aversion determines policy choice
27

. 434 

Indeed, efficiency is very unlikely to be the sole criteria by which a regulator considers 435 

instruments (Hanley et al. 1990) . In addition a control policy based on wet weather may be 436 

                                                 
26

 As our model does not factor the accumulation of N in the soil it implies that instruments which achieve lower levels of 

standard compliance may actually fail over time.  
27

 In the literature this is indirectly recognised as policy ranking not being consistent across various reliability levels 

(Kampas et al. 2004). 
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the most cost effective route given the transaction costs of designing a truly stochastic 437 

control framework
28

.  438 

Goetz et al. (2006) extend the need to complement regulating the intensive margin 439 

with restrictions on the extensive margin further. They modelled a dynamic product mix 440 

which was not restricted to a pre-specified set of production (crop) activities - and 441 

demonstrated that regulating the extensive margin should extend from land under 442 

cultivation to land allocated to particular crops. They report the superiority of combining a 443 

spatially non-differentiated land use specific (crop) taxes
29

 with a uniform N input tax. 444 

However the introduction of a crop specific instrument to regulate the extensive margin is 445 

likely to raise enforcement costs. The absence of transaction costs, i.e. explicitly or implicitly 446 

zero costs, ”creates confusion and errors both in defining the problem and in the search for 447 

solutions” (Vatn 1998). Unfortunately, there are few reliable transaction cost estimates 448 

(Shortle et al. 1998; McCann et al. 1999; Kampas et al. 2004) and the addition of a crop 449 

specific land use tax may have regional political implications as well.   450 

In contrast, we propose regulating the extensive margin by using land setaside, as 451 

part of a MI approach. Managerial approaches are arguably cheaper to implement, since 452 

existing stocking density and set-aside restrictions currently enforced as cross-compliance 453 

requirements under the European-wide Single Farm Payment Scheme mean a data 454 

collection and monitoring infrastructure is already in place. In fact the monitoring costs of 455 

permanent setaside would be significantly lesser. In addition, setaside is associated with 456 

reduced insecticide, herbicide, fungicide, nitrogen, phosphorus and sediment pollution 457 

(Ribaudo et al. 1994). The accumulative transaction costs of designing, enforcing and 458 

                                                 
28

 Assuming wetter winter conditions are likely to prevail in Scotland with climate change (Kerr et al. 1999) it is possible 

future diffuse nitrogen regulation may be similar to that outlined in the ‘wet’ weather year scenario we consider.    
29

 Although it isn't clear whether they considered spatially undifferentiated land use taxes differentiated by crop type alone 

or crop type and cultivation technique. Obviously, the more differentiation the greater the enforcement cost. 
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monitoring separate economic instruments to control each NPP externality may be 459 

prohibitive and warrant a more integrated and simpler approach. We note that a problem-460 

by problem, information-intensive approach to NPP is not practical, and the focus on such 461 

approaches in the economics literature possibly explains the limited uptake of economic 462 

instruments to control complex agricultural externalities. Managerial options can also 463 

generate ancillary environmental benefits in terms of wildlife habitat and landscape amenity 464 

value which would increase their cost-effectiveness by reducing their net social costs 465 

(Hanley et al. 1999) and sustain the multi-functionality of agriculture. 466 

 467 

5. Conclusions 468 

This study has focussed on evaluating combinations of economic instruments with 469 

managerial measures to achieve a reduction in nitrate pollution while maintaining an  470 

environmental target of ensuring minimum river flows. Such multiple-objective 471 

management seems likely to become more prevalent in the EU as a result of the Water 472 

Framework Directive, whilst policy evolution seems certain to take in a mixed instrument 473 

approach, combining economic incentives with regulation. For economists to lobby policy 474 

makers on the basis of a preference for “pure” economic instruments seems likely to be 475 

unproductive in political economy terms, and this paper has investigated what the pay-offs 476 

(both positive and negative) might be of focussing instead on a mixed approach. 477 

