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We propose weighted repeated median filters and smoothers for robust

non-parametric regression in general and for robust online signal extrac-

tion from time series in particular. The new methods allow to remove

outlying sequences and to preserve discontinuities (shifts) in the un-

derlying regression function (the signal) in the presence of local linear

trends. Suitable weighting of the observations according to their dis-

tances in the design space reduces the bias arising from non-linearities

and improves the efficiency using larger bandwidths, while still distin-

guishing long-term shifts from outlier sequences. Other localized robust

regression techniques like S-, M- and MM-estimators as well as weighted

L1-regression are included for comparison.
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1 Introduction

Online analysis of a variable observed in short time lags is a common task nowadays.

A basic objective is the extraction of the time-varying level (the signal) underlying a

noisy time series. Relevant signal details such as monotonic trends and abrupt shifts

need to be preserved, while irrelevant spikes due to measurement errors should be

eliminated. Robust filtering procedures should also be fast and simple.

Standard median filters (Tukey 1977) remove spikes and preserve shifts, but they

have difficulties if the signal is not almost constant within each window (e.g. Davies,

Fried and Gather 2004). For some improvement we can weight the observations

according to their temporal distances to the current target point, calculating a

weighted median (hereafter: WM). While the median of observations y1, . . . , yn

minimizes the L1-distance, the WM µ̂ of y1, . . . , yn with positive weights w1, . . . , wn,

which dates back to Edgeworth (1887), minimizes the weighted L1-distance

µ̂ = argmin
µ

n
∑

i=1

wi · |yi − µ|. (1)

In time series filtering with data y1, . . . , yn measured at fixed design points x1, . . . , xn,

we choose wi depending on the distance between xi and the target point x, wi =

w(|x − xi|), using a monotonically decreasing weight function w. WM filters are

popular because of their flexibility. For a given minimal length ℓ+1 of signal details

to be preserved one can select a WM filter with window width larger than the 2ℓ+1

necessary for a standard median. This allows more efficient noise suppression (Yang,

Yin, Gabbouj, Astola and Neuvo 1995). Time series filtering is a special case of

non-parametric smoothing with a fixed design. Generally, locally weighted median



1 INTRODUCTION 3

smoothing, studied firstly by Härdle and Gasser (1984), allows robust nonparametric

estimation of the conditional median µ = g(x) of a response Y given a covariate x.

Local linear fits are usually preferable to local constant fits (Fan, Hu and Truong

1994). The advantages are well-known in case of L2-regression (Fan 1992, Hastie

and Loader 1993). However, robustness is needed in the presence of outliers. Davies

et al. (2004) suggest the repeated median (RM, Siegel 1982) for the extraction

of monotonic trends from time series. The repeated median has the same opti-

mal asymptotic 50% breakdown point as the standard median, while relying on a

constant slope within each window instead of a constant level.

We develop weighted repeated medians (WRMs) for robust nonparametric smooth-

ing in the presence of trends. WRMs allow for application of longer windows than

‘standard’ RM filters, without being severely biased when the signal slope varies

over time. For a full online analysis we approximate the signal at the current time

point without any time delay, giving largest weights to the most recent observations.

We note that there are locally weighted versions of other robust regression tech-

niques: Equal weighting results in the highest efficiency of weighted Theil-Sen esti-

mators and the highest asymptotic breakdown point of 29.3% among all efficiency-

optimal weighting schemes in the case of an equally spaced design (Scholz 1978).

Simpson and Yohai (1998) discuss the stability of one-step GM estimators (including

weighted L1-regression) in approximately linear regression with a random design.

The paper is organized as follows. Section 2 reviews weighted medians and intro-

duces weighted repeated medians and weighted L1-regression. Section 3 derives
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analytical properties of these methods. Section 4 reports results from simulations.

Section 5 exemplifies the methods on some time series, followed by some conclusions.

Proofs of the analytical results are given in an appendix.

2 Robust smoothing and filtering

We start with alternative derivations of weighted medians. WM filters down-weight

remote observations, which reduces problems due to trends, but does not overcome

them completely. For further improvement we apply regression techniques with

weighting according to the temporal distances. We review weighted L1-regression

before introducing weighted repeated medians.

