Elsevier Editorial System(tm) for Geomorphology

Manuscript Draft

Manuscript Number: GEOMOR-146R2

Title: Allometric development of glacial circue form: geological, relief and regional effects on the circues of Wales

Article Type: Research Paper

Section/Category:

Keywords: Glacial erosion; Cirque form; Allometry; Morphometry; Wales; Statistical graphics.

Corresponding Author: Dr. lan Evans,

Corresponding Author's Institution: University of Durham

First Author: Ian Evans

Order of Authors: Ian Evans

Manuscript Region of Origin:

Abstract: Abstract

Headward and downward erosion near glacier sources, at rates exceeding fluvial erosion, is important in recent discussions of orogen development and the limits to relief. This relates to a long history of debate on how the form of glacial cirques develops, which can be advanced by relating shape to size in large data sets. For 260 cirques in Wales, this confirms different rates of enlargement in the three dimensions: faster in length than in width, and slower in vertical dimension whether expressed as overall height range, axial height range or wall height. Maximum gradient, plan closure and number of cols increase with overall size. This allometric development applies over different cirque types, regions and rock types. Headwall retreat, often by collapse following glacial erosion at the base, is faster than downward erosion. Welsh cirques form a scale-specific population and, as in other regions, size variables follow Gaussian distributions on a logarithmic scale. As in England, width commonly exceeds length. Vertical dimensions correlate with length more than with width. Cirque form varies with geology, but also with relief as both vary between mountain groups. The main contrast is between larger, better-developed cirques and higher relief on volcanic rocks in the north-west, and smaller, less-developed cirques and lower relief on sedimentary rocks in the south.

submitted 28 Aug 2005 revised 20 February 2006

Allometric development of glacial cirque form:

geological, relief and regional effects on the cirques of Wales

Ian S. Evans

Department of Geography, Durham University, South Road, Durham DH1 3LE, England, U.K.

Abstract

Headward and downward erosion near glacier sources, at rates exceeding fluvial erosion, is important in recent discussions of orogen development and the limits to relief. This relates to a long history of debate on how the form of glacial cirques develops, which can be advanced by relating shape to size in large data sets. For 260 cirques in Wales, this confirms different rates of enlargement in the three dimensions: faster in length than in width, and slower in vertical dimension whether expressed as overall height range, axial height range or wall height. Maximum gradient, plan closure and number of cols increase with overall size. This allometric development applies over different cirque types, regions and rock types. Headwall retreat, often by collapse following glacial erosion at the base, is faster than downward erosion. Welsh cirques form a scale-specific population and, as in other regions, size variables follow Gaussian distributions on a logarithmic scale. As in England, width commonly exceeds length. Vertical dimensions correlate with length more than with width. Cirque form varies with geology, but also with relief as both vary between mountain groups. The main contrast is between larger, better-developed cirques and higher relief on volcanic rocks in the north-west, and smaller, less-developed cirques and lower relief on sedimentary rocks in the south.

Keywords: Glacial erosion; Cirque form; Allometry; Morphometry; Wales; Statistical graphics.

Email: i.s.evans@durham.ac.uk Tel: +44 (0)191 334 1877 Fax: +44 (0)191 334 1801

1. Introduction

1.1. Aims and objectives

The erosion of glacial cirques takes tens to hundreds of thousands of years and is thus not susceptible to direct observation. Clearly cirques start from glacial occupation of already indented topography, often fluvial but sometimes volcanic or following landsliding. Several schemes have been proposed for cirque development (e.g. Gordon, 1977; Bennett, 1990): all are based on the concept that cirques enlarge over time, as the bedrock removed cannot be replaced in the same form. This substitution of spatial variation for change over time is known as the ergodic hypothesis (Cox, 1977; Thorn, 1988).

Cirque distribution is excellent evidence of former glaciation and is fairly well established, but data on the precise form of glacial cirques are limited and based on varied definitions. Here I report on an effort to provide comprehensive and comparable data, relevant to hypotheses of cirque development.

The aim of this paper is to use extensive data on spatial variation in cirque form to show how cirques may develop. This involves relating both morphometric and qualitative data to a number of possible controls: geology, relief, position and timing or type of last glacial occupation. The objectives are to present a high-resolution data set for all cirques in Wales, to use it to test hypotheses of changes in cirque shape with size and of environmental controls on both, and to set the statistical results in the context of a long historical debate on downward and headward cirque erosion. The data set is sufficiently large to be subdivided on various criteria, with numerous cirques in each class of geology or grade of development. This permits more reliable models, narrower confidence intervals, and statistical tests of greater power. The data also provide a sampling frame for future detailed studies of glacial morphology and Quaternary chronology, comparable to that provided for the English Lake District by Evans and Cox (1995).

1.2. Review of cirque development models: wearing down and wearing back

There is no obvious reason why downward erosion by glacial plucking, abrasion and meltwater should be equal to headwall recession by these and other processes (frost action and slope collapse). Contradictory views have been published, and it is worth considering the development of ideas on this controversial subject before presenting morphometric data permitting a test of their applicability. Fuller historical depth is provided in Evans (in press).

In the early twentieth century, cirques were considered to wear back by 'sapping' of the base of the headwall, usually by frost weathering and rockfall. Local glaciers flatten and deepen cirque floors, but by removing rockfall they constantly attack headwalls at their bases (de

Martonne, 1901). Richter (1900) emphasized cirque enlargement by headwall retreat through frost weathering, with glaciers abrading cirque floors but protecting them from fluvial incision; this produced a high terrace which could eventually truncate a mountain range. Richter's hypothesis that in Norway this retreat had gone so far as to create the high mountain plateaus (the Palaeic surface) was regarded as inconceivable by Ahlmann (1919, p. 220).

Johnson's (1904) bergschrund hypothesis explained headwall retreat by vigorous frost weathering in a narrow zone. This provided debris that aided glacial abrasion downstream. Hobbs (1910, 1911) proposed four stages of sculpture by mountain glaciers, from youthful 'channelled and grooved' uplands through adolescent 'early fretted ' and mature 'fretted' to senile 'monumented' upland, as cirques enlarged laterally at the expense of 'pre-glacial' upland. This 'Cycle of Mountain Glaciation', emphasizing headward recession, was discussed at some length in Embleton and King (1968). It involves, however, a dangerous substitution of time by space, the more so as Hobbs' main examples of the four stages are widely separated over space, respectively in the Bighorn Mountains of Wyoming, in northwest Wales, in the (Swiss) Alps, and in Glacier National Park, Montana. Hobbs suggested that cirques become more complicated with age: others attribute the complexity of broader cirques to coalescence. Davis (1911, pp. 56-61) described the enlargement and coalescence of cirques in Colorado and supported Richter's idea of mountain truncation at the snowline by prolonged glaciation.

Blache (1952, pp. 112-5) rejected Hobbs' four stages: instead of duration of glaciation, he related such differences to increased altitude, giving greater slope and greater ice discharge. The stages seem to relate also to dissection of the initial topography. Blache (1960, p. 30) denied that cirques expand laterally as in Hobbs' scheme. Derbyshire and Evans (1976) related Hobbs' 'stages' to tectonic environment and degree of dissection, especially the spacing of valleys.

Lewis (1938, 1940) suggested that meltwater forced its way down far below the bergschrund, explaining the great height of some cirque headwalls (over 300 m, even in Britain). Following later fieldwork, in the Jötunheimen, Norway (Clark, 1951; Clark and Lewis, 1951), Lewis emphasized the importance of rotational flow in cirque development (Lewis, 1949, 1960). Rotational flow maximises basal sliding but requires a certain range of ice surface gradients (see section 3.2). Lewis (1949) calculated that gradients of 15 - 20° and ice thicknesses of 80 - 100 m gave the greatest probabilities of rotational slip, and thus erosion of rock basins, both in cirques and below valley steps. Rotational flow has now been clearly demonstrated in Norway on Veslgjuvbreen (Grove, 1960) and Vesl-Skautbreen (McCall, 1960), and in Colorado on the Arapaho Glacier (Waldrop, 1964). Overall centre-line gradients were some 17°, 27° and 19° respectively. Lewis (1960) calculated that the 63 m deep rock basin of Blea Water, in a cirque in the English Lake

District, was excavated by a rotationally flowing glacier sloping at 13° to 16°, and that at least 7° was required to overcome basal friction.

A few authors have given more prominence to the downward erosion of cirque floors. Strøm (1945) contrasted the rapid cirque backwall recession in the quartzite of Rondane (southeast Norway) with the apparent vertical erosion (producing rock basins up to 170 m deep) in the plutonic rocks of Moskenesøy, Lofoten Islands. Galibert (1962, p. 16) proposed that in the Alps, crest retreat could be negligible compared with vertical incision of glacial cirques where jointing was most pronounced. Incision was due to greater abrasion under thick ice, accompanied by collapse of the headwall base by pressure release on deglaciation (see also Birot, 1968): high summits are deeply frozen and 'paralysed'.

Referring mainly to the Uinta Mountains of Utah, and to some Norwegian cirques, White (1970, p. 123) maintained that "In many mountainous areas... arêtes between opposing cirques are so narrow and steep that very slight additional headward erosion by either of the opposing glaciers would have breached the arêtes to form a col or a pass. Yet these arêtes persist, in rarely broken continuity threading their precarious way for great distances between the headwalls of successions of opposing cirques". Avalanche ravines on some headwalls would not have survived undermining by active sapping. White concluded that cirque floors are lowered by glacial erosion more rapidly than walls are cut back, a view that provides the opposite extreme to Richter.

Evidence of strong headward erosion was found in south-central Alaska by Tuck (1935), who proposed divide migration of up to 1 km due to stronger glacial erosion in northward-facing valley heads; the effects of differential insolation on glacier balance were reinforced by south winds. A similar interpretation of southward divide migration had been applied in west-central British Columbia where north-facing glaciers "have cut short northerly-trending valleys on the north side of the higher mountains" (Hanson 1924, p.31). Evans (1972) confirmed Hanson's hypothesis for several ranges in the Coast Mountains of southwest British Columbia. The main divides of the Bendor and Tatlow Ranges appear to have been shifted 1 to 2 km southward by cirque headwall retreat.

Evans (1997) emphasized the role of slope collapse in cirque headwall retreat, and listed examples of historical rock avalanches from cirque headwalls. The 1873, 1991 and other collapses around Mount Cook can be added to this list. These were controlled by stress-release joints slightly steeper than the cliffs, in cohesionless, closely jointed rock. "Many occur high on mountain slopes where gravitational collapse is the only operative erosion process to keep pace with glacial and fluvial valley incision" (McSaveney, 2002, p. 69). In the Ben Ohau Range, also in New Zealand, Brook et al. (2006) suggest that cirques lengthen and deepen faster than they widen, increasing in

maximum gradient and reaching well-developed shapes after 600 ka. Brocklehurst and Whipple (2002) suggested that circue headwall retreat is important on the east slope of the Californian Sierra Nevada, causing divide recession of up to 2.5 km beyond that expected from fluvial erosion.

Two recent publications based on analyses of DEMs (Digital Elevation Models) emphasize the importance of glacial erosion in cirques, in mid-latitude mountains. In part of the Washington Cascades, Mitchell and Montgomery (2006) note a parallelism between three trends: non-volcano summit altitudes, cirque floors and modern glacier median altitudes. Each rises eastward at 9 to 15 m km⁻¹. Only about 10% of each subdivision rises above the highest cirque floors, and few peaks rise more than 600 m above. Rock exhumation rates suggest vertical erosion of 2 to 5 km in the last 15 Ma, and are greatest 30 to 40 km west of the highest peaks. This is not the pattern expected from fluvial or slope erosion, so Mitchell and Montgomery propose a 'glacial buzzsaw' of greatest glacial erosion at the average Quaternary glacial equilibrium line represented by the cirque floors, where ice discharge and velocity were greatest. This increased the slope gradients above cirque floors to over 30°, causing slope failure. Thus both vertical and headward erosion in cirques is considered to dominate landscape development at high altitudes.

Uplift rates are greater in the Kyrgyz Range of the Tien Shan, where Oskin and Burbank (2005) use the sub-Cenozoic unconformity to suggest an east - west spatial gradient of uplift and thus of landform development. As mountains are taken above the snowline, glacial erosion both deepens and widens fluvial valleys, increasing local relief. This starts from the north slope where the snowline is some 200 m lower, pushing the divide 0.9 to 4.4 km southward. Erosion is localized at the bases of cirque headwalls, and cirque headwall retreat is two to three times the rate of vertical erosion. Glacial erosion is thus not simply a function of ice flux, but requires further help, perhaps from subglacial water pressure fluctuations in cirques. "Cirque retreat can effectively bevel across an elevated alpine plateau …" (Oskin and Burbank, 2005, p. 936).

Discussions of cirque development often assume that the cirque is isolated. In many areas, however, cirque headwalls intersect: cirques are side by side along one side of a ridge or more rarely (where glaciation has been more symmetrical) back to back across a ridge. This may limit further enlargement of cirques despite ongoing erosion, as arêtes are lowered along with cirque floors. Also cirque thresholds may recede by erosion of a glacial trough downstream. Most authors regard both modes of development as important, and Evans (1997) emphasized the need for erosion to be greatest at the base of the headwall, to account for development of the characteristic break of slope and a low-gradient floor. This may be facilitated by water pressure fluctuations, or by a transition from cold to warm, sliding ice as the glacier thickens: both mechanisms encourage plucking of blocks of rock. Erosion of a rock basin is even stronger

evidence of glacial erosion and probably requires rotational flow, but only a minority of cirques have a rock basin or even a lake (Derbyshire and Evans, 1976). If cirque development proceeds differently in different regions, the factors controlling this need to be established. Cirques are eroded both downward and headward. They are initiated by glaciers filling hollows of diverse types, and positive feedbacks (Graf, 1976) prevent them from escaping this inheritance: they remain diverse (Evans and Cox, 1995).

[Fig. 1 about here]

2. Data

2.1. Study Area: Wales

"I cannot imagine a more instructive and interesting lesson for any one who wishes (as I did) to learn the effects produced by the passage of glaciers, than to ascend a mountain like one of those south of the upper lake of Llanberis...convex domes or bosses of naked rock, generally smoothed, but with their steep faces often deeply scored in nearly horizontal lines..." (Darwin, 1842, p. 188). Darwin's early work on the glaciation of Wales (in the classic area of northern Snowdonia) is of historical importance in the acceptance of the glacial theory, and is set in its full context by Herbert (2005, pp. 277-284).

Choice of Wales as a study area provides a large number of cirques on a variety of rock types from Cambrian to Carboniferous (Silesian) in age, and in relief varying from the narrow mountainous ridges of Snowdon, through the more massive Carneddau Mountains, to the plateaus of central Wales and the sandstone escarpments of the south. Wales is on the west coast of Great Britain, between England and Ireland, and between 51.4 ° and 53.4 ° N. The morphology of Wales defies brief summarization, but the highest ground is in the northwest (northern Snowdonia), followed by the Aran – Cadair Idris Range in the western part of north-central Wales, and the Brecon Beacons in the south (Fig. 1). Wales and its English borderland form the Cambrian Massif, a Caledonian massif with a strong northeast-southwest grain and a Hercynian accretion in the south with a roughly east-west grain. Thomas (1970) has shown many structural influences in the topography. Quaternary tectonic movements are believed to have been subdued.

Position is used as a surrogate for climate (Evans, 1999) as there are few direct climatic observations in circues and none for the glacial periods when they were developing. In Wales temperature varies mainly with altitude (Sumner, 1997), but at present precipitation varies with exposure, related mainly to distance from the west and south coasts but with a lag so that the wettest mountains (Snowdon, Arenigs, Arans, Pumlumon, the Rhondda area and the western Brecon

Beacons) are 20 to 30 km from the coast. In areas with cirques, modern annual precipitation (1916-50) varied from 4500 mm on Snowdon and 2500 mm on Pumlumon (also spelled Plumlumon and Plynlimon) and the western Brecon Beacons to 1300 mm in the southeast (in the Black Mountains, the Radnor Forest, and near Abergavenny), and in Yr Eifl in northwest Wales (MHLG, 1967). The driest mountains are the Clwydian Range in the northeast, which show no clear cirques. Almost all areas with modern annual precipitation over 2000 mm support glacial cirques. Precipitation in the winter half-year is mainly 54-58% of the total on the mountains of North Wales, and 57-61% on South Wales mountains.

[Fig. 2 about here]

British and Irish cirques are believed to have developed over a series of glaciations, each intermediate in extent between the present non-glacial conditions and glacial maxima when most of Wales, Ireland, Scotland and northern England was covered by a coalescent ice sheet. Wales has undergone both ice-cap and local glaciation (Campbell and Bowen, 1989; Lewis and Richards, 2005). 'Irish Sea' ice from Scotland and Cumbria covered the north coast and western peninsulas, but the local Welsh Ice Cap was strong enough to prevent exotic ice from penetrating the areas with cirques: it built up to at least 850 m altitude from Snowdon to Carnedd Llewelyn (McCarroll and Ballantyne, 2000), and 750 m around Cadair Idris (Ballantyne, 2001) and the Rhinog mountains. Jansson and Glasser (2004) recognize varying ice flow patterns, and extents of cold-based ice, during build-up, maximum, and decline of the Last Glaciation. Cold ice covered the highest summits at the maximum. Ice streams formed during deglaciation, but did not affect areas with cirques (Jansson and Glasser 2004, Fig. 3). As these areas were mainly ice sources, and often covered by ice frozen to the bed, cirques suffered little modification by ice-cap glaciation except in the Moelwyn, Rhinog and Migneint areas, between Snowdon and Cadair Idris.

Wales covers 20,760 km², and the 260 cirques occur in an area 180 x 50 km (Fig. 2). Thus the distribution is much less dense than in the Maritime Alps, where Federici and Spagnolo (2004) measured 432 glacial cirques in 67 x 26 km (1742 km²). There is, however, a large gap between the cirques of Mid Wales and those of the Brecon Beacons, and there are few cirques in northeast Wales. The greatest concentrations are in northern Snowdonia (103 cirques in 30 x 18 km), Aran – Cadair Idris (48 cirques in 30 x 11 km) and the Brecon Beacons (30 cirques in 29 x 7 km) (Fig. 2). With one cirque per 5.2, 6.9 and 6.8 km² respectively, each of these sub-regions has a density of cirques rather less than the Maritime Alps (one per 4.0 km²). The English Lake District (excluding Black Combe) has 155 cirques in 33 x 31 km (Evans and Cox, 1995, Fig. 1a); one per 6.6 km². In Wales approximately 35% of cirques are named 'Cwm...', although this term is also applied to steep-sided fluvial valleys especially below confluences. The classic cirques of the Snowdon area have been well known since Davis (1909), and mapped and illustrated by Addison (1987). Lewis (1938) considered Llyn Cau on Cadair Idris, and Embleton and Hamann (1988) illustrated Glaslyn on Snowdon, but the cirques in many other parts of Wales have received little attention. Distributions of aspect (azimuth) are summarised by vector mean and vector strength (Evans, 2006), also known as mean direction and mean resultant length. Fig. 3 confirms that most cirques face north or east (Evans, 1999): for all 260 cirques the vector strengths are 53% for axis aspect and 58% for headwall aspect; vector means are 049° for both.