Surprisingly, combining economic instruments and direct regulation to control NPP has not 478 

been highlighted in the economics literature before. MIs make sense when the nature of the 479 

environmental problem(s) being considered (highly spatially diverse and time-varying; many 480 

actors; imperfectly observable actions and effects) means that neither economic nor 481 

regulatory approaches alone can achieve acceptable levels of effectiveness and efficiency. 482 
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Conceptually, would a MI strategy be better than a single instrument in another 483 

catchment? The transferability of our results depends on weather and the degree of 484 

regulatory strictness. In catchments with wet weather MI comprising of economic and 485 

managerial regulation will fare better. Of course, defining ‘wet weather’ is relative and 486 

indeed determining a pattern in instrument efficiency ‘cross-overs’ warrants further 487 

research. 488 

References  489 
 490 
Aftab, A., N. Hanley, et al. (2007). Coordinated Environmental Regulation: Controlling 491 

Nonpoint Nitrate Pollution while Maintaining River Flows. Environmental and 492 
Resource Economics 38 (4): 573-593. 493 

Albiac, J. M., S. U. Karaj, et al. (2001). Water Quality Protection through Irrigation 494 
Management. working paper Unidad de Economia Agraria. 495 

Anthony, S., P. Quinn, et al. (1996). Catchment scale modelling of Nitrate Leaching 496 
(Modelling in Applied Biology: Spatial Aspects). Aspects of Applied Biology 46: 23-32. 497 

Bailey, R. and E. Spackman (1996). A model for estimating soil moisture changes as an aid to 498 
irrigation scheduling and crop water use studies: I. Operational details and 499 
Description. Soil Use and Management 12(3): 122-128. 500 

Barnard, C. S. and J. S. Nix (1973). Farm Planning and Control, Cambridge University Press. 501 
Baumol, W. and W. Oates (1988). The Theory of Environmental Policy, Cambridge University 502 

Press. 503 
Beavis, B. and M. Walker (1983). Random  wastes, imperfect monitoring and environmental 504 

quality standards. Journal of Public Economics 21: 377-387. 505 
Braden, J., G. Johnson, et al. (1989). Optimal Spatial Management of Agricultural Pollution. 506 

American Journal of Agricultural Economics 71: 404-413. 507 
Braden, J. and K. Segerson (1993). Information Problems in the Design of Nonpoint-Source 508 

Pollution Policy. Theory, modelling, and experience in the management of nonpoint 509 
source pollution. C. Russell and J. Shorgen. Massachusetts, Kluwer Academic 510 
Publishers pp. 511 

Brooke, A., D. Kendrick, et al. (1998). GAMS. Washington, D.C., GAMS Development 512 
Corporation. 513 

Burt, T. and N. Haycock (1993a). Controlling Losses of Nitrate by Changing Land Use. Nitrate: 514 
Processes, Patterns and Management. T. Burt, A. Heathwaite and S. Trudgill. 515 
Chichester, Wiley & Sons pp. 516 

Burt, T. P., A. L. Heathwaite, et al., Eds. (1993b). Nitrate: Processes, Patterns and 517 
Management, John Wiley and Sons. 518 

Crabtree, J. R., N. Chalmers, et al. (2000). Evaluating the Economic Impact of Irrigation 519 
Controls. Aberdeen, MLURI: 100. 520 

Darcy, B. J., J. B. Ellis, et al. (2000). Diffuse Pollution Impacts: The Environmental and 521 
Economic Impacts of Diffuse Pollution in the U.K. U.K., CIWEM Publications. 522 



24 

 

DEFRA (2007). Draft partial regulatory impact assessment (RIA) on potential costs and 523 
benefits associated with new environmental standards and conditions proposed for 524 
Water Framework Directive (WFD) implementation. London. 525 

Dunn, S. (1998). Development of an Application of a Distributed Catchment Scale 526 
Hydrological Model for the Ythan, NE Scotland. Hydrological processes 12: 401-416. 527 

Elofsson, K. (2003). Cost-effective reductions of stochastic agricultural loads to the Baltic 528 
Sea. Ecological Economics 47: 13-31. 529 

EU (2000). EU Water Framework Directive. EU Official Journal OJ L 327. 530 
Goetz, R.-U., H. Schmid, et al. (2006). Determining the economic gains from regulation at the 531 

extensive and intensive margin. European Review of Agricultural Economics 33(1): 1-532 
30. 533 

Hahn, R. W. (2000). The impact of economics on environmental policy. Journal of 534 
Environmental Economics and Management 39: 375-399. 535 