2.1 Alternative derivations of weighted medians

For non-negative integer valued weights w1, . . . , wn, a simple representation of the

weighted median of real numbers y1, . . . , yn is given by

µ̂ = med{w1 ⋄ y1, . . . , wn ⋄ yn} (2)

where w ⋄ y denotes replication of y to obtain w identical copies of it.

Notation (2) can be used in an extended way also for positive real weights: Let y(1) ≤

. . . ≤ y(n) denote the ordered observations and w(1), . . . , w(n) the corresponding

positive weights. Then the weighted median of y1, . . . , yn is µ̂ = y(k), where

k = max

{

h :
n

∑

i=h

w(i) ≥
1

2

n
∑

i=1

wi

}

. (3)
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For example, the WM of 1, 2, 3, 7 with weights 0.1, 1.6, 1.4 and 0.5 is y(3) = 3,

since 0.5 + 1.4 ≥ 3.6/2. Generally, (3) and (1) yield the same results. However,

the whole interval [y(k−1), . . . , y(k)] solves (1) if
∑n

i=k w(i) = 1
2

∑n
i=1 wi. The solution

y(k−1) would be obtained in (3) by summing from the bottom instead of from the top.

This ambiguity can be solved as usually by choosing the midpoint of the interval.

Two WMs with respective weights w1, . . . , wn and w′
1, . . . , w

′
n are equivalent iff they

always give the same result. This is the case iff for every index set I ⊂ {1, . . . , n}

∑

i∈I

wi ≥ 0.5

n
∑

i=1

wi ⇐⇒
∑

i∈I

w′
i ≥ 0.5

n
∑

i=1

w′
i .

For n = 3, the WM with weights (w1, w2, w3) = (2, 4, 3) is equivalent to the standard

median: for this the weights must be balanced, such that no subset of less than

⌊(n + 1)/2⌋ weights sums up to at least half the total mass. The WM is an order

statistic with its rank depending on the observations and the weights.

2.2 Weighted median smoothing and filtering

Let y1, . . . , yN be observed at fixed design points x1 < . . . < xN under the model

Yi = g(xi) + ui + vi, i = 1, . . . , N, (4)

where ui is symmetric observational noise with mean zero and finite variance σ2, and

vi is spiky noise from an outlier generating mechanism. The goal is to approximate

the signal g(x) for x ∈ [x1, xN ], representing the level of Y as a function of x. To

distinguish signal and noise we assume µ = g(x) to be smooth with infrequent shifts.

The observational noise is assumed to be rough and the number of subsequent spikes
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to be small as compared to the durations between the shifts.

Fan and Hall (1994) and Wang and Scott (1994) propose local constant weighted L1-

estimates ĝ(x) based on (1), using weights w1(x), . . . , wN(x). In time series filtering,

the design is usually equidistant, xi = i, i = 1, . . . , N . In retrospective applications,

when some delay is possible, we usually approximate the level in the window center

choosing bell-shaped weights which are symmetric to the center and monotonically

decreasing to both sides of it. When focusing on online analysis, where the target

point x at which we estimate the signal is at the end of the window, we apply

monotonically increasing weights (e.g. Einbeck and Kauermann 2003).

2.3 Weighted L1-regression

The theoretical properties of local linear mean estimators carry over to local linear

median estimators based on L1-regression (Fan et al. 1994). For the local linear

median at x, µ̂, we fit a straight line to the data using a weight function,

(µ̂, β̂) = argmin
µ,β

N
∑

i=1

wi(x)|yi − µ − β(xi − x)| (5)

The solution of weighted L1-regression (WL1) is generally not unique. In case of a

fixed design, w1(x), . . . , wN(x) are fixed and WL1-regression minimizes the residuals

w.r.t. a norm. Thus, the set of minimizing values is at least convex.

Several algorithms have been developed for L1-regression and for quantile regression

in general (Portnoy and Koenker 1997, Koenker 2005), which can be adapted to
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weighted L1-regression since the ordinary L1-solution of the modified problem

min!
N

∑

i=1

|wi(x) · yi − wi(x) · µ − β · wi(x) · (xi − x)| (6)

with data (wi(x), wi(x) · xi, wi(x) · yi) is the same as the original WL1-solution. We

use an approximative L1-procedure for simplicity and increased robustness. Starting

from the standard RM, the algorithm iterates a finite number of steps between

minimization of the objective function w.r.t. µ given the current β and vice versa.