Many, but far from all, cirques were occupied by glaciers in the Devensian Late Glacial, the Loch Lomond Stadial (Gray, 1982; Ballantyne, 2001). Evans (1999) showed that the distribution of cirques occupied by these glaciers or by snowpatches was comparable to that of the whole set, but floors averaged 68 m higher and crests, 90 m higher; larger and better-developed cirques are more likely to have been occupied. For the present study, data have been updated from the work of Lynas (1996), Lowe and Larsen (in Ballantyne, 2001), Carr (2001) and Hughes (2002), mainly extending the Late Glacial occupation of cirques. However, the occupation of 83 cirques remains uncertain, pending considerable further fieldwork. Further references on Welsh moraines and glaciation are given in Evans (1999), Walker and McCarroll (2001) and Lewis and Richards (2005).

[Fig. 3 about here]

2.2. Data variables and definitions

The main data set used here covers all identified cirques in Wales and supersedes the provisional data set used in a previous study of cirque distribution (Evans, 1999). Cirque form has been re-measured and particular attention has been paid to marginal (debatable) features. One objective is to provide a high-quality data set for comparison with that for the Lake District (Evans and Cox, 1995). The Lake District data have been used by a number of investigators (e.g. Cox, 2004, 2005a) and no measurements have been challenged. The only challenge to the definition of cirques there has come from Wilson (2002) who proposed one extra cirque at Blindtarn Moss west of Grasmere: the headwall had been rejected as relating to a transverse ice flow.

If the development of cirques is to be studied, it is essential to consider all cirques from the most debatable to the most classic and from the smallest to the largest. Hence a complete inventory is needed. Cirques were graded 1 to 5, from classic to marginal or debatable (Fig. 2). Field checks have been extensive, but given the large area over which the 260 cirques are spread in Wales,

checks could not be as thorough as those in the Lake District, and it is likely that detailed investigations will add some further cirques and reject some grade 5 (marginal, debatable) cirques. It is supposed that all definite (grade 3 and better) cirques are included here, and that all measurements are accurate. From the present data, the robustness of results can be tested by repeating analyses with exclusion of marginal cirques, or also of poor ones; or more stringent thresholds for floor or headwall gradient can be set.

Numbers in each grade, 1 to 5, are 23, 51, 68, 59 and 59 respectively. Fig. 4 illustrates the characteristics of differently graded cirques, from less well-known areas. The classic and well-defined cirques (Llyn Lluncaws and Craig Trum y Ddysgl) have sharp contrasts between steep headwalls and flat floors; post-glacial talus accumulation has produced or extended intermediate slopes. Cwm Cwareli has a gentler headwall of alternating sandstone and shale and is less deeply enclosed, but still a definite (average) cirque. Craig Rhiw-erch would also be definite but for the steepness of its floor, which makes it marginal and caused hesitation over its inclusion.

Increasingly, such measurements will be made on-line from scanned maps in GIS, and more automatically by processing DEMs. High-quality DEMs are becoming available and their use is particularly appealing as more broadly-based variables can be defined (Evans, 1987; e.g. gradient-weighted vector mean aspect, and vector strength instead of plan closure). Also profiles and surfaces can be fitted within a cirque. At present, the initial stage of defining and delimiting cirques is subjective and involves air photo interpretation and fieldwork; it takes longer than measurement of the variables used here. The availability of accurate manually measured data sets such as this for Wales should provide useful calibration for future GIS-derived measurements.

Cirques are defined according to the agreed definition reported by Evans and Cox (1974). This is compatible with that of de Martonne (1901). Compared with previous definitions of Snowdonian cirques, the present approach appears to be more stringent in requiring at least part of the headwall to be steep, and more tolerant in accepting sloping floors, up to just over 20°. Thus cirques mapped by both Unwin (1973) and Bennett (1990) at Cwm Bychan (Conwy), Cwm Tŷ-du (Llanberis), Cwm Merch (east of Snowdon), Cwm Planwydd (northeast of Nantlle) and Cwm Ciprwth (above Cwm Pennant, south of Nantlle) are excluded because they lack cliffs, as is Bennett's Cwm yr Afon Goch (Aber). Their cirque on the northwest slope of Moel Cynghorion, west of Snowdon, is retained in spite of a large landslide from its headwall: before this postglacial event, the cirque floor was lower. Addison (1987, and in Addison et al., 1990, p. 13) was also more demanding than Unwin or Bennett, but omitted most of the Moelwyn-Siabod cirques (which have been modified by the over-riding Welsh ice cap). In the South Wales coalfield numerous landslides are mapped, but their distribution is mainly outside cirques.

[Fig. 4 –photos- about here]

Cirques were classified also by type, most being valley-side (157, including those on escarpments) or valley-head (75, of which two thirds have thresholds). All these are simple, as opposed to nested cirques. Seventeen inner (upper) cirques are contained within 11 outer (lower) cirques: the southernmost are on the north slope of Pumlumon, in the middle of Wales. Ten of the inner cirques are contained in five outer cirques on the Snowdon (Yr Wyddfa) range. This concentration arises because here the summits rise highest above the former glacier equilibrium lines. Furthermore, only on Snowdon itself are three nested levels recognized, for Cwm Llydaw and Cwm Llan; Snowdon has cirques on all sides (Davis, 1909; Addison, 1987; Addison et al., 1990). The criterion for recognizing outer cirques around lower floors is that each should have significant additional headwall that served as an ice source, as opposed to a trough side. When measuring the characteristics of outer cirques, their inner cirques are included except for floor characteristics.

2.3. Measurements and their accuracy

Measurement accuracy depends of course on the care taken by those measuring, and on the quality and resolution (e.g. contour interval) of the maps used. The main differences come from use of different definitions in delimiting cirques, as discussed above. Full definitions of the variables measured and calculated are given in Evans and Cox (1995, Tables 1 and 2); many are in common with those used earlier by Gordon (1977) and by Andrews and Dugdale (1971), facilitating comparisons. Using these tried and tested methods, with a given cirque outline and the accurate photogrammetric contours at 10 m interval on Ordnance Survey 1:10,000 scale maps enlarged for use here, measurements are quite accurate and reproducible. Field experience has increased confidence in the accuracy of these contours.

Once the cirque outline is established it is best next to delimit the floor from the headwall. A spacing of 20 m for 10 m contours gives a slope of 1 in 2, or 26.6°, which usefully defines the boundary between cirque floor (ideally $<20^{\circ}$: Evans and Cox,1974) and headwall (ideally $>33^{\circ}$, steeper than talus). (A similar spacing is used in delimiting the headwall crest, i.e. the cirque outline, wherever there are gentler slopes above.) Generalizing slightly to give a fairly simple boundary, this permits estimation of maximum floor altitude. It is also needed for locating maximum (head)wall height, along a single slope line, which gives an ancillary measure of vertical dimension.

Outlining the headwall is also useful when it comes to estimating the cirque focal point, the mid-point of the threshold or sill. This is straightforward for cirques which are internally symmetrical, but many cirques deviate from this and many thresholds are sloping, so the mid-point deviates from the lowest point. In these cases there is an inevitable subjectivity, as it is necessary to compromise between the mid-points given by several contours on the headwall, and that half-way between the intersections of the headwall-floor boundary with the cirque outline. Differences in the focal point shift the median axis, changing its aspect and length.

The median axis (Unwin, 1973) has been visually estimated as leaving half the cirque map area to the left, and half to the right. Use of tracings to superimpose the two sides suggests that initial visual estimates give axial aspects within 5° of the final value, which in turn is within 2° of the true value. Thus such manual estimates are fully comparable with the exact measurements now possible in GIS (Federici and Spagnolo, 2004). Estimates of headwall aspect are less precise, but they are unaffected by uncertainty over the focal point and less affected by variations in cirque outline definition, such as those due to possible headwall extensions with marginal gradients. Here the future use of DEMs will permit calculation of a headwall resultant vector based on point values of slope aspect, weighted by gradient in excess of the 26.6° threshold. The present manual estimates are considered accurate within 10°. It is reassuring also that the difference between headwall and axis aspect is symmetrically distributed, with a standard deviation of only 20°; its range is $\pm 65^{\circ}$.

Six altitude variables are defined. Estimates are accurate within 5 m, but considerable variance may come from differences in cirque outline, floor boundary and median axis. Thus the most reproducible variables are probably modal floor altitude and maximum crest altitude. The maximum altitude above, draining into a cirque, is often given exactly by a spot height, but estimates could be out by tens of metres where the location is uncertain on a mountain shoulder with divergent flow.

Again given the focal point and outline, length and width measurements are accurate within 10 m. Larger differences come from shifting the focal point or changing the cirque boundary. Visual estimates of the perpendicular nature of length and width were within 2°. Plan closure (Evans, 1969; Gordon, 1977) is a variable that requires some experience, to avoid problems with quadrants and complementary angles, but after careful measurement reproducibility within a few degrees is achieved.

With these methods of measurement and estimation from maps, and given a map with the cirque outline, all directly measured variables can be established within about an hour. This varies with cirque size, between about 30 and 90 minutes. Once a data set is complete and entered into a

statistical program, hours should be spent on consistency and outlier checks, extending to days if numerous errors are discovered and corrected. Before the final measurement by the author, most of these cirques were measured at different times, from different maps, and/or by different people, under the author's supervision. This improved the establishment of the best cirque outline, and aided avoidance of substantial errors.

[Fig. 5 about here]

3. Results

3.1. Size

Welsh cirques are comparable in size to those described from Scotland and the English Lake District. They do not fall into discrete size classes, but give fairly smooth continua on all measures of size. Positive skewness ranges from 1.22 for wall height to 2.45 for length. After logarithmic transformations these are reduced to -0.06 and 0.32. For variables measuring components of vertical dimension, generated as differences between altitude variables, skewness of 0.76 to 2.49 is reduced to -0.22 to -0.76. Fig. 5a shows how well-behaved the main size variables are on a logarithmic scale. These quantile plots (Cleveland, 1994, pp. 143-9) permit the observed distribution to be compared with a model probability distribution, in this case the log-Gaussian (also known as log-normal). Compared with histograms, they emphasize the overall shape and show every observation, unaffected by binning (classing), and they 'stack' onto one plot to facilitate comparisons (Cox, 2005b). Their linearity confirms that each is well approximated by the log-Gaussian model, and thus all further analyses deal with logarithms of these size variables. Note that each variable is ranked separately, so vertical comparisons on Fig. 5a generally concern different cases.

As is usual, extreme values are more erratic than those in the middles of the distributions. One notable effect is that ranked length is less than ranked width except for the four longest cirques. These are in fact the outer cirques of Cwms Llydaw, Llan and Dwythwch, all on Snowdon, plus Cwmffynnon on the Glyderau. (Except for Cwm Dwythwch these are also the three widest cirques, although the ranking process for the plots is independent for each variable.) Omission of all 11 'outer' cirques reduces skewness, but when relations between variables are considered (below) these cirques are 'on trend' and strengthen rather than weaken correlations, so it is best to retain them.

As in other regions, for example the Rocky Mountains of the USA (Graf, 1976) or Canada (Trenhaile, 1976), Welsh cirques have width close to length so that plan form is compact. Median

(and mean) values for Wales are 610 (667) m for length, 700 (772) m for width and 215 (236) m for amplitude. Spreads represented by the 5 and 95 percentiles (used here in preference to the range of extreme values) are 310-1235 m for length, 375-1502 m for width and 112-431 m for amplitude. These dimensions are comparable to those in England and in Scotland (Gordon, 1977), but rather smaller than those in northern Scandinavia (Hassinen, 1998) and considerably smaller than those in the Canadian Rockies and Columbia Mountains (Trenhaile, 1976) and the Antarctic Dry Valleys (Aniya and Welch, 1981). Cirques in the Maritime Alps (Federici and Spagnolo, 2004), the central Spanish Pyrenees (García-Ruiz et al., 2000) and the Cayoosh Range of British Columbia (Evans, 1994, Table 26.3) are comparable to Welsh cirques in area, but have rather greater vertical dimensions.

Confidence intervals show that cirque width is significantly greater than length, more so in Wales than in the Lake District. Width exceeds length also in the central Pyrenees (García-Ruiz et al., 2000), in central Sweden (Vilborg, 1984) and in northern Scandinavia (Hassinen, 1998) but in most other studies (northwest Scotland, the Maritime Alps, the whole Italian Piemonte, the Cayoosh Range, Baffin Island, the Canadian Rockies and Columbia Mountains and the Antarctic Dry Valleys) length is commonly greater. Width/length ratio averages 1.22 in Wales, and ranges from 0.49 to 3.47, so only one cirque is twice as long as broad. Cirques with width over twice length tend to be poor or marginal. Six of the 16 are in the Rhondda – Hirwaun group, and a further six are also in South Wales; all but one of these are on sandstone.

[Fig. 6 about here]

Fig. 6 shows, in five equal classes, the spatial distribution of cirque (overall) size, a combination of the three orthogonal dimensions. Size is defined as the cube root of (length x width x amplitude), so that it too has units of metres: it is required for analyses later in the paper. Larger cirques are concentrated in northern Snowdonia, and smaller ones are more common in South Wales. Cadair Idris and most northern regions have means above 460 m while the Brecon Beacons average 448 m and Corris and the rest of South Wales have means below 420 m, except that Pumlumon (mean 486 m) can compete with the northern regions and Migneint and Upper Dyfi bring down their regional group means.

These regional variations in the size and shape of Welsh cirques are further demonstrated by the variables in Figs. 7 and 8. The point-and-box plots show both the individual data and the quartile summaries (25, 50 and 75 percentiles). They are preferred over conventional box plots,

which can mislead by masking the number of cases on which they are based, and which have difficulties handling log scales because inter-quartile range is dependent on the metric.

As expected, the greatest vertical dimensions are in the Snowdon and Glyder groups, followed by Carneddau, Nantlle – Hebog, Cadair Idris and the Aran Range (Fig. 1), with mean amplitudes greater than 250 m. All these are within the main Ordovician volcanic belt, although some cirques are on intercalated siltstones. The least deep vertically are in South Wales (means less than 195 m) and in the Migneint area (between the Arenig and Moelwyn mountains), followed by Corris and Pumlumon (Fig. 7a). These are on sedimentary or lightly metamorphosed rocks. The low outlier for Arenig – Migneint is Llynnau Barlwyd, where the median axis intersects a very low central col, an unusual situation.

Length too is greater in North Wales than in the South (Fig. 7b) but Cadair Idris, Nantlle – Hebog and the Carneddau have surprisingly low medians and the cirques of Mid Wales (Pumlumon) are surprisingly long. There is, however, much less North – South contrast in width (not illustrated), which is greatest in the Western Brecon Beacons and Moelwyn – Siabod and least in the Black Mountains, Abergavenny and Corris.

These results are affected by inclusion of marginal cirques, which form 30% of the total from Corris southward, but only 18% farther north. Overall, in spite of some impressive cirques on sandstone in South Wales, cirques on sedimentary, slaty and greywacke rocks are smaller than those on volcanic and igneous rocks. For analyses of variance over the 17 regional groups, R^2 values are 0.294, 0.093 and 0.014 for the logarithms of amplitude, length and width respectively. Length is significant at *P*=0.0007, whereas width is quite insignificant.

Fig. 5b shows that altitude variables are well distributed without transformation, across broad ranges, except that 'high' altitudes cannot exceed the limiting value of 1065 m, the highest point in Wales.

[Fig. 7 about here]

3.2. Shape and gradient

Gradient and closure variables are symmetrically distributed (Fig. 5c and d) except for minimum gradient where proximity to the lower bounding value of zero inevitably produces positive skew. Reversed slopes in lakes and bogs are excluded because of inadequate data. As in the Lake District (Evans and Cox, 1995, Fig. 5), quantile plots for plan closure (Fig. 5d) and axial gradient are very linear, confirming well-behaved Gaussian distributions with no need for transformation. Profile closure and maximum and minimum gradient have tails shorter than the Gaussian, giving mildly S-shaped quantile plots.

Measuring how deeply cirques cut into mountains, closure in plan is greatest (mean 149°) in the Pumlumon group, where most cirques are at the heads of valleys incised into the plateau. Otherwise it is greater in groups containing igneous rocks, including the Berwyns (Fig. 7c). The high outlier for Moelwyn is Cwmorthin (295°), which has a complicated headwall. Easily the lowest plan closures are in the Black Mountains (61°), where the four cirques are shallow recesses in long, smooth valley sides. Other sandstone groups, including the Rhinogs, have relatively low closures. Over the 17 regional groups, R^2 is 0.073, P = 0.0043.

Maximum gradients (not illustrated) show a clear contrast between the five mountain groups of northern Snowdonia, plus Cadair Idris and the Arans, and all the rest. Low values are found south of Cadair Idris, especially in the Western Brecon Beacons. Minimum gradients are lowest throughout Snowdonia. High minima for Corris (mean 9.4°) and the six Upper Dyfi cirques reflect the inclusion of marginal cirques on the weak Silurian and Upper Ordovician siltstones. R^2 is 0.191 for maximum and 0.158 for minimum gradient; both are highly significant.

Axial gradient (Fig. 7d; R^2 is 0.180) is a more representative measure of overall cirque steepness. All groups have values both above and below 20°, but Corris and the four north-western Snowdonia groups have means above 21°. Moelwyn – Siabod joins the three groups immediately to its south in having low gradients, together with all of South Wales where the Brecon Beacons have means just below 18°. This mixed picture arises because cirques are steep both where relief is highest (around Snowdon) and where cirque development is more marginal (as around Corris).

As a glacier filling a cirque is likely to start near the top of the median axis, axial gradients are usefully compared with the gradients of cirque glaciers. Glaciers not reaching that high up the headwall, and those overflowing the cirque threshold, would have gentler gradients. Only 10% of Welsh axial gradients are less than 13°, which is sufficient to support rotational flow (section 1.2). Only three (1% of cirques) are gentler than 8°; 10% are steeper than 30°, and the maximum axial gradient is 38°. Thus the great majority of cirques can be related to cirque glaciers or glacier sources capable of rotational flow.

As in the Lake District, correlations within this group of shape and gradient variables are weak, except that axial gradient correlates +0.63 with minimum gradient. Maximum and minimum gradients correlate only -0.26. Plan closure correlates -0.35 with axial, but only ± 0.19 with the other two gradients (still significant, at the 0.005 level), and -0.20 with width/length. Principal component analysis of six shape and gradient variables confirms the weakness of their interrelations; the components have 40, 26, 19, 12, 3 and 0 percent of the total variance. This

contrasts with the six altitude variables, for which the first component has 86%, and the seven logarithmic size variables, 71%.

3.3. Geological effects

All erosional landforms are affected by the material into which they cut, but it is often difficult to pin down precise morphometric contrasts between lithologies (Evans, 1994). In Snowdonia, Unwin (1973, p. 87) noted structural control of detail but "considerable disregard for geological structure" with cirques cross-cutting different lithologies in the Nantlle – Hebog group. In the Snowdon group and especially in Y Glyderau, some cirques are elongated along the strike. Floors are often on weaker strata, giving exaggerated forms deep in profile in several cirques of Y Carneddau. Bennett (1990) developed the concept of 'strike cirques' further.