Halstead, J., S. Batie, et al. (1991). Impacts of uncertainty on policy costs of managing 536 
nonpoint source ground-water contamination. Journal of Sustainable Agriculture 1: 537 
29-48. 538 

Hanley, N., S. Hallett, et al. (1990). Why is more notice not taken of economists' 539 
prescriptions for the control of pollution? Environment and Planning A 22(11): 1421-540 
1439. 541 

Hanley, N., M. Whitby, et al. (1999). Assessing the Success of Agri-environmental Policy in 542 
the UK. Land Use Policy 16(2): 67-80. 543 

Helfand, G. and B. House (1995). Regulating nonpoint-source pollution under 544 
heterogeneous conditions. American Journal of Agricultural Economics 77: 1024-545 
1032. 546 

Horan, R., J. S. Shortle, et al. (1998). Ambient Taxes When Polluters Have Multiple Choices. 547 
Journal of Environmental Economics and Management 36: 186-199. 548 

Johnson, S., R. Adams, et al. (1991). The On-Farm Costs of Reducing Groundwater Pollution. 549 
American Journal of Agricultural Economics 73: 1063-1073. 550 

Kampas, A. and B. White (2004). Administrative Costs and Instrument Choice for Stochastic 551 
Non-point Source Pollutants. Environment and Resource Economics 27(2): 109-133. 552 

Kerr, A., S. Shackley, et al. (1999). Climate Change: Scottish Implications Scoping Study. 553 
Edinburgh, Scottish Executive Central Research Unit: 75. 554 

Kolstad, C., U. Thomas, et al. (1990). Ex Post Liability for Harm vs. Ex Ante Safety Regulation: 555 
Substitutes or Complements? American Economic Review 80(4): 888-901. 556 

Larson, D. M., G. E. Helfand, et al. (1996). Second-best tax policies to reduce nonpoint 557 
source pollution. American Journal of Agricultural Economics 78(4): 1108-1117. 558 

Lockyer, D., D. Scholefield, et al. (1995). N-CYCLE. Aberdeen, MERTAL Courseware. 559 
Lord, E. (1992). Modelling of nitrate leaching: nitrate sensitive areas. Aspects of Applied 560 

Biology 30: 19-28. 561 
McCann, L. and K. W. Easter (1999). Transaction costs of policies to reduce agricultural 562 

phosphorous pollution in the Minnesota River. Land Economics 75(3): 402-414. 563 
Miltz, D., B. Braden, et al. (1988). Standards versus Prices revised: The case of Agricultural 564 

Non-point Source Pollution. Journal of Agricultural Economics 39(3): 360-368. 565 
NCEE (2004). International experiences with economic incentives to protect the 566 

environment. Washington DC, National Center for Environmental Economics, US 567 
EPA. 568 



25 

 

OECD (1997). Environmental Taxes and Green Tax Reform. Paris, Organisation of Economic 569 
Cooperation and Development. 570 

Ribaudo, M., C. Osborn, et al. (1994). Land retirement as a tool for reducing agricultural 571 
nonpoint source pollution. Land Economics 70: 77-87. 572 

Roberts, M. and M. Spence (1976). Effluent charges and licenses under uncertainity. Journal 573 
of Public Economics 5: 193-208. 574 

SAC (1997). Farm Management Handbook 1997/98. Edinburgh, Scottish Agricultural College. 575 
Schmutzler, A. (1996). Pollution Control with Imperfectly Observable Emissions. 576 

Environmental and Resource Economics 7: 251-262. 577 
Scholefield, D., D. Lockyer, et al. (1991). A model to predict transformations and losses of 578 

nitrogen in UK pastures grazed by beef cattle. Plant and Soil 132: 165-177. 579 
Shoemaker, R. A., D. E. Ervin, et al. (1993). Data Requirements for Modeling and Evaluation 580 

of National Policies Aimed at Controlling Agricultural Sources of Nonpoint Water 581 
Pollution. Theory, Modeling and Experience in the Management of Nonpoint- Source 582 
Pollution. C. S. Russell and J. F. Shogren. Norwell, Mass, Kluwer pp. 583 

Shortle, J. S. and J. Dunn (1986). The Relative Efficiency of Agricultural source Water 584 
Pollution Control Policies. American Journal of Agricultural Economics 68: 668-677. 585 