2.4 Weighted repeated medians

Davies et al. (2004) investigate robust regression techniques like the standard RM

and L1-regression for delayed signal extraction from time series. Online versions

of such procedures are compared by Gather et al. (2006). The RM is found to be

preferable to the alternatives in both situations. The resulting (standard) RM filters

fit a linear trend to the data in each window, replacing the assumption of a locally

constant signal underlying the median by a trend with locally constant slope. This

motivates us to generalize the RM, permitting localization by weighting.

Consider a window of width n with observations (x1, y1), . . . , (xn, yn), where x1 <

. . . < xn. We define the weighted repeated median (WRM) with two possibly

different sets of weights wi, w̃i, i = 1, . . . , n, as

β̃WRM(x) = medj=1,...,nw̃j ⋄
(

medi6=jw̃i ⋄
yi − yj

xi − xj

)

, (7)

µ̃WRM(x) = med
(

w1 ⋄
(

y1 − (x1 − x)β̃WRM(x)
)

, . . . ,

wn ⋄
(

yn − (xn − x)β̃WRM(x)
))

, (8)
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i.e. we weight the pairwise slopes in the inner median depending on the position of

xi, and in the outer median on the position of xj when estimating the slope β(x).

We choose both sets of weights wi and w̃i to be monotonic for online application.

We call two WRMs with weights w1, . . . , wn, w̃1, . . . , w̃n and w′
1, . . . , w

′
n, w̃′

1, . . . , w̃
′
n

equivalent if the slope and the level estimate are always identical. A necessary

condition for this is the equivalence of the WMs corresponding to w1, . . . , wn and

w′
1, . . . , w

′
n: if the slope estimates are identical, there are samples such that the WMs

of the slope-corrected observations are different otherwise. The following additional

condition for w̃1, . . . , w̃n and w̃′
1, . . . , w̃

′
n guarantees the equivalence of WRMs:

The weighted medians corresponding to w̃1, . . . , w̃n and to w̃′
1, . . . , w̃

′
n are equiv-

alent, and for each i ∈ {1, . . . , n} the weighted medians corresponding to

w̃1, . . . , w̃i−1, w̃i+1, . . . , w̃n and to w̃′
1, . . . , w̃

′
i−1, w̃

′
i+1, . . . , w̃

′
n are also equivalent.

3 Analytical properties

As usually we assume that for every target point x the subset of design points

with non-zero weights forms a window of subsequent points. We discuss analytical

properties of the above smoothers for a single window of width n, under the condition

(C) y1, . . . , yn are values of a response observed at fixed x1 < . . . < xn. w1, . . . , wn

and w̃1, . . . , w̃n are the corresponding sets of strictly positive weights (we sup-

press the dependence on x since we treat a single target point x).
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3.1 Equivariances

Equivariances guarantee that an estimate reacts as expected to systematic changes in

the data. Location equivariance means that adding a constant c changes the estimate

by c. Scale equivariance means that multiplying all of y1, . . . , yn by c changes the

estimate by the same factor. The level estimates obtained from weighted medians

and weighted repeated medians possess both these properties.

We also require that the quality of the smoothing does not depend on linear trends.

This can be guaranteed by applying regression equivariant estimators. When re-

gressing a variable y on a variate z ∈ R
d, regression equivariance means that adding

a multiple c′z to y for a c ∈ R
d changes the estimate by this vector c. (Weighted)

RMs as defined here are equivariant w.r.t. adding a vector multiple (a, b)zi = a+bxi

of zi = (1, xi)
′ to yi, i = 1, . . . , n. A procedure for (weighted) L1-regression fulfills

this equivariance if the initial estimator, e.g. the RM, fulfills it since we just act on

the residuals thereafter. The performance of WMs depends on trends since they do

not make use of the covariate values x1, . . . , xn, but regress on a constant level only.