The importance of joints, faults and other planes of parting in cirque development was emphasized for example by Haynes (1968) and Addison (1981). In Snowdonia, the fracture network disregards lithological boundaries, but lithology controls fracture spacing and rock mass strength at smaller scales (Addison, 1981). However, data are not available on a broad basis and for the present survey the units mapped by the British Geological Survey and others are used. Thirteen units are distinguished in Fig. 8; 22% of Welsh cirques are on Devonian and Carboniferous sandstones (with intercalated shales), 14% are on weak Ordovician and Silurian siltstones and greywackes, 19% are on tuffaceous Ordovician sediments, 29% are on Ordovician volcanic rocks, 8% are on Cambrian rocks and 6% are on intrusive granitic rocks and dolerites.

For each variable, a one-way analysis of variance gives the variability accounted for by the 13 classes of geology. Table 1 ranks the 14 variables, and shows that the most closely related to geology are vertical dimensions and altitudes, followed by gradients (especially maximum) and plan closure. The relations are weaker than those over regional groups, but their ranking is comparable. The variation of length with geology is small (Fig. 8a), and that of width is insignificant. Coal Measures cirques (which have mainly Pennant sandstone headwalls) are shorter than others, and have lower amplitudes, but are just as wide. Lengths are greatest on tuffs.

[Table 1 about here]

The strongest relation to geology comes from relief (within 2 km radius), which is another controlling factor rather than a cirque characteristic. This suggests considering the joint effects of the two on the other variables. Relief is in fact the greater control for maximum gradient, axial gradient, size and length, with no additional effect from geology. It is also the greater for maximum

crest altitude, wall height, height range and amplitude, for which geology has small but significant further effects. On the other hand, relief is quite unrelated to plan closure, width and minimum gradient, and has no significant addition for lowest altitude. Thus it seems that for vertical dimensions, related gradients, length and thus size, relief is the direct control, but is itself affected by geology. Geology affects plan closure and minimum gradient (floor development) directly. For a selection of well-developed Austrian and British cirques, Embleton and Hamann (1988) also found that relief was more important than geology in controlling cirque form.

Rock basin lakes are a characteristic more closely related to geology (Haynes, 1968; Evans, 1994). In Wales, 11 of the 21 major rock basin lakes are on 'ignimbrite, lava and rhyolite', forming 29% of the cirques on that geological class. There are none on Lower Ordovician siltstones or on Silurian or younger rocks, although there are three major moraine-dammed lakes on Coal Measures sandstones and three more on Old Red Sandstone (Devonian).

[Fig. 8 about here]

Fig. 8b shows greater cirque amplitude (height range along the median axis) for volcanic and igneous rocks and tuffaceous sediments than for other rock types; amplitude is lowest on Devonian and Carboniferous rocks. As amplitude is more variable between rock types than are length and width (Table 1), variation in the compound variable 'size' is similar to that for amplitude. Relief (Fig. 8c) shows a similar pattern (and relief at 1 km radius correlates +0.89 with relief at 2 km), with clearly lower values on the younger, sedimentary rocks of the South, including the Silurian, and highest values on the three volcanic rock types and on microgranite; tuffaceous siltstones rank lower than for amplitude.

Maximum gradient (Fig. 8d) shows a clear dichotomy around 64°, between steep headwalls on volcanic and igneous rocks and gentle ones on sedimentary rocks – including Cambrian grits, and tuffaceous siltstones but not tuffaceous sandstones. Plan closure shows a different pattern (Fig. 8e), being greater on Silurian and Lower Ordovician siltstones, mudstones and greywackes (with numerous valley-head cirques), and lowest on the intrusive rocks (microgranite and dolerite) which are difficult to incise. It is fairly low on sandstones: around 100°, whether Cambrian, Devonian or Carboniferous.

3.4. Effects of other controls

As expected, the altitude and size groups of variables each have strong intercorrelations. The three 'high' altitude variables all correlate +0.91 or more: the three 'low' ones, +0.93 or more, and all six, +0.68 or more. Width and length, as logarithms, correlate +0.72. Length correlates +0.62 to +0.71 with the three measures of vertical dimension, whereas width correlates only +0.36 to +0.45.

Thus it is necessary to be selective in relating characteristics to combinations of others. Length, width and amplitude all increase with (any of the three) maximum altitudes, and they increase as lowest altitude decreases. Regressions including dummy variables for categories show that length is a function first of maximum altitude above, followed by lowest altitude, cirque type and occupation, with $R^2 = 0.54$, to which relief adds a little but geology adds nothing. Width gives $R^2 = 0.36$ for the same four, with lowest altitude being more important than maximum: relief increases this to 0.41. Amplitude relates more to maximum altitude than to lowest, and as it is calculated as the difference between a high and a low variable, including both gives a spuriously strong prediction. $R^2 = 0.41$ for amplitude as a function of maximum altitude above, cirque type and geology; relief increases this to 0.47 but occupation gives no further improvement.

[Table 2 about here]

4. Allometry

4.1. Variations of shape with size

Table 2 shows that maximum headwall gradient increases with all five size variables, and minimum floor gradient decreases. But maximum increases mainly with vertical dimensions, to which minimum is barely related. Overall axial gradient, as expected, rises with vertical dimensions and falls with increasing length and width. The width/length ratio has modest correlations with all size variables; these are negative for vertical dimensions, which as noted above relate more to length than to width. Plan closure also relates first to length, then to width. Larger cirques are likely to have more cols (over 30 m deep) in their crests; average sizes are 440 m for no cols, 566 m for one, 743 m for two, 754 m for three, and 1501 m for the one cirque with four cols.

[Fig. 9 about here]

A more graphic way of relating shape to size is to divide size into five equal classes and draw representative profiles for each (Fig. 9). The choice of five classes gives a reasonable number, 52, in each class for reliable estimation of mean values. For each size class, modal and maximum floor altitude, median and maximum crest altitude, and maximum altitude above are plotted relative to lowest altitude, and against horizontal coordinates based on length, minimum gradient (lowest

segment), maximum gradient (either side of the dot), and an assumed 10° above the crest. This is comparable to the developmental diagrams in Gordon (1977) and Bennett (1990), but based more directly on the data. Assuming a space-time transformation, headwall recession is greater than vertical enlargement, but the latter is considerable.

Development in length and width can be portrayed by a similar series (Fig. 10), using mean plan closures to dictate the curvatures. The full width is used, but as plan closure is measured along the mid-height contour which does not extend to either end of the median axis, only half the length is represented here: these are not cirque outlines. Shape changes are more subtle than size changes, but there is a progressive broadening out.

[Fig. 10 about here]

4.2. Allometric development

The concept of allometry, widely applied in developmental biology, simply implies that shape changes as organisms grow. Thus it is opposed to isometry, the maintenance of constant shape. These alternatives are commonly assessed on logarithmic scales, so that a given interval on an axis represents multiplication by a given factor. Applications to surveys of landforms at a single time are based on the assumption that the landforms have grown over time. This is not unreasonable for bedrock landforms, especially those such as cirques where positive feedback is involved. Application of allometry to glacial cirques was initiated by Olyphant (1981, p. 681), who took 'volume' (length x width x depth) as a reference measure of size to which other size measures could be related. He defined length as from cirque lip to headwall midpoint, width as the average of four measurements equally spaced along the length axis, starting at the cirque lip, and depth as the vertical difference between the cirque lip and the average cirque rim altitude. The width and depth measures are more averaged than those used here, but this is likely to affect the base constants rather than the gradients of logarithmic relations.

Here, following Evans and Cox (1995) and Evans and McClean (1995), I use median-axial length, maximum width at right angles to that axis, and vertical amplitude as the difference between crest altitude at the median axis and lowest altitude. 'Volume' is the product of the three linear dimensions, and 'size' is its cube root, useful in giving a linear measure comparable in magnitude to the three original measures. As volume = size³, the power exponents (gradients of logarithmic regressions) are three times as great for size as for volume. That is, while length, width and amplitude exponents sum to 1.0 for predictions from volume, they sum to 3.0 for predictions from size.

An advantage of the present data set is that there are two further definitions of vertical dimension, whose exponents can be compared with those for amplitude. Wall height is measured independently as the greatest drop along any headwall slope line, from crest to floor at right angles to contours. Overall height range is the extreme, relating maximum crest altitude to lowest altitude: it cannot be less than amplitude or wall height. It is also possible to compare exponents for different geologies or grades. Confidence intervals are considered the best way of comparing the feasible variations in estimates of exponents, and the significance of differences between them.

[Table 3 about here]

Table 3 confirms that exponents for the three components of size do indeed sum to 3.0. It shows that length increases (with size) faster than does width, and width probably increases faster than amplitude. Width and wall height show exponents not significantly different from 1.0 throughout; thus they are isometric, increasing in proportion to overall size. Length has significantly greater exponents; it increases faster than size. The confidence interval on the length exponent does not overlap with any other, except wall height. The results for overall height range are very similar to those for amplitude, except for valley-head cirques. The 'better' column, where poor and debatable cirques are excluded, gives very similar exponents except for wall height. Although 'outer' cirques form a distinctly larger population, their exclusion makes no difference to the exponents obtained. Valley-side cirques show almost the same exponents as the total set, but the smaller set of valley-head cirques does give a steeper variation in amplitude with size, and a reduced variation in length. Fig. 11 shows that the scatter of data points around these regressions is well-behaved, with near constant variance on a logarithmic scale.

[Fig. 11 about here]

These results provide a powerful confirmation of cirque allometry, robust over different cirque types. Length increases faster than size, and vertical dimension increases more slowly whether axial or overall height range is used (Fig. 11); this is consistent with Gordon's (1977, Fig. 7) model. Large cirques are relatively longer and less deep than if growth were isometric. The isometry of wall height is interesting, but it does show considerably more scatter than the other vertical variables in both dimensionless (R^2) and dimensional (RMS error) terms.

From Table 4 it seems that allometry of cirques in Wales is less pronounced than in the other areas. This may reflect the varied relief and geology of Wales. The greater increase of length than width is shared with the English Lake District and the Cayoosh Range. It is contrary to what would occur if allometry were due to lateral coalescence, which would increase width rather than depth.

Relations within different regions and broad rock types will now be considered. As confidence intervals are too broad for the 13 classes, three broader divisions of geology are used: igneous and volcanic; other, that is Cambrian and Ordovician sediments including tuffaceous; and Silurian and younger rocks. In relation to Fig. 8, these three are defined as the first five geological classes, the next four, and the final four which equate to South Wales and parts of Mid Wales.

In Table 5, the strongly overlapping confidence intervals for each variable show that none has exponents differing significantly between these three rock types. The high R^2 and low RMS errors confirm the strengths of these relations. The poorer result for amplitude on 'other' rocks is due to the outlying but real value for Llynnau Barlwyd (on siltstones), noted above: thus overall height range gives a better result for 'other'. Wall height shows greater scatter than the other variables, and unlike height range and amplitude its exponents for igneous and other do not differ significantly from 1.0.

[Table 5 about here]

Throughout Table 5, length exponents consistently exceed those for width, except on the Silurian and younger rocks, and all vertical dimensions produce lower exponents. Thus the results of Table 3 apply across the three main rock divisions. A similar analysis (not shown) for three broad regional divisions, North (Carneddau to Moelwyn-Siabod), Mid (Arenig-Migneint to Pumlumon) and South (Brecon Beacons to Rhondda) further reinforced the results. Here all three vertical dimensions gave exponent values significantly less than 1.0 for North and South, but closer to 1.0 for Mid Wales, which mixes high and low relief. Length and width gave highly overlapping confidence intervals, with the length exponent greater in North but the width exponent slightly greater in South.

5. Summary and Conclusions

In Wales, width exceeds length in 66% of the 260 cirques. This ratio applies across different cirque types, but rises to 91% for the 56 cirques on Devonian and Carboniferous sandstones, often on escarpments or straight valley-sides. Width averages 772 m, length 667 m,

(axial) amplitude 236 m, overall height range 269 m and wall height 197 m. Cirque dimensions are thus comparable to those in other mid-latitude studies, and especially to those in the English Lake District. Axial gradients are compatible with rotational flow of former glaciers in the great majority of these cirques.

Although differences between regions in length and width and their variations could arise from different practices of cirque definition, this is not the case for the contrast between Wales and the Lake District, with mean length/width ratios of 0.90 and 0.94, and the Cayoosh Range with 1.14, as I am responsible for all these definitions. The differences probably reflect regional topographic and tectonic settings, especially the degree of dissection of the landscape and the available relief. Although length and width behave somewhat differently, the slower increase of vertical dimension with cirque size is observed in all these regions.

If size (a combination of length, width and amplitude) is divided into five quintiles, each of its components (and the other vertical dimensions) increases monotonically, but there are changes in shape. Length increases most, vertical dimensions least. Plan and profile closure increase, and maximum gradient increases faster than minimum decreases.

These data provide the strongest test yet of allometry in glacial cirques. As elsewhere, vertical dimensions – amplitude, height range and wall height – increase with overall size, but significantly less than do horizontal dimensions. In Wales, only length has an exponent significantly greater than 1.0; that is, it increases faster than size in general. With minor variations, these results hold over different cirque types, regions and rock types. This type of allometry is logical given the role of glacial erosion in cirque development; the glacier rises higher against the backwall and moves away from it faster than from the sidewalls, thus increasing length faster than width. It is also reasonable that headwall retreat, often by collapse following glacial erosion at the base (Evans, 1997), is faster than downward erosion. Such importance of cirque headwall retreat has been emphasized recently by Mitchell and Montgomery (2006) and especially by Oskin and Burbank (2005), raising the question whether glacial erosion in mid-latitude mountains works largely as a 'buzzsaw' at the snowline or mainly by the calibration of glacial troughs to ice discharge. The divide retreat proposed by Evans (1972), Oskin and Burbank (2005) and others, shows that lateral coalescence of cirques cannot explain the greater increase of horizontal dimensions, especially since length increases with size faster than does width.

Acknowledgements

I am indebted to N. J. Cox for considerable help with data analysis and comments on drafts, and to all the students who have shared in the definition and initial measurement of cirques in Wales. Personal communications from R.A. Shakesby, G.S.P. Thomas, D.J. Unwin and M.J.C. Walker were valuable in locating cirques and moraines, and M. Spagnolo kindly supplied several Italian references. Comments by J. Gordon and D.J. Unwin led to improvements in the text. The Air Photographs Unit of the Welsh Office permitted consultation of air photos, and Durham University provided maps and other support. The Welsh cirques data file is available on the Science Direct 'Geomorphology' web site, or from the author.

References

Addison, K., 1981. The contribution of discontinuous rock-mass failure to glacial erosion. Annals of Glaciology 2, 3-10.

Addison, K., 1987. Snowdon in the Ice Age. K. & M. K. Addison, Broseley, Shropshire, 28 pp. ISBN 0 9511175 1 3.

Addison, K., Edge, M.J., Watkin, R., (Eds.), 1990. The Quaternary of North Wales: Field Guide. Quaternary Research Association, Coventry, 190 pp.: see pp. 11-19, 77-81, and 99-103.

Ahlmann, H.W., 1919. Geomorphological studies in Norway. Geografiska Annaler 1, 1-148.

Andrews, J.T., Dugdale R.E., 1971. Factors affecting corrie glacierization in Okoa Bay. Quaternary Research 1, 532-551.

Aniya, M., Welch, R., 1981. Morphometric analyses of Antarctic cirques from photogrammetric measurements. Geografiska Annaler 63 A, 41-53.

Ballantyne, C.K., 2001. Cadair Idris: a Late Devensian palaeonunatak. In: Walker, M.J.C., McCarroll, D. (Eds.), The Quaternary of West Wales: Field guide. Quaternary Research Association, London, pp. 126-131.

Bennett, M., 1990. The cwms of Snowdonia: a morphometric analysis. Dept. of Geography, Queen Mary & Westfield College, London, Research Paper, 2, 48pp.

Birot, P., 1968. Les développements récents des théories de l'érosion glaciaire. Annales de Géographie 77, 1-13.

Blache, J., 1952. La sculpture glaciaire. Revue de Géographie Alpine 40, 31-123.

Blache, J., 1960. Les résultats de l'érosion glaciaire. Mediterranée 1, 5-31.

Brocklehurst, S.H., Whipple, K.X., 2002. Glacial erosion and relief production in the Eastern Sierra Nevada, California. Geomorphology 42, 1-24.

Brook, M.S., Kirkbride, M.P., Brock, B.W., 2006. Cirque development in a steadily uplifting range: rates of erosion and long-term morphometric change in alpine cirques in the Ben Ohau Range, New Zealand. Earth Surface Processes and landforms, in press.

Campbell, S., Bowen, D.Q., 1989. Quaternary of Wales. Geological Conservation Review. Peterborough, Nature Conservancy Council.

Carr, S., 2001. A glaciological approach for the discrimination of Loch Lomond Stadial glacial landforms in the Brecon Beacons, South Wales. Proceedings, Geologists' Association 112, 253-262.

Clark, J.M., 1951. The investigation of a possible method of cirque erosion. U.G.G.I. Association Internationale d'Hydrologie Scientifique, Publication 32 (Bruxelles Symposium, v.1), 215-221.

Clark, J.M., Lewis, W.V., 1951. Rotational movement in cirque and valley glaciers. Journal of Geology 59, 546-566.

Cleveland, W.S., 1994. The elements of graphing data. Hobart Press, Summit N.J., 297 pp.

Cox, N.J., 1977. Allometric change of landforms: discussion. Geological Society of America, Bulletin 88, 1199-2000.

Cox, N.J., 2004. Graphing distributions. Stata Journal 4, 66-88.

Cox, N.J., 2005a. Density probability plots. Stata Journal 5, 259-273.

Cox, N.J., 2005b. The protean quantile plot. Stata Journal 5, 442-460.

Darwin, C.R., 1842. Notes on the effects produced by the ancient glaciers of Caernarvonshire, and on the boulders transported by floating ice. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 21, 180-188.

Davis, W.M., 1909. Glacial erosion in North Wales. Quarterly Journal, Geological Society of London 65, 281-350.

Davis, W.M., 1911. The Colorado Front Range. Annals, Association of American Geographers 1, 21-84.

Derbyshire, E., Evans, I.S., 1976. The climatic factor in cirque variation. In: Derbyshire, E. (Ed.), Geomorphology and Climate. J. Wiley, New York and London, pp. 447-494.

Embleton, C., Hamann, C., 1988. A comparison of cirque forms between the Austrian Alps and the Highlands of Britain. Zeitschrift für Geomorphologie, Supplementband 70, 75-93.

Embleton, C., King, C.A.M., 1968. Glacial and Periglacial Geomorphology. Edward Arnold, London, 608 pp [2nd Edition: 1975].

Evans, I.S., 1969. The geomorphology and morphometry of glaciated mountains. In: Chorley, R. J., (Ed.), Water, Earth and Man. Methuen, London, pp. 369-380.

Evans, I.S., 1972. Inferring process from form: the asymmetry of glaciated mountains. In: Adams, W.P., Helleiner, F.M. (Eds.), International Geography 1972 v 1, University of Toronto Press, Toronto, pp. 17-19.