Shortle, J. S. and R. Horan (2001). The Economics of Nonpont Pollution Control. Journal of 586 
Economic Surveys 15(3): 255-289. 587 

Shortle, J. S., R. Horan, et al. (1998). Research Issues in Nonpoint Pollution Control. 588 
Environmental and Resource Economics 11: 571-585. 589 

SOAEFD (1997). Scottish Agriculture: A Guide to Grants and Services. Edinbugh, Scottish 590 
Executive. 591 

Stevens, B. (1988). Fiscal Implications of Effluent Charges and Input Taxes. Journal of 592 
Environmental Economics and Management 15: 285-296. 593 

Stolbjerg-Drud, A. (1993). GAMS/CONOPT. GAMS (The Solver Manuals). Washington DC, 594 
GAMS Development Corporation: 55 pp. 595 

Teague, M. L., D. J. Bernardo, et al. (1995). Farm Level Economic Analysis Incorporating 596 
Stochastic Environmental Risk Assessment. American Journal of Agricultural 597 
Economics 77: 8-19. 598 

Vatn, A. (1998). Input versus Emission Taxes: Environmental  Taxes in a Mass Balance and 599 
Transaction Costs Perspectives. Land Economics 74(4): 514-525. 600 

Weinberg, M., C. L. Kling, et al. (1993). Water Markets and Water Quality. American Journal 601 
Agricultural Economics 75(278-291). 602 

Wossink, G. A., A. Oude-Lansink, et al. (2001). Non-separability and heterogeneity in 603 
integrated agronomic-economic analysis of nonpoint-source pollution. Ecological 604 
Economics 38: 345-357. 605 

Wu, J. (1999). Input Substitution and Pollution Control Under Uncertainty and Firm 606 
Heterogeneity. Journal of Public Economic Policy 2(2): 273-288. 607 

Wu, J. and B. A. Babcock (2001). Spatial Heterogeneity and the Choice of Instruments to 608 
Control Nonpoint Pollution. Environment and Resource Economics 18(2): 173-192. 609 

Wu, J., M. Teague, et al. (1995). An Empirical Analysis of the Relative Efficiency of Policy 610 
Instruments to reduce Nitrate Water Pollution in the U.S. Southern High Plains. 611 
Canadian Journal of Agricultural Economics 43: 403-420. 612 

Xepapadeas, A. (1995). Observability and choice of instrument mix in the control of 613 
externalities. Journal of Public Economics 56: 485-498. 614 

 615 



Figure 1: Catchment Model – Crop, livestock type, soil, N application, irrigation scheduling are the main decision variables 
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Figure 2. Mean Weather Without MAF

Farm stocking density reduction (FSDR)
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Emission tax
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Farm input quota
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Figure 3. Wet Weather With/Without 90th Percentile MAF   

Farm stocking density reduction 
(FSDR)
Input tax (IT)

Farm land setaside

Emission tax

FSDR(50%) + FLR(35%) + IT

FSDR(40%) + FLR(35%) + IT

Farm quota

FLR(20%) + FSDR

FLR(22%) + IT

FLR(14%) + IT

FSDR(30%) + IT



 

Table 1. Percentage Reduction in Catchment Resource Cost of Policies at the 8 and 4 Week Regulatory Target  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*: Overachieves regulatory target.  NA: Regulatory target not achieved. 

 

 

 

 

 

 

 

Weather Mean weather Wet weather 

River Flow Restriction 90
th

 percentile No MAF restriction 
       With and without MAF     

      restriction 

Regulatory Target 8 week 4 week 8 week 4 week 8 week 4 week 

Emission tax (£/mg N ) 1.035 1.235 0.660 1.431 2.304 3.821 

N Input tax (IT) (£/kg N) 1.705 2.417 1.170 6.876 9.211 28.531 

Input quota (% restriction) 1.567 2.322 1.146 4.736 9.637 34.647 

FSDR (30% LU/ha) + IT 2.541 6.661 2.465 7.340 6.957 25.781 

FLR (14% ha) + IT 7.675 7.956 4.002 6.358 6.991 22.134 

FLR (22% ha) + IT 7.853 9.710 6.689 9.341 7.670 19.106 

FSDR (40% LU/ha) + FLR (35% 
ha) + IT 

17.272* 17.272 14.671* 18.245 14.681* 15.158 

FSDR (50% LU/ha) + FLR (35% 
ha) + IT 

19.138* 19.138 18.808* 18.808 17.034* 17.218 

FLR (20% ha) + FSDR (LU/ha) 12.004 18.862 9.250 NA 13.221 44.840 

FLR (‘setaside’, i.e. % of arable 
land) 