3.2 Removal of spiky noise

The removal of irrelevant spikes and the preservation of relevant signal details, in

particular of long-term shifts, are essential properties of robust smoothers. The per-

formance of moving window techniques can be measured by two related quantities,

the breakdown point and the exact fit point of the underlying functional.
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The finite sample replacement breakdown point measures the minimal fraction of

data which can drive an estimate beyond all bounds when being set to arbitrary

values (Ellis and Morgenthaler 1992). In the context of nonparametric smoothing

by moving window techniques, this corresponds to the smallest fraction of contam-

ination within a window which can cause an arbitrarily large spike in the output.

A single outlier can already do so in local (weighted) least squares fits. See Davies

and Gather (2005) for a discussion of breakdown points.

Another popular quantity in signal extraction is the number of spikes a procedure

can remove completely from a prototype signal in noise-free conditions, where the

variance σ2 of the observational noise equals zero. When applying a regression

functional to a moving window assuming a locally linear trend, this number of spikes

corresponds to the exact fit point of the functional. This is the smallest fraction of

observations which can cause an estimated regression hyperplane to deviate from

another hyperplane although all the other data points lie on the latter (Rousseeuw

and Leroy 1987, Section 3.4). For regression and scale equivariant functionals the

exact fit point is not smaller than the finite sample breakdown point. Let ⌊a⌋ be the

largest integer not larger than a. The standard median fits a constant exactly if less

than ⌊(n + 1)/2⌋ out of n observations deviate from it, which equals its breakdown

point. Up to ⌊(n−1)/2⌋ subsequent spikes are removed completely from a constant

signal. In retrospective application with a symmetric window, a shift from one

constant to another is preserved exactly when applying an odd n = 2m + 1. In

online application, the shift gets delayed by m time points.
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Within a trend period a standard median cannot preserve exactly a shift into the

opposite direction, and a single spike causes smearing. An advantage of regression

techniques is that the removal of outliers and the preservation of shifts do not depend

on linear trends since the WRM and WL1-regression are equivariant to them. The

breakdown and the exact fit point of the standard RM for fitting a straight line both

equal ⌊n/2⌋/n. Thus, it can remove ⌊n/2⌋−1 subsequent spikes from a linear trend,

which is only slightly less than for the standard median when the signal is constant.

For the derivation of breakdown and exact fit points of robust weighted regression

methods, let zi ∈ R
d be fixed regressors, γ ∈ R

d the parameter to be estimated, and

yi = z′i · γ + ui, i = 1, . . . , n.

We transfer results for standard L1-regression to the weighted case using the modi-

fied problem (6). From He, Jureckova, Koenker and Portnoy (1990, Theorem 5.3),

Ellis and Morgenthaler (1992, Theorem 2.3) and Mizera and Müller (1999, Theorem

2) we conclude that both the breakdown and the exact fit point of WL1-regression

equal k/n, where k = min |I|, I ⊂ {1, . . . , n}, for which 0 6= γ̃ ∈ R
d exists such that

∑

i∈I

wi · |z′i · γ̃| ≥
∑

i/∈I

wi · |z′i · γ̃| . (9)

Since a WM regresses on a constant, zi ≡ 1, its breakdown and exact fit point is

the minimal fraction of weights which sum up to at least 0.5
∑n

i=1 wi. It is straight-

forward that a WM which is not equivalent to the standard median has breakdown

point smaller than the optimal value ⌊(n+1)/2⌋/n of the latter. The loss in robust-

ness due to weighting is the larger, the more the weights vary.
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Calculating the numerical value of the breakdown and exact fit point of (weighted)

L1-regression is more difficult for d ≥ 2 since more directions need to be considered

then. For an algorithmic solution see Giloni and Padberg (2004).

Simple upper bounds for simple linear regression, yi = µ + β(xi − x), result from

choosing the coordinate axis as directions γ̃ in (9): The breakdown point of WL1-

regression with weights w1, . . . , wn is not larger than min{kl, ks}/n, where kl is the

minimal cardinality of I ⊂ {1, . . . , n} such that

∑

i∈I

wi ≥
∑

i/∈I

wi

and ks is the minimal cardinality of I ⊂ {1, . . . , n} such that

∑

i∈I

wi|xi − x| ≥
∑

i/∈I

wi|xi − x| .