Evans, I.S., 1987. The morphometry of specific landforms. In: Gardiner, V. (Ed.), International Geomorphology 1986 Part II. J. Wiley, Chichester, pp. 105-124.

Evans, I. S., 1994. Lithological and structural effects on forms of glacial erosion: cirques and lake basins. In: Robinson, D. A., Williams, R.B.G. (Eds.), Rock Weathering and Landform Evolution. J. Wiley, Chichester, pp. 455-472.

Evans, I.S., 1997. Process and form in the erosion of glaciated mountains. In: Stoddart, D.R. (Ed.), Process and Form in Geomorphology. Routledge, London, pp. 145-174.

Evans, I. S., 1999. Was the cirque glaciation of Wales time-transgressive or not? Annals of Glaciology 28, 33-39.

Evans, I.S., 2006. Local aspect asymmetry of mountain glaciation: A global survey of consistency of favoured directions for glacier numbers and altitudes. Geomorphology 73 (1-2), 166-184.

Evans, I. S., in press. Glacial erosional processes and forms: mountain glaciation and glacier geography. In: Burt, T.P., Brunsden, D., Goudie, A.S., Cox, N.J. (Eds.), The History of the Study of Landforms or the Development of Geomorphology, v. 4: Quaternary and Recent Processes and Forms (1890-1960s) and the Mid-Century Revolutions. Routledge, London.

Evans, I.S., Cox, N.J., 1974. Geomorphometry and the operational definition of cirques. Area (IBG, London), 6, 150-153.

Evans, I.S., Cox, N.J., 1995. The form of glacial cirques in the English Lake District, Cumbria. Zeitschrift für Geomorphologie, N.F. 39, 175-202.

Evans, I.S., McClean, C.J., 1995. The land surface is not unifractal: variograms, cirque scale and allometry. Zeitschrift für Geomorphologie, N.F. Supplementband 101, 127-147.

Federici, P.R., Spagnolo, M., 2004. Morphometric analysis on the size, shape and areal distribution of glacial circues in the Maritime Alps (Western French-Italian Alps). Geografiska Annaler 86 A, 235-248.

Galibert, G., 1962. Recherches sur les processus d'érosion glaciaires de la Haute Montagne Alpine, Bulletin, Association des Géographes Françaises 303-304, 8-46.

García-Ruiz, J.M., Gómez-Villar, A., Ortigosa, L., Martí-Bono, C., 2000. Morphometry of glacial cirques in the Central Spanish Pyrenees. Geografiska Annaler 82A, 433-442.

Gordon, J., 1977. Morphometry of cirques in the Kintail-Affric-Cannich area of NW Scotland. Geografiska Annaler 59A, 177-194.

Graf, W.L., 1976. Cirques as glacier locations. Arctic & Alpine Research 8, 79-90.

Gray, J.M., 1982. The last glaciers (Loch Lomond Advance) in Snowdonia, North Wales. Geological Journal, 17, 111-133.

Grove, J.M., 1960. A study of Veslgjuv-breen. In: Lewis, W.V. (Ed.), Norwegian Cirque Glaciers. R.G.S. Research Series, 4, Royal Geographical Society, London, pp. 69-82.

Hanson, G., 1924. Reconnaissance between Skeena River and Stewart, British Columbia. Geol. Survey of Canada, Summary Report for 1923, A, 29-45.

Hassinen, S., 1998. A morpho-statistical study of cirques and cirque glaciers in the Senja – Kilpisjärvi area, northern Scandinavia. Norsk geografisk Tidsskrift 52, 27-36.

Haynes, V.M., 1968. The influence of glacial erosion and rock structure on corries in Scotland. Geografiska Annaler 50A, 221-234.

Herbert, S., 2005. Charles Darwin, geologist. Cornell University Press, Ithaca, N.Y., 485 pp.

Hobbs, W.H., 1910. The cycle of mountain glaciation. Geographical Journal 35, 146-163 and 268-284.

Hobbs, W.H., 1911. Characteristics of Existing Glaciers. Macmillan, New York, 301pp.

Hughes, P.D., 2002. Loch Lomond Stadial glaciers in the Aran and Arenig Mountains, North Wales, Great Britain. Geological Journal 37, 9-15.

Jansson, K.N., Glasser, N.F., 2004. Palaeoglaciology of the Welsh sector of the British-Irish Ice Sheet. Journal of the Geological Society, London 161, 1-13.

Johnson, W.D., 1904. The profile of maturity in alpine glacial erosion. Journal of Geology 12, 569-578. (Reprinted in Embleton, C. (Ed.), 1972, Glaciers and Glacial Erosion. Macmillan, London, pp. 70-78.)

Lewis, C. A., Richards, A.E. (Eds.), 2005. The Glaciations of Wales and Adjacent Areas. Herefordshire, Logaston Press, 228 pp.

Lewis, W.V., 1938. A melt-water hypothesis of cirque formation. Geological Magazine 75, 249-265.

Lewis, W.V., 1940. The function of meltwater in circue formation. Geographical Review 30, 64-83. [Discussion 1949, v. 39, pp. 110-128]

Lewis, W.V., 1949. Glacial movement by rotational slipping. Geografiska Annaler 31, 146-158.

Lewis, W.V., 1960. The problem of cirque erosion. In: Lewis, W.V. (Ed.), Norwegian Cirque Glaciers. R.G.S. Research Series, 4, Royal Geographical Society, London, pp. 97-100.

Lynas, B., 1996. Snowdonia Rocky Rambles: Geology beneath Your Feet. Sigma Press, Wilmslow, 273 pp.

de Martonne, E., 1901. Sur la formation des cirques. Annales de Géographie 10, 10-16.

McCall, J.G., 1960. The flow characteristics of a cirque glacier and their effect on glacial structure and cirque formation. In Lewis, W.V. (Ed.), Norwegian Cirque Glaciers. R.G.S. Research Series, 4, Royal Geographical Society, London, pp. 39-62. (Reprinted in Embleton, C. (Ed.), Glaciers and Glacial Erosion. Macmillan, London, pp. 205-228.)

McCarroll, D., Ballantyne, C.K., 2000. The last ice sheet in Snowdonia. Journal of Quaternary Science 15, 765-778.

McSaveney, M.J., 2002. Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand. In: Evans, S.G., DeGraff, J.V. (Eds.), Catastrophic Landslides: Effects, Occurrence, and Mechanisms. Geological Society of America, Reviews in Engineering Geology XV, pp. 35-70.

MHLG (Ministry of Housing and Local Government), 1967. Rainfall: Annual Average 1916-1950, "Ten Mile" Map of Great Britain. Ordnance Survey: Southampton.

Mitchell, S.G., Montgomery, D.R., 2006. Influence of a glacial buzzsaw on the height and morphology of the Cascade Range in central Washington State, USA. Quaternary Research 65, 96-107.

Olyphant, G.A., 1981. Allometry and cirque evolution. Geological Society of America Bulletin Part I, 92, 679-685.

Oskin, M., Burbank, D.W., 2005. Alpine landscape evolution dominated by cirque retreat. Geology 33, 933-936.

Richter, E., 1900. Geomorphologische Untersuchungen in den Hochalpen. Petermann's (Geographische) Mitteilungen, Erganzungsband 29, 1-103.

Sumner, G., 1997. Wales. In: Wheeler, D., Mayes, J. (Eds.), Regional Climates of the British Isles. London, Routledge, pp. 131-157.

Strøm, K.M., 1945. Geomorphology of the Rondane area. Norsk Geologisk Tidsskrift 25, 360-378.

Thomas, T.M., 1970. The imprint of structural grain on the micro-relief of the Welsh uplands. Geological Journal 7, 69-100.

Thorn, C.E., 1988. An Introduction to Theoretical Geomorphology. Unwin Hyman, Boston, 247pp.

Trenhaile, A.S., 1976. Cirque morphometry in the Canadian Cordillera. Annals, Association of American Geographers 66, 451-462.

Tuck, R., 1935. Asymmetrical topography in high latitudes resulting from alpine glacial erosion. Journal of Geology 43, 530-8.

Unwin, D.J., 1973. The distribution and orientation of corries in northern Snowdonia, Wales. Transactions, Institute of British Geographers 58, 85-97.

Vilborg, L., 1984. The cirque forms of central Sweden. Geografiska Annaler 66A, 41-77.

Waldrop, H.A., 1964. Arapaho Glacier: A Sixty-year Record. University of Colorado Studies, Geology, 3, 37pp.

Walker, M.J.C., McCarroll, D., (Eds.), 2001. The Quaternary of West Wales: Field Guide. Quaternary Research Association, London, 184 pp.

White, W.A., 1970. Erosion of cirques. Journal of Geology 78, 123-6.

Wilson, P., 2002. Morphology and significance of some Loch Lomond Stadial moraines in the southcentral Lake District, England. Proceedings, Geologists' Association 113, 9-21.

Figures

Fig. 1. Wales: altitudes of the highest summits in each of the 17 cirque groups used here (e.g. Fig. 7), plus important secondary summits. Names of the groups are used (or parts of compound names such as Moelwyn – Siabod and Nantlle – Hebog), rather than summit names. Here, and on Figs. 2 and 3, the grid lines are kilometres on the Ordnance Survey National Grid, a variant of the Universal Transverse Mercator.

Fig. 2. The distribution of cirques in Wales, by grade.

Grades are defined as:

- 1. Classic, with all textbook attributes, a steep headwall curving around a deeply excavated floor;
- 2. Well-defined, with the headwall curving around the floor and both clearly developed;
- 3. Definite, with no debate about cirque status but one weak characteristic;
- 4. Poor, open to some doubt but with better characteristics compensating for weaker ones; and
- 5. Marginal, open to debate on cirque status and origin.

Fig. 3. The distribution and headwall aspects of cirques in three parts of Wales by size for (a): Northern Snowdonia, (b): the Dolgellau region (Meirionnydd district), and (c): South Wales. The scales vary, and are shown by the grid coordinates in km. Arrows start from cirque mid-points and their length is proportional to cirque size.

Fig. 4. Photographs of cirques of various grades of development.

a: Llyn Lluncaws, in a classic cirque in the Berwyns.

b: Craig Trum y Ddysgl, the west side of a well-defined cirque above the Nantlle, viewed from Mynydd Drws-y-coed.

c: Cwm Cwareli, a definite cirque near the east end of the Brecon Beacons.

d: Craig Rhiw-erch, a cirque on Maesglase at the northeast end of the Corris group; it is marginal because of its steep (although drift-filled) floor.

Fig. 5. Quantile plots of measured variables, each individually in rank order, for (a): size, (b): altitude, (c): gradient and profile closure, and (d): plan closure.

Fig. 6. The distribution of cirques in Wales, by size. Size (defined in text) ranges from 199 to 1585 m, and classes are divided at the quintiles 338, 415, 485 and 613 m.

Fig. 7. Point-and-box plots stacked by regional group, showing all data values (crosses), medians, inter-quartile ranges (shaded), and overall median (vertical line) for (a): amplitude, and (b): length, both on logarithmic scales; (c): plan closure and (d): axial gradient. (Graphic design by N.J. Cox.)

Fig. 8. Point-and-box plots stacked by geology, showing all data values (crosses), medians, interquartile ranges (shaded), and overall median (vertical line) for (a): length and (b): amplitude, on logarithmic scales; also for (c): relief, (d): maximum gradient and (e): plan closure. Ord. = Ordovician. (Graphic design by N.J. Cox.)

Fig. 9. Cirque profile development over five classes of size. This is a data-based generalization, using floor and crest altitudes and maximum and minimum gradients. The values used are means for the 52 cirques in each of five equal size classes. Each dot represents altitude of the top end of the median axis.

Fig. 10. Cirque plan development over five classes of size, represented by a hypothetical average mid-height contour. This is a data-based generalization, using plan closure, width, and half the length. The values used are means for the 52 cirques in each of five equal size classes.

Fig. 11. Allometric relations: logarithmic regressions on size, of (a): length and amplitude (with width regression for comparison), and (b): width, height range and wall height.

Table 1

Analysis of variance results, in rank order, for relation of cirque characteristics to the 13 classes of geology in Fig.8

Variable	adjusted R^2	variance ratio, F	P-value
log(Relief in 2 km)	.506	23.1	.0000
log(Relief in 1 km)	.438	17.8	.0000
Max. crest altitude	.340	12.1	.0000
log(Wall height)	.250	8.2	.0000
log(Height range)	.234	7.6	.0000
Lowest altitude	.208	6.7	.0000
log(Amplitude)	.199	6.4	.0000
Max. gradient	.165	5.3	.0000
Plan closure	.083	3.0	.0007
Min. gradient	.054	2.2	.0113
log(Size)	.046	2.0	.0220
Axial gradient	.045	2.0	.0231
log(Length)	.038	1.9	.0398
log(Width)	020	0.6	.8688

Note that adjustment for the 12 fitted constants has reduced R^2 values considerably.

Table 2 100x correlations of five size variables with five shape or gradient variables

max. gradient	min. gradient	axial gradient	plan closure	width/length
38	-51	-49	51	-38
30	-55	-48	39	34
53	-00	36	22	-35
<i>e</i> 58	-12	20	33	-35
t 57	-20	23	29	-33
	max. gradient 38 30 53 te 58 t 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	max. gradientmin. gradientaxial gradientplan closure38-51-495130-55-483953-003622958-122033457-202329

Table 3

Variable	expon.	95% conf.	$R^2, \%$	st.dev.	better	no outer	valley-side	valley-head
Length	1.12	1.07-1.18	86	0.16	1.10	1.12	1.13	1.01
Width	0.98	0.89-1.06	68	0.17	0.98	0.99	0.97	0.94
Amplitude	0.90	0.81-0.99	61	0.16	0.91	0.89	0.90	1.05
Height range	0.91	0.83-0.99	67	0.15	0.89	0.90	0.90	0.93
Wall height	0.97	0.86-1.09	52	0.19	0.85	0.97	1.02	0.99

Exponents for logarithmic (power) regressions of size variables on overall cirque size in Wales

95% confidence intervals and R^2 measures of fit for all 260 cirques in Wales are given on the left. These are followed by the standard deviation of each variable, and exponents for 142 better cirques (graded definite, well-defined or classic), for the 249 cirques excluding 'outer' cirques, for 157 valley-side and for 75 valley-head cirques

Table 4

Comparative exponents for logarithmic (power) regressions of size variables on overall cirque size

Variable	Wales	Lake D.	Cayoosh	Mar. Alps	Blanca
number of cirques	260	158	198	432	15
Length	1.12	1.17	1.10	1.08	1.14
Width	0.98	1.10	1.05	1.08	1.20
Amplitude	0.90	0.74	0.85		
Height range	0.91	0.75	0.83	0.84	0.66

Results for the whole of Wales are compared with those for the English Lake District (Evans and Cox, 1995, p. 195), the Cayoosh Range of British Columbia (Evans and McClean, 1995, p. 136), the Maritime Alps of Italy and France (Federici and Spagnolo, 2004, p. 240), and the Blanca Massif in the southern Colorado Rockies. The two former are in 'old massifs': the others, in active orogenic belts.

Table 5

Exponents, with 95% confidence intervals, for logarithmic (power) regressions of size variables on overall size, for three mapped geologies

Variable	geology	expon.	95% conf.	$R^2, \%$	RMS error
Length	igneous	1.11	1.04-1.18	92	.054
	other	1.18	1.06-1.30	81	.077
	younger	1.10	0.98-1.21	83	.067
Width	igneous	1.04	0.93-1.16	78	.093
	other	0.96	0.82-1.10	66	.093
	younger	1.13	0.97-1.29	73	.093
Amplitude	igneous	0.85	0.71-0.96	65	.104
-	other	0.87	0.68-1.05	48	.122
	younger	0.77	0.66-0.87	70	.067
Height range	igneous	0.87	0.74-0.99	67	.101
	other	0.82	0.69-0.95	64	.083
	younger	0.83	0.71-0.95	71	.071
Wall height	igneous	0.87	0.69-1.05	51	.141
-	other	0.91	0.72-1.10	50	.124
	younger	0.82	0.64-1.00	51	.107

'Igneous' are intrusive and volcanic (91 cirques), 'other' are Cambrian and Ordovician sediments including tuffaceous (93 cirques), and 'younger' are Silurian, Devonian and Carboniferous rocks (76 cirques).

FIGURES for "Allometric development of glacial cirque form: geological, relief

and regional effects on the cirques of Wales"

Fig. 1. Wales: altitudes of the highest summits in each of the 17 cirque groups used here (e.g. Fig. 7), plus important secondary summits. Names of the groups are used (or parts of compound names such as Moelwyn – Siabod and Nantlle – Hebog), rather than summit names. Here, and on Figs. 2 and 3, the grid lines are kilometres on the Ordnance Survey National Grid, a variant of the Universal Transverse Mercator

Fig. 2. The distribution of cirques in Wales, by grade. Grades are defined as:

1. Classic, with all textbook attributes - a steep headwall curving around a deeply excavated floor;

2. Well-defined, with the headwall curving around the floor and both clearly developed;

3. Definite, with no debate about cirque status but one weak characteristic;

4. Poor, open to some doubt but with better characteristics compensating for weaker ones; and

5. Marginal, open to debate on cirque status and origin.

Fig. 3. The distribution and headwall aspects of cirques in three parts of Wales by size for (a): Northern Snowdonia, (b): the Dolgellau region (Meirionnydd district), and (c): South Wales. The scales vary, and are shown by the grid coordinates in km. Arrows start from cirque mid-points and their length is proportional to cirque size.

a:

b:

c:

d:

Fig. 4. Photographs of circues of various grades of development.

a: Llyn Lluncaws, in a classic cirque in the Berwyns.

b: Craig Trum y Ddysgl, the west side of a well-defined cirque above the Nantlle, viewed from Mynydd Drws-ycoed.

c: Cwm Cwareli, a definite cirque near the east end of the Brecon Beacons.

d: Craig Rhiw-erch, a cirque on Maesglase at the northeast end of the Corris group; it is marginal because of its steep (although drift-filled) floor.

Fig. 5. Quantile plots of measured variables, each individually in rank order, for (a): size, (b): altitude, (c): gradient and profile closure, and (d): plan closure.

Fig. 6. The distribution of cirques in Wales, by size. Size (defined in text) ranges from 199 to 1585 m, and classes are divided at the quintiles 338, 415, 485 and 613 m.

Fig. 7. Point-and-box plots stacked by regional group, showing all data values (crosses), medians, inter-quartile ranges (shaded), and overall median (vertical line) for (a): amplitude, and (b): length, both on logarithmic scales; (c): plan closure and (d): axial gradient. (Graphic design by N.J. Cox.)

Fig. 8. Point-and-box plots stacked by geology, showing all data values (crosses), medians, inter-quartile ranges (shaded), and overall median (vertical line) for (a): length and (b): amplitude, on logarithmic scales; also for (c): relief, (d): maximum gradient and (e): plan closure. Ord. = Ordovician. (Graphic design by N.J. Cox.)

Fig. 9. Cirque profile development over five classes of size. This is a data-based generalization, using floor and crest altitudes and maximum and minimum gradients. The values used are means for the 52 cirques in each of five equal size classes. Each dot represents altitude of the top end of the median axis.