10.291 NA 9.288 NA 13.482 20.476 

FSDR (LU/ha) 9.699 NA 9.103 NA 14.195 NA 



 

 Table 2. Catchment Policy Ranking Under Different River Flow and Weather Conditions 

Weather Mean weather Wet weather 

River Flow Restriction 90
th

 percentile No MAF restriction 
With and without MAF 

restriction 

Regulatory Target  8 week 4 week 8 week 4 week 8 week 4 week 

Emission tax (£/mg N ) 1 1 1 1 1 1 

N Input tax (IT) (£/kg N) 3 3 2 4 5 8 

Input quota (% restriction) 2 2 3 2 6 9 

FSDR (30% LU/ha) + IT 4 4 4 5 2 7 

FLR (14% ha) + IT 5 5 5 3 3 6 

FLR (22% ha) + IT 6 6 6 6 4 4 

FSDR (40% LU/ha) + FLR (35% 

ha) + IT 
10* 7 10* 7 10* 2 

FSDR (50% LU/ha) + FLR (35% 

ha) + IT 
11* 9 11* 8 11* 3 

FLR (20% ha) + FSDR (LU/ha) 9 8 7 NA 7 10 

FLR (‘setaside’, i.e. % of arable 

land) 
8 NA 9 NA 8 5 

FSDR (LU/ha) 7 NA 8 NA 9 NA 

*: Overachieves regulatory target. NA: Regulatory target not achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3. Instrument Levels to Induce Compliance with Regulatory Targets under Modelled Scenarios 

 

Weather Mean weather Wet weather 

River Flow Restriction 90
th

 percentile No MAF restriction 
With and without MAF 

restriction 

Regulatory Target 8 week 4 week 8 week 4 week 8 week 4 week 

Emission tax (£/mg N ) 35.40 75.40 45.50 90.50 51.60 57.20 

N Input tax (IT) (£/kg N) 1.2 1.56 1.3 3.56 7.15 24.53 

Input quota (% restriction) 34.80 43.65 35.25 63.25 79.05 97.00 

FSDR (30% LU/ha) + IT 0.86 2.66 0.88 3.11 2.87 22.12 

FLR (14% ha) + IT 0.68 0.92 0.81 2.09 2.23 14.6 

FLR (22% ha) + IT 0.52 1.98 0.54 2.32 1.3 11.12 

FSDR (40% LU/ha) + FLR (35% 

ha) + IT 
0.42* 1.5 0.42* 4.1 0.42* 1.25 

FSDR (50% LU/ha) + FLR (35% 

ha) + IT 
0.42* 2.02 0.42* 3.25 0.42* 0.9 

FLR (20% ha) + FSDR (LU/ha) 23.5 62.5 38.5 NA 58 78.70 

FLR (‘setaside’, i.e. % of arable 

land) 
33.3 NA 34.6 NA 49.1 74.5 

FSDR (LU/ha) 66.5 NA 67.5 NA 76 NA 

*: Overachieves regulatory target. NA: Regulatory target not achieved. 



 

Table 4: Policy Ranking and Water Metrics (mg/l N) under Mean Weather, 8 week target with 90
th

 percentile MAF Restriction 

Regulatory Policy Rank Mean Median 
Standard 

deviation 
Skewness Kurtosis 

80
th

 

percentile 

90
th

 

percentile 
Maximum 

BASELINE*  10.272 10.272 5.385 -0.359 -1.297 14.671 16.177 16.969 

Emission tax (£/mg N ) 1 7.469 8.072 4.421 -0.233 -1.505 11.544 12.528 13.483 

N Input tax (IT) (£/kg) 3 7.512 8.149 4.295 -0.265 -1.489 11.553 12.470 13.189 

Input quota (% restriction) 2 7.282 8.138 4.444 -0.252 -1.597 11.551 12.404 13.029 