This upper bound is generally not strict as it only considers two directions: For

standard L1-regression and an equidistant, centered design the upper bound is

1 − 1/
√

2 = 29.3% asymptotically, while the true value is at most 25% (Ellis and

Morgenthaler 1992, Proposition 4.1). Nevertheless, the upper bound is attained by

the approximative weighted L1-algorithm outlined in Section 2.3.

Next we address breakdown and exact fit of weighted repeated medians.

Proposition 1 Let a WRM (µ̃, β̃) weighted by w1, . . . , wn and w̃1, . . . , w̃n fulfill (C).

a) A lower bound for the breakdown and the exact fit point of (µ̃, β̃) is

min{ks, kl}/n, where ks is the minimal number for which
ks

∑

i=1

w̃[i] ≥
n

∑

i=ks+2

w̃[i],

with w̃[1] ≥ w̃[2] ≥ . . . ≥ w̃[n] denoting the ordered weights, and kl is the mini-

mal number of weights w[1] ≥ w[2] ≥ . . . ≥ w[n] for which

kl
∑

i=1

w[i] ≥
n

∑

i=kl+1

w[i].
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b) An upper bound for the breakdown and exact fit point of (µ̃, β̃) is min{k′
s −

1, kl}/n, where kl is as in a) and k′
s is minimal with

k′

s
∑

i=2

w̃[i] ≥
n

∑

i=k′

s+1

w̃[i].

c) The breakdown and the exact fit point of (µ̃, β̃) do not exceed the ⌊n/2⌋/n value

of the standard repeated median.

The lower and the upper bound given in a) and b) are not always identical, consider

n = 5 and (w1, . . . , w5) = (w̃1, . . . , w̃5) = (1, 1, 1, 3, 2), for which ks = 1, but k′
s = 3.

The lower bound is attained in the most relevant cases:

Proposition 2 Under (C), the breakdown and the exact fit point of a weighted re-

peated median with symmetric bell-shaped or monotonic weights equal min{ks, kl}/n.

There are also WRMs which attain their respective upper bound, e.g. the one for

n = 5 mentioned above. The previous results allow to determine weighted L1- and

WRM filters which remove outlier patches up to a given length completely while

exactly preserving longer shifts under idealized conditions (σ2 = 0).

In the simulations we consider full online applications using the target point x = xn

and triangular weighting schemes with wi(x) = w̃i(x) = i, i = 1, . . . , n. Table 1

gives the minimal widths n necessary to remove outlier patches of different lengths

for weighted and standard L1- and RM filtering. An equidistant design is assumed

for L1, while in case of the WRM the results hold for any fixed design. n increases

for the WRM as compared to the standard RM, while weighting allows to decrease

n for L1-filtering because of increased robustness. Nevertheless, the WL1 does not

achieve the optimal robustness of the standard RM and needs somewhat larger n.
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Table 1: Minimal window width n necessary to remove outlier patches of length ℓ in

online application, weighted L1- (left) and RM-regression (right).

ℓ 1 2 3 4 5 6 1 2 3 4 5 6

standard L1 / RM 5 8 11 15 18 22 4 6 8 10 12 14

triangular, wi(x) = i 4 7 10 14 17 21 5 9 12 15 19 22

3.3 Continuity

(Lipschitz) continuity guarantees local stability to small changes in the data due to

observational noise or rounding. Every WM is Lipschitz continuous with constant

1 as changing every observation by less than δ changes any order statistic at most

by δ, and a WM always corresponds to one of these. For fixed design, the slope

estimate of a WRM changes at most by 2δ/ min(xi − xi−1), so that the WRM level

is Lipschitz continuous with constant 2 max{|x1 −x|, |xn −x|}/ min(xi −xi−1) since

none of the slope corrected observations changes more.

4 Monte Carlo study

Robust filters should preserve long-term shifts as discussed in Section 3.2, while

removing irrelevant outlier sequences. We compare the online filters via simulations,

concentrating on equidistant designs as in time series filtering. Data are generated
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from model (4) with standard Gaussian white noise ui. The signal is a sine function,

g(xi) = ν · 0.5 · sin(i ·π/100), i = 1, . . . , 100, where ν ∈ {0, 1, . . . , 20} determines the

degree of non-linearity. We treat a single window with target point x = 50.