Fig. 10. Cirque plan development over five classes of size, represented by a hypothetical average mid-height contour. This is a data-based generalization, using plan closure, width, and half the length. The values used are means for the 52 cirques in each of five equal size classes.

Fig. 11. Allometric relations: logarithmic regressions on size, of (a): length and amplitude (with width regression for comparison), and (b): width, height range and wall height.

Dear Takashi,

I have made the necessary figure corrections and just some tiny further changes to the text - removing one more sentence (after Davis 1911 sentence) in 1.2. If you wish I can send the corresponding text with changes. Many thanks for your help,

Ian.

d easting	northing low	walt floo	ralt max	flait max	cralt ma:	xabalt me	edcralt ler	ngth w	idth wa	allht ma	axgrad mi	ngrad plar	clos relief	l relie	f2 lake cols		grade occupat type group geology	axisasp w	vallasp name ar	mplitude flor	ange axgrad p	rofclos widlen volume size h	neightrang logi logw logwa	Ih logamp logsize	logflorangelogheightrarootc
1 27	0 3689	585	660	720	832	942	831	622	783	150	45	4.2	115	447	582 drift	0	poor LLS glacie valley-hearCarneddauignimbrite,	. 11	32 Mynach,Pa	246	135 21.57872	40.8 1.258842 1.20E+08 492.9798	247 2.79379 2.893762 2.17	091 2.390935 2.692829	2.130334 2.392697
2 26	6 3635	666	700	810	965	965	945	567	580	255	63.4	12.5	67	487	637 drift	0	marginal none valley-side Carneddauignimbrite,	. 316	325 Cytryw-dru	279	144 26.20012	50.9 1.022928 9.18E+07 451.0296	299 2.753583 2.763428 2.4	1654 2.445604 2.654205	2.158362 2.475671
3 26	35 3656	6//	690	738	940	980	919	518	4/5	200	56.3	11.8	126	496	604 drift	0	marginal none valley-side CarneddauL. Ord. sill	15 281	275 Bychan,Cv	242	61 25.04111	44.5 0.916988 5.95E+07 390.4927	263 2./1433 2.6/6694 2.3	103 2.383815 2.591613	1.78533 2.419956
4 27	JU 3065	533	533	010	012	9/6	730	200	700	200	/0.0	0	152	450	550 major more		classic LLS glacie valley-nearCameddaudolerne	125	100 L.Dulyn, D	197	17 18.76032	76.5 1.651724 1.23E+06 496.9349	2/9 2.763428 3.031004 2.4	054 2.294400 2.0903	1.000491 2.440004
5 2/	3005	627	030	734	632	945	030	/60	730	104	63.4	0	119	440	666 major more		weil-define LLS glacie valley-neacCameddaulgnimonte,	. 08	95 Melynllyn	203	107 14.95466	63.4 0.900526 1.13E+08 462.9226	205 2.880814 2.863323 2.21	044 2.30/490 2.0636//	2.029384 2.311754
0 20	32 3001	630	670	730	1022	1004	9/5	660	094	310	50.2	9.2	61	513	611 drift		definite none valley-side CarneddauL. Ord. sin	12 323	310 E.Caseg,C	345	100 26.90109	41 0.8/3529 1.39E+08 518.44/5	392 2.832509 2.773787 2.49	1362 2.53/619 2./14/05	2 2.593266
/ 20	7 3049	745	745	/90	1020	1004	923	444	660	200	03.4	0	104	526	629 major more		classic LLS glacie valley-nearCameddauL. Ord. sin	8 61	25 Caseg, Fiy	1/6	45 21.64569	63.4 1.531532 5.37E+07 377.3728	2/5 2.04/383 2.832009 2.41	1973 2.20042 2.576771	1.053213 2.439333
8 20	3040	804	612	6/5	1060	1004	1050	4/0	030	230	70.7		121	400	579 major rock		classic uncertain valley-nearCarneddaulgnimonte,	. 65	90 Liynant, Pry	240	/1 2/.02//5	60.5 1.144661 6.22E+07 396.2218	200 2.072098 2.730782 2.36	1/28 2.390935 2.59/938	1.851258 2.40824
9 20	3/ 3030	495	507	092	700	931	207	760	1193	340	70.7	1.0	131	499	667 major bog		classic LLS glacie valley-side Carneddau0. Ord. sil	1 70	74 C.yrtsia, t	312	9/ 21.60141	70.09999 1.529407 2.90E+08 002.1004	300 2.892095 3.07664 2.53	14/9 2.494155 2.820963	1.966/72 2.563461
10 2/	12 3629	392	396	447	736	//5	725	560	580	290	//.6	2.7	100	418	468 major bog	0	poor LLS glacie valley-side Carneddau Ord, sand	s 344	335 Tri Marcho	333	55 30.73753	74.9 1.035/14 1.08E+08 476.453	344 2.748188 2.763428 2.46	2398 2.522444 2.67802	1.740363 2.536558
11 2/	3625	518	535	700	803	827	800	750	535	125	53.7	7.6	125	434	580 drift	0	definite LLS glacie valley-hearCarneddauU. Ord. sil	125	115 Bychan,Cv	282	182 20.60626	46.1 0.713333 1.13E+08 483.6762	285 2.875061 2.728354 2.0	691 2.450249 2.684555	2.260071 2.454845
12 26	32 3629	542	546	660	831	1064	822	1220	896	2/5	/3.3	0	148	393	692 major rock	2	well-define LLS glacie valley-hearCarneddauU. Ord. sil	1/5	210 Llugwy,Cw	280	118 12.926	73.3 0.734426 3.06E+08 673.9204	289 3.08636 2.952308 2.43	333 2.44/158 2.828605	2.0/1882 2.460898 1.41
13 20	32 3031	706	/1/	6/2	940	955	920	530	3/5	90	50.2	3.4	60	447	090 drift		poor LLS glacle valley-side Carneddauignimonte,	. /6	63 C.Liugwy	214	100 21.90/00	40.8 U./U/54/ 4.25E+U/ 349.0055	234 2.724276 2.574031 1.95	242 2.330414 2.542907	2.220108 2.309210
14 26	30 3640	516	590	660	800	800	749	382	410	1/0	63.4	14	35	623	732 drift	0	poor none valley-side Carneddaudolente	63	55 Moch,Cwn	233	144 31.381	49.4 1.0/3298 3.65E+07 331.6915	284 2.582063 2.612784 2.23	1449 2.367356 2.520734	2.158362 2.453318
15 26	31 3636	616	630	642	936	1044	853	477	408	296	63.4	4.8	135	616	794 drift	0	definite LLS glacie valley-side Carneddauignimbrite.	. 26	32 W.Cwmgla	237	26 26.42073	58.6 0.855346 4.61E+07 358.6264	320 2.678518 2.61066 2.47	292 2.374748 2.554642	1.414973 2.50515
16 26	33 3634	598	634	650	1023	1044	1020	550	350	370	83	9.5	113	609	674 drift	0	definite none valley-side Carneddaumixed lava	в О	0 E.Cwmgla:	422	52 37.49804	73.5 0.636364 8.12E+07 433.0929	425 2.740363 2.544068 2.56	202 2.625313 2.636581	1.716003 2.628389
17 26	39 3634	552	556	620	1012	1034	976	762	910	404	78	2	131	588	642 drift	0	well-define LLS glacie valley-hearCarneddauignimbrite,	. 351	5 Cwmglas I	424	68 29.0929	76 1.194226 2.94E+08 664.9476	460 2.881955 2.959041 2.60	381 2.627366 2.822787	1.832509 2.662758
18 26	56 3621	750	790	805	978	978	950	350	400	178	56.3	12	115	644	844 drift	0	poor LLS glacie inner, cont Carneddauignimbrite,	. 68	75 Ole Wen ((200	55 29.74488	44.3 1.142857 2.80E+07 303.6589	228 2.544068 2.60206 2.2	042 2.30103 2.482386	1.740363 2.357935
19 26	31 3622	642	656	760	978	1044	951	946	980	263	73.3	0	179	644	844 major rock	0	classic LLS glacie outer, cont Carneddauignimbrite.	, 123	85 Lloer,Cwm	309	118 18.08903	73.3 1.035941 2.86E+08 659.2122	336 2.975891 2.991226 2.41	956 2.489959 2.819025	2.071882 2.526339
20 26	21 3633	480	500	570	785	822	700	570	415	215	53.7	10	124	611	708 outsloping	0	definite LLS snowpvalley-side Glyderau Cambrian	42	35 Ceunant,C	220	90 21.10484	43.7 0.72807 5.20E+07 373.3492	305 2.755875 2.618048 2.33	438 2.342423 2.572115	1.954242 2.4843
21 26	26 3627	355	400	518	812	822	805	892	637	307	73.3	4.5	112	626	742 drift	0	well-define LLS glacie valley-side Glyderau Cambrian	(63	60 Graianog,(450	163 26.77023	68.8 0.714126 2.56E+08 634.7055	457 2.950365 2.804139 2.48	138 2.653213 2.802572	2.212188 2.659916
22 26	28 3621	400	590	655	800	813	775	920	656	282	59	6.7	137	626	638 outsloping	0	definite LLS snowpvalley-side Glyderau L. Ord. silt	ls 55	88 Perfedd,Ci	375	255 22.17624	52.3 0.713044 2.26E+08 609.4073	400 2.963788 2.816904 2.45	249 2.574031 2.784908	2.40654 2.60206
23 26	3623	472	472	550	700	924	695	532	715	228	60.5	0	72	498	644 major more	0	definite LLS glacie valley-side Glyderau Cambrian	(34	40 B.Marchlyr	223	78 22.74211	60.5 1.343985 8.48E+07 439.3806	228 2.725912 2.854306 2.35	935 2.348305 2.642841	1.892095 2.357935
24 26	7 3619	583	604	660	857	895	748	945	806	217	63.4	0	178	445	574 major more	1	classic LLS glacie valley-hearGlyderau Cambrian	325	5 M.Marchly	165	77 9.904183	63.4 0.85291 1.26E+08 500.8991	274 2.975432 2.906335 2.3	646 2.217484 2.69975	1.886491 2.437751
25 26	30 3615	450	530	595	831	831	724	850	515	240	66.6	5.9	109	623	752 drift	0	definite LLS glacie valley-side Glyderau L. Ord. silt	ls 50	10 Bual,Cwm	274	145 17.86688	60.7 0.605882 1.20E+08 493.165	381 2.929419 2.711807 2.38	211 2.437751 2.692992	2.161368 2.580925
26 26	32 3612	457	480	575	831	831	805	606	481	257	72.4	8.1	140	626	750 drift	0	well-define LLS glacie valley-side Glyderau L. Ord. sill	11 65	52 Cwm-coch	348	118 29.86692	64.3 0.793729 1.01E+08 466.3718	374 2.782473 2.682145 2.40	933 2.541579 2.668732	2.071882 2.572872
27 26	30 3602	580	600	657	921	923	840	640	710	261	61.9	4.4	169	599	744 minor lake	0	classic LLS glacie vallev-hearGlyderau L. Ord. sill	11 36	40 Cywion.Cy	260	77 22,10945	57.5 1.109375 1.18E+08 490.6862	341 2.80618 2.851258 2.41	641 2.414973 2.690804	1.886491 2.532754
28 26	34 3597	640	662	705	947	947	930	610	594	267	66.6	0	146	576	795 major rock	0	classic LLS glacie vallev-side Glyderau ignimbrite.	. 77	63 Clvd.Cwm:	290	65 25.42687	66.6 0.973771 1.05E+08 471.8871	307 2.78533 2.773787 2.42	511 2.462398 2.673838	1.812913 2.487138
29 26	15 3589	371	371	510	965	999	945	1485	1550	437	78.7	0	229	633	793 major rock	1	classic LLS glacie outer, cont Glyderau ignimbrite,	. 359	5 Idwal,Llyn	574	139 21.13311	78.7 1.043771 1.32E+09 1097.295	594 3.171726 3.190332 2.64	481 2.758912 3.040323	2.143015 2.773787
30 26	7 3584	625	640	832	965	999	952	760	618	280	78.7	5.6	177	628	749 drift	0	well-define LLS glacie inner, cont Glyderau Ord. sand	s 354	321 Cneifion,C	327	207 23.28043	73.1 0.813158 1.54E+08 535.5294	340 2.880814 2.790988 2.44	158 2.514548 2.728783	2.31597 2.531479
31 26	56 3589	530	551	720	972	990	970	1197	1250	356	75.1	0	184	620	790 major rock	2	classic LLS glacie outer, cont Glyderau Ord. sand	s 355	0 Bochlwyd,	440	190 20.1827	75.1 1.044277 6.58E+08 869.9326	442 3.078094 3.09691 2.5	145 2.643453 2.939486	2.278754 2.645422 1.41
32 26	53 3584	670	710	745	972	990	932	465	505	270	68.2	8.5	160	604	698 minor lake	1	definite LLS glacie inner, cont Glyderau ignimbrite,	. 20	5 U.Bochlwy	262	75 29.39869	59.7 1.086022 6.15E+07 394.774	302 2.667453 2.703291 2.43	364 2.418301 2.596349	1.875061 2.480007
33 26	35 3586	548	590	710	943	962	900	906	1045	240	63.4	4.2	154	529	692 outsloping	1	definite LLS glacie vallev-hearGlyderau ignimbrite.	. 57	48 Tryfan.Cwi	352	162 21.23219	59.2 1.153422 3.33E+08 693.3126	395 2.957128 3.019116 2.38	211 2.546543 2.840929	2.209515 2.596597
34 26	7 3586	563	600	667	805	805	785	720	825	175	68.2	3.3	123	339	735 drift	0	poor uncertain valley-hearGlyderau Ord. sand	s 28	0 Gwern Gol	222	104 17.13627 (64.89999 1.145833 1.32E+08 508.9946	242 2.857332 2.916454 2.24	038 2.346353 2.706713	2.017033 2.383815
35 26	3589	282	300	425	730	763	725	1090	780	310	63	21	140	503	623 major rock	ó	well-define LLS placie valley-side Glyderau i pimbrite	68	75 Gallt yr Oo	443	143 22 11791	60.9 0.715596 3.77E+08 722 1736	448 3 037428 2 892095 2 49	362 2 646404 2 858642	2 155336 2 651278
36 26	1 3569	372	382	535	950	999	910	2000	1925	470	59	0	123	615	788 major rock	0	noor none valley-bearGlyderau ignimbrite	160	165 Cwmffynnr	538	163 15 05616	59 0.9625 2.07E+09 1274 719	578 3 30103 3 284431 2 67	098 2 730782 3 105414	2 212188 2 761928
37 28	36 3539	318	325	415	694	705	673	972	915	310	71.6	2.4	65	518	833 major hon	ň	definite LLS glacie vallev-side Snowdon tuffe acid	(62	46 Dvli Cwm	355	97 20 06352	69.2 0.941358 3 16E+08 680 9343	376 2.987666 2.961421 2.49	362 2.550228 2.833104	1.986772 2.575188
38 26	0 3547	373	376	425	530	544	500	453	656	144	65	0	95	399	856 major rock	ň	marginal uncertain vallev-side Snowdon innimhrite	162	170 L.Tevrn	127	52 15.66101	65 1.448124 3.77E+07 335 43	157 2.656098 2.816904 2.15	362 2.103804 2.525805	1.716003 2.1959
39 26	2 3545	420	432	588	1085	1085	1020	2750	2050	480	75.4	0	218	570	861 major rock	4	classic LLS clacie outer cont Snowdon ignimbrite	95	105 Livdaw Cw	600	168 12 30802	75.4 0.745455 3.38E+09 1501.11	665 3 439333 3 311754 2 68	241 2 778151 3 176413	2 225309 2 822822
40 26	4 3548	600	603	670	1085	1085	1000	1200	1090	480	75.4	0	155	653	805 major rock		classic LLS placia inner cont Snowron tuffe acid	/ 114	139 Glaslup Cu	400	70 18 43495	75.4 0.008333 5.23E±08 805.7013	485 3.070181 3.037426 2.68	241 2 60206 2 906223	1 845098 2 685742
40 20	0 3548	760	770	840	1085	1085	1000	500	680	280	75.4	71	158	605	795 minor lake	- 4	definite LLS glacie inner, cont Snowdon, mixed lave	103	110 lbody v (11	240	80 25 64101	68.3 1.36.8.16E±07 433.7406	325 2.60807 2.832500 2.44	158 2 380211 2 63723	1 90309 2 511883
42 26	3 3533	370	420	490	1085	1085	880	1600	1740	525	68.2	3.6	173	734	930 drift	- 4	definite uncertain outer cont Snowdon mixed lave	a 170	160 Lian Cwm	510	120 17 67968	64.6 1.0875 1.42E+09 1123 949	715 3 20412 3 240549 2 72	159 2 70757 3 05074F	2 079181 2 854306
43 26	10 3537	488	508	554	1085	1085	982	795	1210	525	66.6	2.5	101	720	827 minor lake		definite LLS placia inner cont Snowdon mixed lave	a 153	125 Trension C	494	66 31 85614	64.1 1.522013 4.75E±08 780 3567	597 2 900367 3 082785 2 72	150 2 603727 2 802203	1 819544 2 775974
40 20	4 3529	250	300	490	1085	1085	936	2420	2307	550	68.2	2.0	163	638	003 drift	2	well-define uncertain outer cont Snowdon mixed lave	a 142	160 Lian Cwm	686	240 15 8285	66.1 0.000406 3.08E±00 1584.650	835 3 383815 3 370668 2 74	1363 2.836324 3.10003F	2 380211 2 921686 1 41
45 26	14 0520	480	504	604	985	1085	937	1306	1300	380	69.4	17	168	691	790 minor lake	1	well-define LLS of acie valley-hear Snowdon mixed lave	a 304	300 Clogwayo C	457	214 18 12858	67.7 0.931232 8.29E±08 939.5394	505 3 144885 3 113943 2 57	784 2 650016 2 072016	2 330414 2 703201
40 20	7 3552	400	417	473	785	870	756	855	595	325	63.4	2.8	30	587	824 major hon		noor uncertain valleveide Snowdon tuffe acid	/ 237	230 Afon Coch	346	63 27.845	60.6 0.008307 1.35E±08 512 7062	375 2 816241 2 774517 2 51	1883 2 530076 2 70004F	1 700341 2 574031
40 20	18 3558	350	390	505	1062	1065	950	1250	1530	580	79.8	2.6	110	855	970 drift	1	noor LLS alacie auter cont Snowdon ianimhrite	13	7 GlasMawr	600	155 25 64101	77.2 1.224 1.15E+09 1046.93	712 3.00601 3.184601 2.01	428 2 778151 3 019917	2 100332 2 85248
48 26	21 3556	506	648	770	1000	1001	900	910	1025	200	77.6	3.5	159	801	968 minor lake	- 4	well-define LLS glacie inner cont Snowdon, tuffe acid	/ 341	5 Lichaf Cwr	394	264 23 41102	74.1 1.126374 3.68E±08 716.2872	494 2 959041 3 010724 2 46	308 2 505406 2 855087	2 421604 2 693727
40 26	3 3555	674	707	734	1062	1065	1037	720	610	340	79.8	5.1	150	679	968 minor lake		well-define LLS glacie inner, cont Snowdon mixed law	48	20 Glas Cwm	363	60 26 75572	74.7 0.847222 1.59E±08 542 2376	388 2 857332 2 78533 2 53	470 2 550007 2 73410	1 778151 2 588832
51 26	1 3563	430	500	660	852	894	818	776	695	285	73.3	8	112	845	976 outeloning	ő	definite uncertain inner cont Snowdon tuffe acid	/ 14	30 Hetigu Car	388	230 28 58505	65.3 0.895619 2.09E±08 593.6896	422 2 880862 2 841085 2 45	1845 2 588832 2 773550	2 361728 2 625313
52 26	13 3558	561	578	690	900	1065	898	903	875	230	79.8	0	147	649	825 major rock	ő	classic LLS clacia vallev eide Snowdon, tuffe acid	/ 308	0 Du'r Arddu	337	120 20.00000	79.8 0.968992 2.66E+08 643.342	339 2 955688 2 942008 2 36	728 2.52763 2.808443	2 11059 2 5302
53 26	15 3572	357	410	470	683	710	641	446	720	300	63.4	12.5	117	651	918 outeloning	ő	marginal none valley-side Snowdon I Ord sill	k 52	35 Liechon N	284	113 32 48782	50.9 1.61435 9.12E+07 450.1203	326 2 640335 2 857332 2 47	121 2453318 2653320	2 053078 2 513218
54 25	3567	450	460	487	672	674	661	430	280	204	59	4.8	75	427	623 drift	ő	noor IIS enownyalley-eide Snowdon I. Ord eilt	N 29	35 Cynoborio	211	37 26 13708	54.2 0.651163 2.54E±07 293.97	222 2.633468 2.447158 2.3	IQE3 2 324282 2 468303	1 568202 2 346353
55 25	3564	450	480	530	646	674	640	340	490	130	61.9	9.5	76	427	557 drift	ŏ	noor LLS snownvalley-side Snowdon L. Ord. silt	322	345 W Cyngho	190	80 29 19749	52.4 1.441176 3.17E+07 316.3318	196 2 531479 2 690196 2 11	943 2 278754 2 500143	1 90309 2 292256