FSDR (30% LU/ha) + IT 4 8.189 8.814 4.449 -0.375 -1.173 11.601 13.897 14.374 

FLR (14% ha) + IT 5 7.691 8.212 4.552 -0.201 -1.419 11.544 13.212 14.622 

FLR (22% ha) + IT 6 8.200 8.018 4.722 0.022 -1.114 11.626 14.911 16.146 

FSDR (40% LU/ha) + FLR 

(35% ha) + IT 
 10** 6.785 6.149 5.026 0.616 -0.594 9.175 15.213 17.315 

FSDR (50% LU/ha) + FLR 

(35% ha) + IT 
 11** 6.745 5.709 5.065 0.987 -0.011 8.491 15.313 18.128 

FLR (20% ha) + FSDR 

(LU/ha) 
9 

7.874 8.005 5.041 0.076 
-1.173 

11.634 15.296 16.919 

FLR (‘setaside’, i.e. % of 

arable land) 
8 

8.053 7.940 5.276 0.141 
-1.161 

11.672 15.789 17.319 

FSDR (LU/ha) 7 8.058 7.877 5.239 0.174 -1.148 11.612 15.245 17.401 

*: Baseline water metrics for mean weather  with 90th percentile MAF restriction. **: Overachieves regulatory target. 

 

 

 

 

 

 

 

 

 



 

 

Table 5: Policy Ranking and Water Metrics (mg/l N) under Wet Weather, 8 week target with and without MAF restrictions 

Regulatory Policy Rank Mean Median 
Standard 

deviation 
Skewness Kurtosis 

80
th

 

percentile 

90
th

 

percentile 
Maximum 

BASELINE*  9.872 9.872 6.356 0.143 -1.314 17.156 18.785 21.813 

Emission tax (£/mg N ) 1 6.957 6.666 4.300 0.137 -1.227 11.232 12.656 14.983 

N Input tax (IT) (£/kg) 5 6.674 6.408 4.528 0.187 -1.318 11.370 12.821 14.730 

Input quota (% 

restriction) 
6 

6.743 6.408 4.466 0.200 
-1.305 

11.366 12.845 14.563 

FSDR (30% LU/ha) + IT 2 6.962 6.246 4.338 0.378 -1.058 11.328 13.206 15.756 

FLR (14% ha) + IT 3 6.812 6.347 4.452 0.361 -1.082 11.318 12.894 16.047 

FLR (22% ha) + IT 4 7.104 6.444 4.481 0.455 -0.831 11.324 13.048 17.312 

FSDR (40% LU/ha) + FLR 

(35% ha) + IT 
  10** 7.232 5.950 5.383 1.038 0.324 10.528 15.859 22.339 

FSDR (50% LU/ha) + FLR 

(35% ha) + IT 
  11** 6.838 5.491 5.643 1.210 0.764 9.853 15.438 22.519 

FLR (20% ha) + FSDR 

(LU/ha) 
7 

7.852 6.788 5.677 0.772 
-0.276 

11.943 16.524 21.863 

FLR (‘setaside’, i.e. % of 

arable land) 
8 

7.576 6.505 5.335 0.833 
-0.064 

11.323 15.714 21.901 

FSDR (LU/ha) 9 7.537 6.488 5.331 0.819 -0.122 11.322 15.703 21.675 

*: Baseline water metrics for wet weather with and without 90th percentile MAF restriction. **: Overachieves regulatory target. 

 

 

 

 

 

 

 



Table 6: Summary of empirical results 

1) Single instruments display efficient abatement 'fatigue' at higher regulatory targets. The 

relative cost effectiveness of MIs improve as: 

a) the regulatory target is tightened, and 

b) as weather conditions become wetter. 

2) Irrigation water abstraction restrictions required to comply with MAF do not 

fundamentally alter instruments ranking - however they do alter required instrument 

levels. 

3) The existence of 'cross-overs' imply that cost effective rankings maybe target dependent 

and vary across weather scenarios. 

4) Water quality metrics reveal that FLR MIs  pollution levels are more tightly clustered 

around the mean - even though they permit higher ambient N pollution events than 

stand alone economic instruments. 
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