In intensive care, five subsequent strongly deviant observations in hemodynamic

series point at a relevant shift, while shorter sequences are typically irrelevant (Imhoff

et al. 2002). Accordingly, we fix widths in preliminary experiments with the aim

of closely tracking large shifts from the fifth deviant observation on. Choosing the

width maximal under this restriction optimizes both efficiency and robustness.

For the standard RM and L1-regression we select n = 11. Using triangular weights

we choose for the WRM the maximal width leading to elimination of at most ℓ = 4

observations (n = 18 according to Table 1), while we choose n = 16 for WL1. We

also include the fast S-estimator from R with n = 10 (command fast.s), from the

R-package MASS (command lqs) the least median of squares (LMS) with n = 9,

the least trimmed squares (LTS) with n = 10, and the S-estimator with n = 10;

from the R-package RRCOV the reweighted LTS (RLTS, command ltsReg) with

n = 11; also from MASS (command rlm) the M-estimators with the Huber, the

Hampel and Tukey’s bisquare-function all with n = 14 and the MM-estimator with

n = 10, and finally the MM-estimator from package ROBLM with n = 11. We

find the latter to outperform the other MM-estimator in our context. Similarly, the

LTS and the S-estimator showed little advantage over the LMS and RLTS, and the

M-estimators with the Huber or the Hampel function over Tukey’s biweight.

Comparing the ability of the procedures to distinguish relevant from irrelevant pat-
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terns, we generate data resembling the intrusion of a shift into the window, adding

the same constant c to an increasing number of observations at the window end. In

accordance to the above demands, up to four deviant observations are regarded as

outliers and should not affect the estimation, while from five deviant observations on

the shift should be reproduced. Figure 1 compares the bias for the signal value before

the shift caused by ℓ = 1, 2, . . . , 10 shifted observations at times t = 50, 49, . . . , 41,

calculated from 2000 windows each. An ideal curve stays at zero up to ℓ = 4 and

then increases abruptly to the added c representing the new level.

The RMs are less biased than the L1-estimates in case of four outliers, with the

differences being small between the weighted and the unweighted versions. Addi-

tionally, the RMs reproduce the shift well from the fifth observation on, while the

L1-estimates overshoot the new signal value for some observations. The LMS and

the RLTS are even less biased than the RMs in case of two to four outliers, but

the RLTS overshoots shifts. The MM resists a few outliers very well, but becomes

biased in case of three or four outliers and also overshoots shifts. The M-estimator,

finally, would strongly smooth shifts. The LMS has been proposed repeatedly for

image analysis because of its excellent edge preservation (Meer et al. 1991, Müller

1999, Rousseeuw and Van Aelst 1999). It is followed by the RLTS or the WRMs

in this exercise, depending on whether one considers blurring of edges to be worse

than overshooting or vice versa. We obtain similar results for the estimation of the

slopes (not shown here). The LMS is generally the least biased, followed by the

RLTS and the WRM. All these results have been confirmed for other shift sizes and
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for window widths chosen for preserving shifts from the fourth observation on.

Figure 2 compares the efficiencies for Gaussian noise as a function of the non-linearity

ν, in the absence of outliers and shifts. Because of a bias for ν 6= 0 we measure the

efficiency by the percentage mean square error MSE as compared to the standard

RM, obtained from 10000 runs for each ν = 0, . . . , 20. Weighting allows to gain

a considerable amount of efficiency both for the RM and L1-regression due to the

longer window widths possible then. This is even more true for the slope. Only

the M-estimator is more efficient than these, but as we have seen before it does not

reproduce shifts. The RLTS is somewhat less efficient than the unweighted RM and

L1, while the LMS is much less efficient.

5 Application to time series

For further comparison we apply the filters to some time series. The simulated data

depicted in Figure 3 are generated by overlaying a senoidal signal of length N = 250

with a shift by standard Gaussian white noise. A temporary shift of duration seven

is inserted at xi = 70 to investigate the preservation of relevant patterns.