56 25	36 3576	276	283	430	722	726	625	1930	1725	253	77.3	0	215	454	546 major more	2	definite none outer cont Snowdon I Ord silt	N 37	40 Dwythwch	349	154 10 24998	77.3 0.893782 1.16E+09 1051.293	446 3 285557 3 236789 2 40	121 2 542825 3 021724	2 187521 2 649335 1 41
57 25	37 3566	362	425	465	562	605	542	470	630	185	49.1	61	139	384	585 drift	1	definite LLS placie inner cont Snowdon ignimbrite	353	15 NW Goch	180	103 20 95578	43 1 340425 5 33E+07 376 3313	200 2 672098 2 79934 2 26	172 2 255272 2 57557	2 012837 2 30103
58 25	3568	430	452	478	629	629	600	215	390	160	77.3	12.8	134	467	595 outeloning		definite LLS place inner cont Snowdon L Ord sitt	54	42 N Gron Eo	170	48 38 33334	64.5 1.813954 1.43E+07 242.4859	100 2 332438 2 501085 2 2	412 2 230449 2 384651	1 681241 2 208853
59 25	1 3572	430	450	530	629	629	598	453	485	138	50.2	7	111	443	595 outeloping		definite LLS placia inner cont Snowdon L Ord sitt	N 76	70 Ceein Cwn	168	100 20 34785	43.2 1.07064 3.69E±07 332.9531	100 2.656008 2.685742 2.13	879 2 225309 2 522383	2 2 208853
60 25	3578	320	345	520	722	726	721	872	720	230	56.3	5.4	158	443	594 drift		definite LLS placie inner cont Snowdon L Ord sitt	N 87	87 vr Hafod C	401	200 24 69592	50.9 0.825688 2.52E±08 631.4386	402 2 940516 2 857332 2 36	728 2 603144 2 800331	2 30103 2 604226
61 25	2 3555	422	423	480	618	740	595	465	582	195	51.3	0.4	9	495	850 major more	ő	marginal LLS glacie vallev-eide Snowdon L. Ord. sill	N 225	232 Efunnon-v-	173	58 20 40737	51.3 1.251613 4.68E±07 360.4187	106 2 667453 2 764923 2 20	035 2 238046 2 556807	1 763428 2 202256
62 25	7 3553	310	330	360	635	695	625	700	750	295	70	57	123	465	507 outeloning	ő	well-define LLS enown valley-side Onoridon 12: Ord: an	1 350	0 Du (M M)	315	50 24 22775	64.3 1.071429 1.65E+08 548.8959	325 2.845098 2.875081 2.46	822 2408311 273040	1 69897 2 511883
63 25	2 3563	340	356	530	672	1065	567	1180	855	240	63.4	19	178	488	778 major hog	1	noor uncertain valley-bear Snowdon I Ord eilt	N 357	62 Bowrood (227	100 10 88913	61.5 0.724576 2.29E±08 611 8214	332 3.071882 2.031066 2.38	211 2 356026 2 786626	2 278754 2 521138
64 25	52 3521	446	463	526	680	695	628	410	444	180	57.7	7.1	75	500	571 drift	ó	marginal none valley-side Nantlle-He Ord sand	s 100	92 Marchnad	182	80 23 93655	50.6 1.082927 3.31E+07 321 1782	234 2 612784 2 647383 2 25	272 2 260071 2 506746	1 90309 2 369216
65 25	16 3521	345	500	525	706	709	650	952	957	215	82	3.6	165	470	602 drift	0	well-define LLS placie valley-side Nantile-He Ord sand	8 338	0 C Trum v	305	180 17 76432	78.4 1.005252 2.78E+08 .652.5537	361 2 978637 2 980912 2 33	438 2 4843 2 814616	2 255272 2 557507
66 25	32 3519	338	350	479	612	653	576	395	590	180	60.5	5	67	531	639 outsioning	0	noor none valley-side Nantlle-He microgran	il 22	38 Tal-v-mion	238	141 31 07029	55.5 1 493671 5 55E+07 381 3661	274 2 598597 2 770852 2 25	272 2 376577 2 581342	2 149219 2 437751
67 25	3518	300	350	410	687	709	632	1010	880	317	61.9	37	156	481	634 minor lake	1	well-define LLS placie valley-side Nantile-He Cambrian	(329	350 Cwmvffynr	332	110 18 19636	58.2 0.871287 2.95E+08 665 7544	387 3 004321 2 944483 2 50	059 2 521138 2 823314	2 041393 2 587711
68 25	24 3506	534	560	600	722	734	721	300	486	153	59	12.5	63	429	524 outsioning	0	noor uncertain valley-side Nantlle-He Cambrian	353	357 Trwyn y Cr	187	66 31 93666	46.5 1.62 2.73E+07 300.9768	188 2477121 2686636 218	691 2 271842 2 478533	1 819544 2 274158
69 25	3510	390	410	530	602	653	600	448	560	140	52.5	8.5	178	450	630 drift	0	noor none valley-hearNantile-He Cambrian	263	260 Crain-Jae E	210	140 25 11484	44 1 25 5 27E+07 374 8824	212 2.651278 2.748188 2.14	128 2 322210 2 573805	2 146128 2 326336
70 25	6 3503	337	337	423	692	730	665	768	1050	327	75.4	0	117	400	627 major mors	0	classic IIS clarie valley hear Nantlle, He innimbrite	339	354 Silvin Owm	328	86 23 12652	75.4 1.367188 2.64E±08 641.0100	355 2.885361 3.021189 2.51	548 2 515874 2 807475	1 934498 2 550228
71 24	3492	243	250	205	507	609	507	540	530	230	72	2	68	370	483 major hon	ő	definite none valleveide Nantlle-He ignimbrite	354	18 C CamDul	264	52 28.0535	70 0 081482 7 56E±07 422 7574	264 2 732394 2 724276 2 36	728 2.421604 2.626001	1 716003 2 421604
72 25	3490	340	400	480	532	701	502	590	650	138	45	3.5	165	463	474 outsioning	1	marginal none valley-bearNantlle-Heignimbrite	314	275 Bwich Cwr	162	140 15 35368	41.5 1 101695 6 21E+07 396 0592	192 2770852 2812913 213	879 2 209515 2 59776	2 146128 2 283301
74 25	3488	338	350	360	438	701	438	405	535	80	47	2.9	131	538	604 drift	0	marginal none valley-side Nantlle-He ignimbrite	109	100 Clogwyn D	100	22 13 86969	44.1 1.320988 2.17E+07 278 7851	100 2 607455 2 728354 1 9	309 2 2 44527	1 342423 2
75 25	3495	340	400	477	651	734	650	920	860	240	56.3	34	72	474	606 drift	ó	noor none outer cont Nantlle-He ignimbrite	145	120 Braich-w	310	137 18 62158	52.9 0.934783 2.45E+08 625.9639	311 2963788 2934499 238	211 2 491362 2 796549	2 136721 2 49276
76 25	3 3498	503	530	546	651	721	639	280	235	110	56.3	12.8	122	412	604 outsioning	0	definite none inner cont Nantlle-He ignimbrite	126	140 U Braich-v	136	43 25 90651	43.5 0.839286 8948800 207.6132	148 2 447158 2 371068 2 04	393 2 133539 2 317255	1 633469 2 170262
77 25	3505	385	420	496	680	700	640	535	500	210	69.9	9.5	105	539	599 drift	0	definite LLS snownvalley-hearNantile-He Ord sand	8 89	67 C Pennant	255	111 25 48413	60.4 0.934579 6.82E+07 408 5902	295 2 728354 2 69897 2 32	219 2 40654 2 611288	2 045323 2 469822
78 25	0 3509	276	310	435	690	702	600	923	875	300	55	4.6	155	548	597 drift	0	well-define none valley-hearNantile-He Ord sand	s 168	180 Dwyfor Cw	324	159 19 34257	50.4 0.947996 2.62E+08 639.6144	414 2 965202 2 942008 2 47	121 2 510545 2 805918	2 201397 2 617
79 25	6 3513	359	392	466	701	709	701	763	610	251	53.7	6.7	119	415	524 drift	ň	poor none valley-hearNantile-He Ord sand	s 129	95 Cwm D+ 1	342	107 24,14338	47 0.799476 1.59E+08 541 9512	342 2.882524 2.78533 2.39	674 2.534026 2 73396	2.029384 2.534026
80 25	3482	314	355	500	600	783	580	840	1510	190	72.3	4.4	163	456	703 drift	2	definite none vallev-side Nantlle-He ignimbrite.	32	50 Meilionen.	266	186 17.57126	67.9 1.797619 3.37E+08 696.1657	286 2.924279 3.178977 2.27	754 2.424882 2.842713	2.269513 2.456366 1.41
81 25	38 3475	403	430	500	721	721	708	510	510	222	72.3	8.7	61	574	743 outsloping	ō	definite none valley-side Nantlle-He ignimbrite,	30	50 Bleiddiaid,	305	97 30.88108	63.6 1 7.93E+07 429.6816	318 2.70757 2.70757 2.34	353 2.4843 2.633147	1.986772 2.502427
82 25	9 3469	460	490	576	781	783	780	642	615	230	68.2	6.7	31	540	718 outsloping	0	poor none valley-side Nantlle-He ignimbrite,	107	95 Hebog E.,	320	116 26.49361	61.5 0.957944 1.26E+08 501.7877	321 2.807535 2.788875 2.36	728 2.50515 2.70052	2.064458 2.506505
83 25	5 3563	349	355	427	601	630	464	807	756	183	53.7	2.5	165	371	533 drift	1	marginal none valley-hearSnowdon L. Ord. sill	ls 31	25 Maesgwyn	115	78 8.110222	51.2 0.936803 7.02E+07 412.4434	252 2.906873 2.878522 2.26	451 2.060698 2.615364	1.892095 2.401401
84 24	33 3494	237	238	306	488	609	425	540	770	195	71.6	0	77	386	509 major rock	0	well-define none valley-side Nantlle-He ignimbrite	, 13	0 L.Dulyn, C	188	69 19.19547	71.6 1.425926 7.82E+07 427.5768	251 2.732394 2.886491 2.29	035 2.274158 2.631014	1.838849 2.399674
85 27	15 3554	457	530	650	792	800	788	690	455	225	63.4	6.3	22	461	689 outsloping	0	marginal none valley-side Moelwyn-Sdolerite	71	108 E.Siabod	331	193 25.62751	57.1 0.65942 1.04E+08 470.1425	335 2.838849 2.658011 2.35	183 2.519828 2.67223	2.285557 2.525045
86 27	2 3548	534	536	625	855	872	810	896	735	250	78.7	0	131	487	604 major rock	0	well-define LLS glacie valley-side Moelwyn-SU. Ord. sil	t 101	105 L.Siabod. I	276	91 17.1207	78.7 0.820313 1.82E+08 566.4586	321 2.952308 2.866287 2.3	794 2.440909 2.753168	1.959041 2.506505
87 26	30 3539	370	370	420	584	591	493	660	900	150	68	0	142	290	430 major mora	1	well-define uncertain valley-hearMoelwyn-SU. Ord, sil	120	128 Diwaunvdc	123	50 10.55674	68 1.363636 7.31E+07 418.0522	214 2.819544 2.954242 2.17	091 2.089905 2.621231	1.69897 2.330414
88 26	50 3483	372	378	465	592	671	580	610	975	204	65	Ó	142	364	545 major rock	Ó	well-define LLS glacie valley-side Moelwyn-Sdolerite	295	309 Llagi, Lvn.	208	93 18.82854	65 1.598361 1.24E+08 498.2714	220 2.78533 2.989005 2.3	963 2.318063 2.697466	1.968483 2.342423
89 26	7 3506	368	410	510	562	589	531	630	856	110	51.3	4.6	96	402	456 drift	ň	marginal none valley-side Moelwyn-Signimhrite	. 80	118 Yr Arddu F	163	142 14,50605	46.7 1.35873 8.79E+07 444 6319	194 2.79934 2.932474 2.04	393 2.212188 2.648001	2.152288 2.287802
90 26	0 3497	441	463	515	585	594	561	603	866	106	66.6	1.9	92	343	486 minor lake	Ó	poor uncertain vallev-side Moelwyn-SU. Ord. sil	128	105 NE.Ysgafe	120	74 11.2551	64.7 1.436153 6.27E+07 397.1966	144 2,780317 2,937518 2.02	306 2.079181 2.599005	1.869232 2.158362
91 26	38 3488	441	449	570	652	672	634	860	1025	110	53.7	1.9	138	332	490 major bog	ó	poor uncertain vallev-hearMoelwyn-Sdolerite	66	95 SE.Ysgafe	193	129 12.64867	51.8 1.19186 1.70E+08 554.1064	211 2.934499 3.010724 2.04	393 2.285557 2.743593	2.11059 2.324282
92 26	4 3482	395	422	515	671	676	590	972	905	205	53.7	1.7	148	296	428 drift	n	definite uncertain vallev-hearMoelwyn-SU Ord sil	t 63	85 Druman. N	195	120 11.34394	52 0.93107 1.72E+08 555 6268	276 2.987666 2.956649 2.31	754 2.290035 2.744785	2.079181 2.440909
93 26	36 3472	280	355	432	672	698	660	750	1125	260	65	2.5	137	448	501 drift	1	well-define uncertain valley-side Moelwyn-SU Ord sil	107	105 Allt-fawr F	380	152 26.86981	62.5 1.5 3.21E+08 684.4354	392 2.875061 3.051152 2.41	1973 2.579784 2.835332	2.181844 2.593286
94 26	4 3466	320	325	425	652	695	594	1450	1530	302	67	0	295	373	518 major rock	3	well-define LLS glacie valley-side Moelwyn-SU Ord sil	130	175 Cwmorthin	274	105 10,70075	67 1.055172 6.08E+08 847 1039	332 3.161368 3.184691 2.48	007 2.437751 2.927937	2.021189 2.521138 1 73
95 26	33 3444	470	490	588	740	770	674	740	990	170	60.5	ō	109	440	570 major rock	1	well-define LLS glacie valley-side Moelwyn-Signimhrite	118	105 Stwlan, 1 lv	204	118 15.41224	60.5 1.337838 1.49E+08 530 6796	270 2.869232 2.995635 2.23	449 2.30963 2.724832	2.071882 2.431364
96 26	58 3439	507	530	600	702	710	660	478	680	137	66.6	3.9	134	390	590 drift	÷	definite none valley-side Moelwyn-Signimhrite	288	272 Bach,Moel	153	93 17,74902	62.7 1.422594 4.97E+07 367 7416	195 2.679428 2.832509 2.13	721 2.184691 2.565543	1.968483 2.290035
97 26	56 3444	464	475	505	662	770	622	370	360	166	65	3.3	56	440	595 drift		poor none valley-side Moelwyn-Signimhrite	235	226 Ceseiliau f	158	41 23.12379	61.7 0.972973 2.10E+07 276 092	198 2.568202 2.556303 2.22	108 2.198657 2.441054	1.612784 2.296665
98 26	58 3451	525	595	664	770	770	758	530	580	190	63.4	12.5	81	540	595 outsloping	ñ	poor LLS glacie valley-side Moelwyn-SU Ord sil	1 0	10 N.Moelwvr	233	139 23.73138	50.9 1.09434 7.16E+07 415 2917	245 2.724276 2.763428 2.27	754 2.367356 2.618353	2.143015 2.389166
99 24	56 3460	228	255	375	521	770	470	740	910	213	61.2	4.8	165	561	602 drift	1	marginal uncertain vallev-bearMoelwvn-SLI Ord eil	277	258 Crnesor C	242	147 18 10914	56.4 1.22973 1.63E+08 546 214	293 2.869232 2.959041 2.3	838 2.383815 2 737383	2.167317 2.466868
100 24	15 3469	410	465	550	689	689	670	750	835	224	45	4.8	90	502	579 drift		marginal none vallev-side Moelwyn-SU Ord eil	307	322 Cnicht NM	260	140 19 11973	40.2 1.113333 1.63E+08 546.06	279 2.875061 2.921686 2.35	248 2.414973 2 73724	2.146128 2.445604
101 28	2 2741	270	340	405	501	555	487	723	680	120	55		156	324	368 drift	0	well-define LLS glacie vallev-side Pumlumon Silurian	7	4 Cwm-du N	217	135 16 70651	50 0.940526 1 07F+08 474 2800	231 2.859138 2.832509 2.07	181 2.33646 2.676036	2.130334 2.363612
102 28	2748	338	355	425	507	523	505	356	532	110	56.3	4.8	77	281	315 drift	0	definite LLS snowcyallev-side Pumlumon Silurian	343	0 Cwmtinwe	167	87 25 13133	51.5 1.494382 3 16F+07 316 2467	169 2.55145 2.725912 2.04	393 2.222717 2.50000	1.939519 2 227887
103 27	3 2875	505	508	600	702	752	675	830	820	170	59	0	167	299	410 major more	1	well-define LLS glacie guter cont Pumlumon II Ord eil	1 329	10 LlvnadRhe	170	95 11 57519	59 0.987952 1 16F+08 487 2819	197 2.919078 2.913814 2.23	449 2.230449 2.68778	1.977724 2 294466
104 27	2873	575	600	620	702	750	700	250	305	90	55	9.3	73	293	416 outsloping		poor LLS glacie inner, cont Pumlumon II Ord sil	1 21	20 Pumlumon	125	45 26,56505	45.7 1.22 9531250 212 0231	127 2.39794 2.4843 1.95	242 2.09691 2.326383	1.653213 2.103804
105 28	2968	188	220	250	481	527	480	660	600	230	60.5	5.4	119	368	384 drift	0	poor uncertain vallev-side Pumlumon Siturian	87	70 Cilcwm P4	292	62 23 86576	55.1 0.909091 1 16F+08 487 1836	293 2.819544 2 778151 2 38	728 2.465383 2 687603	1.792392 2 466868
106 27	2 2935	169	200	242	501	529	419	785	995	266	57.7	2.3	184	362	385 drift	2	poor LLS glacie vallev-headPumlumon Silurian	28	50 Henawym	250	73 17.66519	55.4 1.267516 1.95E+08 580 1553	332 2.89487 2.997823 2.42	1882 2.39794 2.763544	1.863323 2.521138 1 41
107 27	2943	240	268	370	512	519	490	785	720	140	56.3	5.7	121	363	477 drift	ñ	poor uncertain valley-side Pumlumon Silurian	12	40 Mawnon F	250	130 17.66519	50.6 0.917198 1.41E+08 520.8517	272 2.89487 2.857332 2.14	128 2.39794 2.716714	2.113943 2.434569
108 30	31 3342	511	565	710	783	794	715	964	945	204	51.3	6.4	177	367	435 drift	1	definite LLS glacie vallev-headBerwyn U Ord sil	t 68	95 Ilawenog C	204	199 11.94855	44.9 0.980291 1.86E+08 570 663	272 2.984077 2.975432 2.3	1963 2.30963 2.75R3#	2.298853 2.434569
109 30	8 3332	570	590	675	815	827	793	554	1050	164	57.7	4.8	156	354	437 drift	1	definite uncertain valley-headBerwyn mixed lava	a 128	130 C.Berwyn	223	105 21.92612	52.9 1.895307 1.30E+08 506.2146	245 2.74351 3.021189 2.21	844 2.348305 2.704335	2.021189 2.389166
110 30	6 3324	504	550	665	823	827	822	935	895	163	52.5	7.1	113	365	442 drift	Ó	definite uncertain valley-headBerwyn mixed lava	a 87	95 BerwynS	318	161 18.78353	45.4 0.957219 2.66E+08 643.2117	319 2.970812 2.951823 2.21	188 2.502427 2.808354	2.206826 2.503791
111 30	1 3318	604	611	700	822	827	799	686	710	165	56.3	0	142	350	467 major mora	1	classic LLS glacie valley-hearBerwyn mixed lava	a 132	115 L.LLuncaw	195	96 15.86815	56.3 1.034985 9.50E+07 456.253	218 2.836324 2.851258 2.21	484 2.290035 2.659206	1.982271 2.338456
112 30	1 3311	495	540	632	691	827	678	615	700	90	47	8.1	106	450	544 drift	Ó	definite uncertain valley-side Berwyn mixed lava	a 108	73 TrumFelen	183	137 16.57095	38.9 1.138211 7.88E+07 428.6881	196 2.788875 2.845098 1.95	242 2.262451 2.632141	2.136721 2.292256
113 30	3333	520	538	575	661	742	661	300	410	85	46	10.3	85	324	461 drift	ő	poor LLS glacie valley-headBerwyn U. Ord. sil	121	130 Tomle NE	141	55 25.17352	35.7 1.366667 1.73E+07 258.846	141 2.477121 2.612784 1.92	419 2.149219 2.413041	1.740363 2.149219
114 28	4 3379	400	404	510	681	780	640	1365	1030	185	71.2	0	109	360	564 major more	ň	classic LLS glacie valley-side Arenig-Min mixed lava	a 77	60 L.Arenio F:	240	110 9.972057	71.2 0.754579 3.37E+08 696 1888	281 3.135133 3.012837 2.26	172 2.380211 2.842727	2.041393 2.448706
115 28	9 3368	664	680	736	832	854	812	372	670	134	47	81	93	390	458 drift	ō	noor uncertain valley-side Arenig-Migmixed lava	a 101	105 ArenioEaw	148	72 21 69511	38.9 1.801075 3.69E+07 332.8842	168 2 570543 2 826075 2 12	105 2 170282 2 522203	1 857332 2 225309

0 well-define LLS glacie valley-side Aran-Dyfi mixed lava 1 definite uncertain valley-side Aran-Dyfi mixed ava 0 well-addient uncertain valley-side Aran-Dyfi mixed siva 2 poor uncertain valley-side Aran-Dyfi Uncertain 1 definite uncertain valley-side Aran-Dyfi Sturtain 1 definite none valley-side Aran-Dyfi Sturtain 2 definite none valley-side Aran-Dyfi Intel Valley 2 definite none valley-side Aran-Dyfi Intel Valley 2 definite none valley-side Aran-Dyfi Uncertain 2 definite uncertain valley-side Corris U. Drdi att 2 marginal none valley-side Corris U. Drdi att 3 poor none valley-heat-Corris U. Drdi att 3 definite uncertain valley-side Corris U. Drdi att 4 definite U.S. snowy-valley-side Corris U. Drdi att 4 defi 117 118 119 120 0 well-define LLS glacie valley-side Aran-Dyfi mixed lava 46 19.58471 72.3 0.761347 8.63E+07 441.9198 271 2.834421 2.716003 2.352183 2.385606 2.645344 1.662758 2.432965 3237 885 905 824 310 72.3 73.3 535 607 major mora 82 L.Lliwbrar 2870 2866 2881 2874 2861 2887 2888 2916 2911 2849 2845 2841 2841 2841 590 725 670 485 655 555 344 308 7.6
 49
 90

 109
 129

 1251
 176

 134
 186

 106
 134

 106
 134

 106
 134

 106
 134

 106
 131

 1150
 120

 1201
 121

 151
 146

 106
 131

 105
 96

 107
 131

 131
 146

 131
 146

 131
 146

 131
 146

 131
 146

 201
 1772

 140
 58

 168
 156

 168
 156

 168
 122

 161
 185

 168
 122

 161
 185

 162
 125

 163
 125

 164
 125

 165
 125

 161
 120

 162
 439 265 250 164 115 268 239 232 597 drift 81 CwmLlwyd 90 Dyfi,Creigh 205 24.80191 65.7 1.105263 4.38E+08 759.38 69.9 0.867797 1.80E+08 564.7421 500 2.977724 3.021189 2.491362 2.642465 2.880459 2.311754 2.69897 328 2.946943 2.885361 2.477121 2.423246 2.75185 2.170262 2.515874 577 504 368 605 380 258 182 51 11 1217 810 69.9 575 major mora 148 16.66954 312 150 67 314 535 360 350 589 381 329 436 230 575 646 630 60.5 669 drift 587 drift 95 Llaethnan 22 C.Cwm-d 166 14.89347 117 14.41596 67.3 1.294681 2.86E+08 658.8494 57.2 1.269593 8.48E+07 439.2548
 397
 2.973128
 3.085291
 2.494155
 2.39794
 2.818786
 2.220108
 2.59879

 212
 2.804821
 2.908485
 2.176091
 2.214844
 2.642716
 2.068186
 2.326336

 115
 2.39794
 2.439333
 1.826075
 2.060698
 2.299324
 1.69897
 2.060698
 1.41421 960 675 498 700 396 825 10.9 570 drift 758 drift 62 Drysgol,E 50 24.70243 34.1 1.1 7906250 199.2157 55 1.315068 1.88E+08 572.6769 115 Gwaun-y-l 107 Dyniewyd, 175 20.15936
 390
 2.863323
 2.982271
 2.49693
 2.428135
 2.75791
 2.243038
 2.591085

 246
 2.807535
 2.829304
 2.278754
 2.378398
 2.671746
 1.934498
 2.390935

 238
 2.782473
 2.697229
 2.113943
 2.365488
 2.615063
 2.100371
 2.376577
 756 drift 543 outsloping 399 drift 464 drift 375 drift 124 40.6 57.7 330 86 20.419 126 20.94876 54.2 1.051402 1.04E+08 469.6189 29.9 0.821782 7.00E+07 412.1576 335 Ceseiliau 10.7 5.4 126 127 330 236 525 430 350 Pen-y-gel 77 21.50444 47 1.4 6.90E+07 410.0575 42.6 0.92093 2.38E+07 287.8043 254 2.69697 2.845098 2.285557 2.294466 2.612845 1.886491 2.404834 154 2.633468 2.597695 1.986772 2.146128 2.459097 1.778151 2.187521 390 380 400 485 488 437 140 304 300 263 219 233 76.5 355 Lloi.Cwm 60 18.03429 660 drift 664 outsloping 663 outsloping 68.5 1.218611 1.70E+08 553.7394 42.2 0.849057 4.58E+07 357.7639 47.9 1.143284 3.37E+07 323.1467 364 2.830589 2.916454 2.511883 2.482874 2.743305 2.158362 2.561101 1.414214 90 Camddwr 144 24.18198 364 2.80680 2.91645 2.51183 2.42874 2.74305 2.15882 2.8011 14.421 2.262786 2.5033 2.45134 2.47171 2.53586 2.9807 2.44007 14. 2.42 2.55503 2.43453 2.20071 2.34044 2.5134 1.82269 2.33815 0 2.42 2.55503 2.43453 2.20071 2.34044 2.5134 1.82269 2.33815 0 4.52 2.52724 3.03578 2.50165 2.5105 2.57385 2.50691 2.90171 0 4.52 2.52017 2.4003 2.8200 2.41673 2.5164 2.87355 2.50691 2.90171 0 4.52 2.52017 2.5000 2.41673 2.5164 2.87355 2.50691 2.90171 0 4.52 3.5043 2.8200 2.41673 2.5567 2.82637 14.5721 2.51798 1.32057 1 2.32 3.04531 2.8200 2.41673 2.5567 2.82637 2.16212 1.51781 1.32057 1 2.32642 2.52017 1.717 1.52914 2.5567 2.86537 1.51272 1.51798 1.32657 1 3.26544 2.5171 1.52957 2.5567 2.84533 1.51281 2.35857 1 3.26544 2.5567 2.85672 2.85673 2.5168 2.5184 2.35557 1 3.26544 2.5567 2.557 2.5567 2.557 2.55673 2.5138 1.52014 2.35557 1 3.26544 2.5567 2.5567 2.5567 2.5567 2.5567 2.557 2.557 1.5567 2.557 1 3.26544 2.5567 2.5567 2.5567 2.5567 2.557 2.557 2.557 1 3.26544 2.5567 2.5567 2.5567 2.557 2.557 2.557 2.557 1.5567 2.557 1 3.26544 2.5567 2.5567 2.55 130 N.Cywarch 92 U.Cywarch 96 S.Cywarch 33 Ychen,Cw 129 420 700 335 383 230 61.9 68.2 50 35.28121 65 38.13456 131 528 66.6 52.5 10.3 18.4 570 665 drift 678 drift 50 68 31.31354 87 34.5804 56.3 1.222222 3.47E+07 326.1368 350 175 266 432 443 34.1 1.56213 4.16E+07 346.446 61.6 1.189474 4.19E+08 748.093 58.4 0.866337 2.90E+08 661.8117
 87
 34.5804

 125
 22.31944

 154
 17.99133

 118
 17.93347

 127
 24.07315
 133 2805 2791 2785 2778 2769 2772 2751 2751 420 594 610 875 260 135 66.6 63.4 425 570 drift 505 drift 60 Maesglase 45 Portas,Cra 328
 36.4
 0.086337
 2.5012400
 601.8117

 42.5
 1.227273
 6.6124407
 404.2923

 37.7
 1.208333
 4.35E407
 351.7525

 38.1
 1.442681
 4.56E407
 357.3605

 38
 1.4224841
 4.56E407
 357.3605

 44.1
 2.176923
 2.19E+07
 279.883
 135 570 670 432 522 48 12.5 430 463 drift 482 drift 106 160 120 43 81 58 102 E.Waun-oe 100 S.Waun-oe 193 262 185 149 271 198 278 190 283 159 213 114 85 193 2635444 271767 1292415 228557 2546237 210884 228557 205 275569 20000 2056805 216100 2656805 227754 247712 197 2518053 277355 1292415 226712 255107 20776 247712 197 2518053 277355 1292415 226712 255107 20776 247712 197 25194 26857 217000 1245092 275135 20557 245909 210 254408 282504 22012 229685 256679 182599 232219 200 2770552 27533 235626 24405 265747 26007 247712 24 254408 251055 210304 227675 247725 188649 23075 23 272594 294499 233248 20197 242578 18649 23075 23 272594 204499 233248 201979 262765 18695 247712 23 272594 204499 233248 20197 262765 169018 237768 24765 24775 201977 20108 247775 20108 247769 189057 247712 23 272594 204499 2332489 20197 262765 18695 247712 23 272594 204499 233248 20197 262765 18695 247712 23 272594 204499 237248 20197 262765 18695 24772 23 272594 204499 237248 20197 262765 18695 24772 490 430 455 220 593 566 787 675 137 370 330 590 555 56.3 48 53.7 17.4 10 9.6 395 402 492 drift 476 drift 120 CeiswynE 95 N.y Waun 190 25.71629 120 23.97527 485 drift 451 drift 542 drift 545 486 524 55 S.y Waun 100 29.81603 44.1 2.178823 2.19E-07 275.883 453.0 9.23706 182E+08 568.406 53.6 1.52857 1.4.88E+07 380.3122 46.7 1.0.3388 1.0.02-08 484.2360 55.7 1.114286 2.59E+07 286.408 45.3 7.159258 7.38E+07 419.5301 57.4 1.122222 4.84E+07 384.417 49.5 1.29577 2.71E+07 30.4387 52.9 0.913972 2.61E+08 638.9575 52.6 0.913972 2.61E+08 638.9575 140 152 170 362 647 160 51.3 61.2 416 30 Bychan,Cv 46 Cae-coch, 80 Ffridd (Tar 202 17.64457 68 29.49746 625 608 56.3 49.1 52.5 53.7 63.4 504 drift 564 drift 576 drift 2687 495 430 400 492 465 583 634 350 390 585 127 9.6 13.4 423 113 25.22918 142 418 307 351 390 38 E.Tarrenh 77 28,49564 2657 2682 123 21.73181 144 145 146 147 337 506 480 593 518 508 525 468 427 553 441 407 386 467 450 26 N.Tarrenh 603 450 505 163 514 major mora 669 drift 343 L.Cyri 358 C.-las NE 49 16.40677 102 25.32975
 222
 226711
 2703291
 227118
 23338
 2581628
 2.0082
 2.254168

 314
 266843
 2629416
 271754
 2.51164
 2.60053
 2.52146

 314
 266843
 2.629416
 2.71754
 2.51164
 2.60053
 2.51744

 42
 2.65161
 2.60054
 2.61164
 2.61057
 2.00863
 5.5274

 449
 3.00071
 2.65123
 2.65161
 2.62249
 2.25528
 2.62249

 2
 2.66056
 2.65161
 2.62249
 2.87219
 2.25528
 2.62249
 2.45624

 2
 2.66056
 2.65161
 2.62249
 2.85162
 2.45624
 2.45524

 2
 2.65051
 2.65151
 2.65244
 2.65581
 2.45424
 2.45524
 2.45424

 2
 2.67053
 2.67145
 2.47714
 1.59141
 5.51581
 2.65631
 2.4444
 2.65581
 2.65671
 2.65671
 2.65671
 2.65671
 2.65671
 2.65671
 2.65671
 2.65671
 2.65671
 <td 791 752 930 850 190 57.7 76.5 72 9.5 4.8 690 drift 808 drift 21 Lwyd,Carn 140 Amarch, C 330 69 25.06106 161 19.53666 123 15.76084 2709 2714 2708 2714 2722 2729 2734 2747 422 445 556 403 570 560 470 339 172 230
 19
 250 10100
 440 5
 1.247/15
 2.711-10/3
 300.3987/

 19
 250 10100
 440 5
 1.247/15
 711-10/3
 300.3987/

 121
 157000
 75
 1.05502
 4588-116
 600.105

 121
 157000
 75
 1.05502
 4588-116
 600.105

 121
 15.35004
 72
 1.070584
 2.458-105
 990.206

 100
 27.8517
 65
 1.05704
 8.774-607
 46.842.502

 100
 30.84421
 76
 5.155764
 9.774-607
 46.9426

 151
 15.5774
 10.5774
 8.5774-607
 46.9426
 1.04942

 151
 15.5774
 10.5774
 8.571-60
 46.9427
 1.05172
 2.8581-60
 46.11

 152
 15.75954
 4.6
 1.05812
 2.4281-67
 30.5568
 1.05277
 4.51.556-07
 4.53.5568
 1.05277
 4.51.556-07
 4.53.5568
 1.05277
 4.52.556-07
 5.53.5569
 2.4281-67
 30.94677
 4.14.35682
 3.41<1.0455122</td> 149 893 835 850 910 280 806 major rock 729 major mora 1 dasse LLS glace valp-sec.Cadar Idrimicogram 1 dasse LLS glace valp-sec.Cadar Idrimicogram 1 definite LLS anow-valley-sec.Cadar Idrimicogram 1 definite LLS anow-valley-sec.Cadar Idrimicogram 1 definite LLS anow-valley-sec.Cadar Idrimicogram 1 definite LLS glace valp-sec.Pumlumo Stutian 1 definite uncertain valley-sec.Cadar Idrimicogram 1 definite uncertain valley-sec.Cadar Idrimicos 1 definite uncertain valley-sec.Pumlumo Stutian 0 definite uncertain valley-sec.Pum Statis sec. 0 definite uncertain valley-sec.Pum Statis sec. 0 marginal none valley-sec.PumLom Stutian 1 definite none valley-sec.PumCom Cambrian { 1 definite none valley-sec.PumCom Cambrian 351 65 L.Cau 672 575 670 640 552 455 325 275 520 560 304 524 279 420 242 295 214 251 282 167 177 190 420 102 201 215 136 112 210 350 Gadair.L.v 72.2 72.3 74.4 76.5 70.7 863 812 458 494 782 210 723 major mor 354 Gafr,L. 7.1 12.3 723 outsloping 22 340 NW.Myny 725 470 1414 494 536 382 55 NE.Mynyd 0 L.Arran 85 Gau Graig 312 240 775 drift 153 154 155 156 590 454 397 671 683 757 major mora 675 minor lake 4.4 61.9 45 59 60.5 2833 432 540 160 456 drift 415 drift 279 117 85 90 256 71 19 172 10 Clipyn Du 295 Cym du, B 105 Fach,Cribir 39 Fawr,Cribir 2799 2843 2748 435 480 659 625 165 7.1 12 5.7 508 drift 501 drift 161 940 84 73.3 177 339 362 250 271 334 517 386 318 424 419 665 drift 105 Cywarch, 0 250 GraigGoch 463 445 460 278 257 380 355 705 646 675 231 major rock 250 GrangGoon 66 L.Arenig F: 25 DaearFaw 135 Coeg, Blae 25 Gerwyn, B 95 Bryn-llwyd 2838 2808 2807 2731 145 115 155 135 399 major mora 558 drift 372 drift 163 480 585 327 680 697 470 480 544 65.3 69.9
 206
 2.79934
 2.921686
 2.285557
 2.303196
 2.674741
 1.968483
 2.313867