The procedures are challenged by inserting irrelevant sequences of up to three out-

liers of size ten. We choose the widths cited in Section 4 for tracking shifts after ℓ = 4

observations. Therefore, the filters resist the irrelevant outliers, while delaying the

shifts by four observations. We only present the results for the WRM, the LMS and

the RLTS since they outperformed the other methods in the simulation study. As
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was to be expected, the RLTS (like the MM- and the L1) overshoots the shifts. The

LMS (and also the LTS and the S-estimator) provides wiggly outcomes according to

its large variability. The lack of stability of the LMS has been noted before in time

series filtering (Davies et al. 2004). Like the MM it reacts to irrelevant patterns in

the data, e.g. at t = 200. The WRMs provide stable outcomes and track the shifts

well, although they are somewhat affected by long outlier sequences.

We also consider real data representing the arterial pressure of a patient in intensive

care, see also Figure 3. The filters are applied using the same widths as before. The

MM-, RLTS- and L1-filters again overshoot the shifts. The WRM provides the best

results since it tracks the shifts well like the LMS and LTS, while being less variable.

6 Conclusions

We have investigated weighted repeated median and weighted L1-filters for robust

detail-preserving online smoothing of noisy data with underlying trends. In case of

the repeated median, weighting the observations according to their distance in the

design space improves the local adaption to nonlinear regression functions, allows to

use longer windows and increases the efficiency as compared to the standard version,

retaining the suppression of outlying spikes and the preservation of relevant shifts.

In case of L1-regression, on the contrary, weighting can increase the robustness and

the discrimination between sequences of relevant and irrelevant length.

We have compared the methods to several competitors also based on robust regres-
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sion, namely LMS-, LTS-, S-, M- and MM-estimators. The LMS- and LTS can

provide even higher robustness and better edge preservation than WRMs, but this

advantage is outweighted by a much higher variability and a lack of stability of the

outcome, rendering these methods little reliable in automatic application. M- or

MM-estimators do not preserve shifts well. WRMs combine the advantages of sta-

bility, good edge preservation, high robustness and considerable Gaussian efficiency.

Additionally, WRMs with triangular weights allow application of linear time algo-

rithms based on updating the output from the previous time point (Bernholt and

Fried 2003). Experiments with different error distributions resulted in an average

computation time for an update of about 2n · 10−6 seconds on a 2 GHz Intel Core

Duo with 512 MB DDR2/667 when using a window of width n, while exact compu-

tation of the LMS and related methods needs O(n2) time. WRMs with triangular

weight functions are thus much faster than these competitors and can be used to

analyze high-frequency data in real time. An implementation of the WRM filter is

available in the R-package ROBFILTER to be found at http://cran.r-project.org.

A question not addressed here is the automatic identification of level shifts, for

which many different rules have been suggested. A comparison of the different

possibilities arising in combination with WRMs is beyond the scope of this paper.

Since we can tune a WRM to track level shifts with a prescribed delay of, say, ℓ

observations, the following approach seems natural. Future signal values can be

predicted by extrapolation of the regression line fitted to the most recent window.

As an intruding shift starts to influence the filter output when ℓ + 1 observations
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are shifted and the output reaches the new level, it suggests itself to compare the

current filter output at time t to its prediction calculated at time t − ℓ − 1. A

shift is detected if this difference is large relative to its standard deviation. The

variance can be estimated by exponential smoothing of the squared differences even

in case of a time-varying variability. We tested this approach on some examples

using percentiles of the standard Gaussian distribution as thresholds and found it

to work well, albeit sometimes more sensitive to small changes than desired. This

can be overcome by using thresholds corresponding to relevant changes.

In the simulations we have concentrated on the typical equidistant designs arising in

time series filtering. Non-equidistant designs are found e.g. in option pricing. The

analytical results for the WRM presented here remain valid then. Based on our so far

limited experience we can say that the above comparisons with respect to variability,

robustness and shift preservation carry over to more general situations, assuming

that there are no outliers in the design space. Therefore we tentatively recommend

WRMs also for online application with a non-equidistant design, although more

investigations are needed w.r.t. the suitable choice of the window width.

All these results rely on outlier patches being well separated. When such patches

occur close to each other, using a standard RM with a reasonable width may still

be the best decision since it can deal with the largest fraction of outliers.
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Appendix: Proofs

Proof of Proposition 1. Since for regression and scale equivariant functionals like

WRMs the exact fit point (EFP) is at least as large as the finite-sample breakdown

point (BP), it suffices to prove a) for the BP and b) for the EFP.

a) Less than k = min{ks, kl} modifications have bounded effects on the level and

the slope: When excluding an unmodified, ‘clean’ observation yj, the sum of the

weights is still larger for the clean than for the modified observations. Hence,

for every clean yj the inner median in the slope corresponds to a clean pair and

is bounded. The WRM slope is bounded by the same quantity. The weighted

majority of the slope corrected yj and thus the WRM level is then also bounded.

b) Because of regression equivariance we may assume that all observations are zero,

and need to find k = min{k′
s − 1, kl} substitutions causing the fit to deviate from

the horizontal axis. If k = k′
s − 1, let the positions I = {i1, . . . , ik+1} correspond to

the largest weights w̃[1] ≥ . . . ≥ w̃[k+1]. Set the rightmost k of these observations,

i.e. with largest x, on an increasing line with slope b > 0 through the leftmost of
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them. For each observation in I the total weight of the other observations in I is at

least the total weight of the unmodified zero observations. The corresponding inner

medians and the WRM slope is hence at least b/2. If k = kl, set the k observations

with largest wi to an arbitrary value M , obtaining a WRM level of at least M/2.

c) The standard RM has maximal BP among regression equivariant methods

including WRMs. Its EFP is maximal as it equals its upper bound, ks = k′
s − 1. 2

Proof of Proposition 2. It is sufficient to prove that the EFP equals its lower bound.

We assume w.l.o.g. that all n observations equal zero and show that k = min{kl, ks}

modifications can make the WRM line deviate from the horizontal axis.

Symmetric bell-shaped weights and monotonic weights can be treated in the same

way. The k largest weights w̃j are at subsequent positions xi−k+1 < . . . < xi.

If ks ≤ kl, proceed as follows: If w̃1 + . . . + w̃i−k ≥ w̃i+1 + . . . + w̃n, set the k

observations at xi−k+1, . . . , xi to an increasing line with slope 1 through (xi−k, 0).

w̃i−k is the (k+1)th largest w̃j then. The pairwise slope is 1 if both design points are

selected from xi−k, . . . , xi, it is strictly positive if one is from x1, . . . , xi−k−1 and the

other from xi−k+1, . . . , xi, and it is zero if both are from x1, . . . , xi−k, xi+1, . . . , xn.

The inner median corresponding to xi−k is strictly positive since the total weight

of the modified is at least that of the unmodified observations. This also holds for

those at xi−k+1, . . . , xi since the pairwise slopes through x1, . . . , xi are larger than

zero. Since the total weight at xi−k, . . . , xi is larger than the rest, the WRM slope

is larger than zero and the WRM line deviates from the horizontal axis.

If w̃1 + . . . + w̃i−k < w̃i+1 + . . . + w̃n, set the observations at xi−k+1, . . . , xi to an
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increasing line through (xi+1, 0) and use the same arguments as before interchanging

the role of x1, . . . , xi−k and xi+1, . . . , xn.

If kl < ks, set the k observations with largest wi to 1. From the proof of Proposition

1a) follows that the slope estimate is zero, but the level estimate is at least 0.5. 2
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Figure 1: Bias for the level due to an increasing number of observations shifted by

c = 10 (top), c = 20 (center) and c = 100 (bottom) at the end of the window. Left, solid:

RM (�), WRM (△); left, dashed: L1 (�), WL1 (△); right, solid: M with the bisquare

(◦), MM (⋄); right, dashed: LMS (⋄), RLTS (◦).
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Figure 2: Efficiency for the level (left) and the slope (right) due to an increasing nonlin-

earity. Solid: RM (�), WRM (△), M-bisquare (◦), MM (⋄); dashed: L1-regression (�),

WL1 (△), LMS (⋄), RLTS (◦).
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Figure 3: Simulated (left) and real time series (right), underlying signal (bold dotted)

and filter outputs (solid): WRM (top), LMS (center), and RLTS (bottom).
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