 202
 2.672098
 2.681241
 2.161368
 2.332438
 2.561926
 2.09691
 2.342423

 163
 2.7255095
 2.735599
 2.060698
 2.133539
 2.531411
 1.690196
 2.212188
 1.414214

 188
 2.635484
 2.531479
 2.190332
 2.049218
 2.405394
 1.579744
 2.274158
 0

 214
 2.612744
 2.594393
 2.10334
 2.322219
 2.509799
 2.081168
 2.330414
 0
 56.3 51.3 6.6 3.5 165 166 167 168
 163
 272506
 273509
 2006082
 213539
 2531411
 160/169
 2127188

 153
 272506
 273509
 2006082
 213539
 2531411
 160/169
 2217188

 154
 217700
 264405
 2447138
 245272
 150709
 160208
 200647

 152
 259105
 257511
 250707
 257744
 200431
 244444

 154
 2474031
 251011
 2170171
 257744
 200431
 244444

 169
 261441
 251741
 246441
 344444
 344644

 169
 261441
 251771
 257744
 200431
 246441

 169
 261442
 2117171
 2577514
 201412
 2116141
 2116141

 169
 261442
 251801
 2577171
 2577514
 2116141
 2116141
 2116141
 2116141
 2116141
 2116141
 2116141
 2116141
 2116141
 2116141
 2116141
 2116141
 2116141
 2116141
 2116141
 2116141
 393 495 565 597 590 371 minor lake 470 drift 112 497 395 795 450 329 345 355 423 817 44.1 0.951923 7.90E+07 429.1235 32.7 1.448718 2.47E+07 291.1457 37.2 1.192727 5.45E+07 379.0948 2827 854 390 550 60 107 60.5 43.2 16.4 10.5 548 drift 519 drift 277 350 Rhiw-erch, 290 NW.Arenig 112 40 30.55695 90 16.02298 320 584 1015 545 2896 2898 2756 2914 280 182 605 632 40.6 73.3 56.3 63.4 42.7 3.4 7.1 14 423 minor lake 100 95 275 Rhiwgyr, B 80 Darren Ddi 83 Cafn, Nant 180 279 101 15.35204 170 171 173 178 179 372 1192727 545E-07 379.0948 662 0.67633 272E-07 300.0039 423 115415 824E-07 435.2337 611 1346154 224E-08 607.5308 536 0.680008 8.05E+07 431.7521 685 19.375 2.94E-08 684.495 51 1.07031 10.3E+08 694.4552 57 1.432432 7.63E+07 424.1509 52 1.544551 4.0E+08 588.747 49.2 1.096927 2.04E-08 588.747 49.1 20.96297 2.04E-08 588.747 461 481 481 210 498 drift 493 outsloping 385 drift 275 drift 49 20.83431 163 28.87161 754 2.3 7.1 4.7 8.1 10 Llechwedd 15 Gwnog, Na 90 Fergwm (C 93 Pant, Radr 179 237 236 302 509 90 28 69 98 83 89 75 113 297 167 21.23584 121 12.24171 2730 265 299 344 412 441 440 454 331 375 390 446 446 446 389 474 456 334 271 329 311 275 331 353 660 735 756 405 438 456 350 3188 420 530 641 641 640 150 71.2 43.2 312 major bog 378 drift 189 16.50192 685 848 1054 928 824 1850 1214 657 125 20.24145 93 Pant, Kadr 70 L.y Bi, Y Li 88 Y Llethr SI 78 NE.Diffwys 100 DiffwysSE 300 L.Erddyn 328 L.Bodlyn 233 L.Dulyn 20 MoelfreN 2665 2670 2664 2632 521 major rock 484 minor lake 203 260 325 216 659 610 682 180 53.7 1.7 72 14.40002 121 16.57585 577 490 628 460 500 580 435 600 515 590 405 410 750 589 51.3 69.9 57.7 2.1 5.9 0 530 major bog 140 17.08369 200 185 72 3222 307 523 778 530 drift 203 27.58743 153 15.51651 64 1.324759 1.67E+08 550.2166 57.7 2.377892 3.11E+08 677.4362 456 major mora 486 major mora 57.7 2.377892 3.11±-08 677.4362 80.9 0.845993 2.63±+08 640.741 44.1 1.46 2.87±+07 306.0905 63.9 1.617647 8.88±+07 446.1034 45.3 0.835821 7.13±+07 4416.409 68.2 0.777778 1.14±+08 485.0304 59 0.725807 2.57±+07 294.9832 187 2662 524 621 80.9 44.1 66.4 49.1 68.2 247 97 121 6.006927 534 466 major mora 451 drift 584 drift 56 12.1643 470 440 532 756 755 735 2.5 3.8 112 22.47613 189 2655 2659 2664 2668 2711 2712 2710 2744 2961 2866 2808 2816 2816 2824 2830 670 105 257 292 30 MoelfreN 560 450 492 840 660 765 730 190 283 92 170 180 232 280 W.Y Lieth 740 130 15.83239 4 L.Perfedda 310 L.Hywel 295 L.Cwmhos 0 Moch,Blae 70 C.y Cae, N 624 191 620 580 major mora 75 21.45758 58 8.440365 568 major rock 335 3
 59
 0.725807
 257E+07
 294.9832

 66.4
 0.863158
 4.77E+07
 362.6015

 64.6
 1.68
 7.56E+07
 422.8379

 63
 1.2
 8.42E+07
 438.327

 46.1
 1.173313
 4.74E+07
 361.863

 42.3
 1.390476
 1.65E+07
 254.478

 61.7
 0.988095
 1.67E+08
 550.2817
 140 165 75 92 506 major rock 578 minor lake 435 minor lake 604 drift 404 drift 394 minor lake 69.9 68.2 71.6 70 16.60698 80 19.79888 106 22.8709 193 3356 533 577 510 500 3.5 3.6 330 278 405 442 195 196 197 198 199 201 202 510 505 105 8.289974 63 4.682345 177 15.88231 458 616 50.2 42.3 146 137 143 125 98 132 90 61 117 62 178 100 61 117 62 178 100 151 175 175 175 175 118 114 135 104 98 81 315 Farlwyd, M 193 Barlwyd, L 171 C.Blaen y 43 472 370 446 544 540 375 530 592 785 653 120 41 37 3.3 421 drift 361 drift 31
 177
 15.88231
 61.7
 0.880005
 1.677-06
 505.2817

 0
 9.8875057
 31.8
 1.318005
 5.287-07
 40.508

 74
 13.86451
 31.8
 1.318005
 5.287-07
 40.508

 6
 27.275767
 44.0824
 1.714707
 1.887-07
 40.538

 100
 15.86451
 31.8
 1.316005
 5.287-07
 44.0824

 100
 15.86451
 1.714707
 7.287-07
 40.6084

 100
 15.86451
 1.714707
 7.287-07
 41.0684

 6
 14.86907
 60.3
 1.545005
 2.510-77
 52.4401

 102
 15.8647
 7.2382-07
 41.0684
 5.461007
 44.444

 103
 15.8647
 7.2382-07
 44.444
 5.561-07
 52.4414

 102
 15.8647
 7.23
 2.008697
 9.077-07
 44.443
 5.561-07
 52.4414
 5.51-07
 5.5414
 5.51-07
 5.5414
 5.547-07
 5.5414
 5.547-07
 5.5414
 5.547-07
 <t 450 520 600 698 682 593 493 530 462 501 650 506 555 610 134 164 165 158 180 179 130 167 150 218 156 176 164 124 15 Llan.Cwm 375 915 361 drift 364 drift 502 drift 503 major bog 392 drift 40 Gylchedd, 340 Henllyn, P 340 Pant y Bw 749 802 0 marginal LLS glacke valley-heark-remis-MigL Ord. slitt 0 definite LLS anony-valley-side Win. Berco OM Red Si 1 weil-define LLS glacke valley-side Win. Berco OM Red Si 0 weil-define LLS glacke valley-side Win. Berco OM Red Si 10 weil-define LLS glacke valley-side Win. Berco OM Red Si 0 weil-define LLS glacke valley-side Win. Berco OM Red Si 0 poor LLS glacke valley-side Win. Berco OM Red Si 10 poor LLS glacke valley-side Win. Berco OM Red Si 1 definite LLS glacke valley-side Win. Berco OM Red Si 1 de 698 778 773 765 670 180 82.4 61.9 63.4 313 594 524 434 2217 802 802 770 1150 168 50 y Cadno, F 57 Ban Brych 204 205 206 207 275 335 327 365 317 329 298 351 388 494 446 460 400 342 354 379 421 392 major mor 52.5 40 Fan Gihiry 44 Chwyth, Fa 39 Senni, Bla 338 C. Cwm-du 545 2915 449 565 603 70 425 minor lake 367 drift 2945 2964 2973 2984 510 360 396 560 418 468 560 545 1110 825 151 406 drift 385 drift 75.4 73.3 2.5 1 definite LLS glacie waing-wide Win. Breco OM Red Si. O weil-define LLS glacie waing-def Win. Breco OM Red Si. O definite LLS glacie waing-wide Win. & CE: DOM Red Si. O definite LLS glacie waing-wide En. & CE: DOM Red Si. O definite LLS glacie waing-wide En. & CE: DOM Red Si. I definite uncertain waing-heatEn. & CE: DOM Red Si. I definite uncertain waing-heatEn. & CE: DOM Red Si. I weil-difference waing-heatEn. & CE: DOM Red Si. I weil-difference waing-heatEn. & CE: DOM Red Si. I weil-difference LLS strong-waing-heatEn. & CE: DOM Red Si. I weil-difference LLS strong-waing-heatEn. & CE: DOM Red Si. 210 211 391 minor lake 357 drift 523 drift 88 304 22 Cerrig-glei 80 Fan Fawr I 307 Y Gym W.
 227
 237/147
 2316443
 223443
 271053
 211119
 2380104

 170
 2401104
 2380140
 238148
 271055
 211119
 2380104

 170
 2400104
 238080
 2108124
 238613
 2208131
 2208131
 238151
 250801
 238151
 250801
 238151
 250801
 238151
 2208131
 238151
 250801
 248513
 2208151
 250801
 248513
 250819
 238151
 2208151
 2508172
 248151
 2508172
 248151
 2508172
 248151
 2508172
 248151
 2508172
 248151
 2508172
 248151
 2508172
 248151
 2508172
 248151
 2508172
 248151
 2508172
 248151
 2508172
 260812
 251032
 250812
 251032
 250812
 251032
 250812
 251032
 250812
 251032
 250812
 251032
 250812
 251032
 250812
 251032
 250812
 251032
 250812
 251032
 250812
 251032
 250812
 25 2218 594 594 632 880 685 585 446 796 1295 94 41.4 213 3001 720 53.7 616 drift 30 Modrydd, 40 Llwch, L. C 347 Corn Du, E 589 major mor 848 798 714 720 744 736 658 670 480 430 438 669 602 610 886 795 742 582 drift 560 drift 318 3018 245 56.3 69.9 125 20.78635 51.3 1.082993 1.63E+08 546.5143 65.1 1.395474 3.82E+08 725.6852 4.8 33 Sere, Craid 189 18.91517 465 240748 3.11227 2304168 250247 240748 227642 240745 502 240745 240745 240745 240745 240745 240745 240745 502 240749 240745 240745 240745 240745 240745 240745 240745 102 2470744 2408475 219877 240418 240745 240745 240745 240149 240245 102 240749 240745 2419877 240149 240745 240745 240149 240149 112 240540 247279 147774 240149 240745 240745 244192 113 24549 247279 147774 241344 251271 148025 252390 115 254493 247545 140009 244522 244375 178428 240698 115 254493 247545 140009 244522 244371 148025 242390 33 Sere, Craig 10 Cynwyn, C 356 Oergwm, C 352 Cwareli, C 39 Pwllfa, Cra 64 Tarthwynn 82 Caerfanell, 72 Duwynt, Bi 40 Cofe Cul E 68.2 57.7 282 184 201 235 172 20.3915 172 12.61544 3042 160 566 drift 65.1 1.806283 2.99E+08 669.0064 615 756 1310 1 weit-derlen LLS glicke vallary-beach: A C. B Cit Med S, 0 dentriel LLS sonory-allery-beach: A C. B Cit Med S, 0 weit-derlen LLS glicke vallary-beach: A C. B Cit Med S, 0 dentriel LLS anony-allery-beach: A C. B Cit Med S, 0 dentrie LLS anony-allery-beach: A C. B Cit Med S, 0 dentrie LLS glicke vallery-beach: A C. B Cit Med S, 0 dentrie LLS glicke vallery-beach: A C. B Cit Med S, 0 dentrie LLS glicke vallery-beach: A C. B Cit Med S, 0 dentrie LLS glicke vallery-beach: A C. B Cit Med S, 0 dentrie LLS glicke vallery-beach: A C. B Cit Med S, 1 poor uncertain vallery-beach. A C. B Cit Med S, 0 marginal none vallery-beach. A C. B Cit Med S, 0 marginal none vallery-beach. A C. B Cit Med S, 0 marginal none vallery-beach. A C. B Cit Med S, 0 marginal none vallery-beach. A C. B Cit Med S, 0 dentrie LLS glicke vallery-beach. A C. B Cit Med S, 0 dentrie LLS glicke vallery-beach. A C. B Cit Med S, 0 dentrie LLS glicke vallery-beach. A Comparence Clarkontier 0 weit-deflene LLS glicke vallery-beach. A Comparence Clarkontier 0 met-deflene LLS glicke vallery-beac 450 drift 54 1.015873 4.55E+08 769.0298 54 1.29473 5.38±407 377.3945 44.3 1.374545 8.38±407 377.3945 44.3 1.374545 8.38±407 337.2134 37.3 1.523256 2.65±408 642.1146 43.9 2.095506 3.45±407 325.6198 42.6 1.475827 2.53±407 293.5719 3067 3076 3053 3007 640 646 618 767 483 drift 493 minor lake 536 drift 219 2205 535 423 540 709 746 769 762 550 137 53.7 49.1 43.2 75 21.1748 105 20.07506 223 15.2833 78 20.0606 58 15.77195 222 580 49.1 334 479 drift 466 drift 444 drift 111 128 158 192 237 790 550 56.3 224 225 3022 530 610 40 Cefn Cul E 90 Neuadd W 52 17.13627 52.6 1.486111 2.14E+07 277.5405 42.3 1.632231 4.89E+07 365.7863 326 328 298 349 346 471 425 293 352 242 288 335 326 386 minor lake 474 drift 80 14.81346 157 2.684845 2.897627 1.954242 2.10721 2.563227 1.90309 2.1959 161 2.837589 2.740363 1.845098 2.198657 2.592203 2.089905 2.206826 50.2 191 155 81 98 3096 3190 106 Crew, Blar 123 12.93378 42.6 0.799419 5.98E+07 391.0234 408 drift 415 major bog 351 drift 517 drift
 101
 2.91309
 2.443030
 1.643069
 2.198007
 2.935218
 2.000020

 21
 2.913814
 3.0086
 2.146128
 2.83301
 2.735238
 2.060059
 2.326336

 241
 2.982271
 3.194514
 2.32219
 2.374748
 2.850511
 1.88075
 2.382017

 29
 2.531479
 2.450988
 1.645088
 2.06912
 2.41182
 1.832509
 2.11035

 250
 2.755875
 2.70927
 2.190332
 2.394452
 2.619865
 2
 2.37994
 227 318 488 512 960 1565 210 42 Crawnon, 35 Onnau Fa 115 13.17819 67 13.8676 68 20.1858 59.8 1.243902 1.61E+08 543.5486 63.9 1.630208 3.56E+08 708.7798 229 3278 512 51.3 41.4 0 Darren Fac 40 Craf, Cwm 248 177 208 205 144 107 159 148 41.8 2.058824 2.98E+07 309.8577 27.7 0.898246 7.24E+07 416.7403 380 327 365 285 428 483 450 485 100 23.51327 250 2.755875 2.70927 2.190332 2.394452 2.619865 2 2.39794 185 2.651278 2.579784 2.146128 2.247973 2.493012 1.716003 2.267172 231 3277 3285 3218 3191 2891 2905 260 503 485 550 550 571 600 468 435 532 535 559 573 1025 145 158 100 70 135 118 53.7 3.5 1.9 115 122 94 69 90 117 523 major bog 93 Punchbow 46 Malps, The 52 21.55844 55.5 0.848214 3.01E+07 311.18 51.8 1.814159 1.20E+08 493.8691 698 520 310 400 635 432 major bog 105 20.21076 215 2.752048 3.010724 2.161368 2.318063 2.693612 2.021189 2.332438 230 388 428 400 425 233 2077 398 436 418 446 532 492 400 575 894 43.2 428 major bog 0 well-define LLS glacie valley-side Abergaven Carbonifer 80 Craig-y-cw 84 Blaentillery 55 16.36732 57 0.713467 7.13E+07 414.5843 210 2.843855 2.697229 2.198657 2.311754 2.617613 1.740363 2.322219 341 major bog o weindenie LLS glacie valley-side Abergaven Coal Meas D marginal uncertain valley-side Abergaven Coal Meas O definite uncertain valley-side Rhondda-F Coal Meas LLS glacie valley-side Rhondda-F Coal Meas 40 15.47864 41.2 0.946154 3.68E+07 332.744 144 2.716003 2.691965 2 2.158362 2.52211 1.60206 2.158362 113 2.491362 2.60206 1.845098 2.029384 2.374269 1.740363 2.053078 562 574 40.6 52 70.7 65 Llanerch-y 239 240 2037 2038 4.8 4.8 0 312 drift 504 drift 55 19.04269 35.8 1.290323 1.33E+07 236.7383 352 C.-y-Pant, 14 L. Fach, Ci 50 21.67782 60 13.11976 47.2 1.4375 3.66E+07 331.9263 70.7 1.407874 8.40E+07 437.9834 162 2.60206 2.759668 2.130334 2.201397 2.521042 1.69897 2.209515 149 2.802774 2.951338 2.071882 2.170262 2.641458 1.778151 2.173186 460 major mor

241	2919	2035	330	365	440	559	600	545	975	1408	180	64.6	0	100	319	385 major mora	0 classic LLS glacie valley-side Rhondda-FCoal Meas	37	31 L. Fawr, Ci	215	110 12.43544	64.6 1.444103 2.95E+08 665.8073	229 2.989005 3.148603 2.255272 2.332438 2.823349 2.041393 2.359835
242	2944	2038	370	399	438	512	515	492	470	1050	88	60.8	2.7	118	255	320 major bog	0 poor LLS glacie valley-side Rhondda-FCoal Meas	45	38 Cy-Bwich	122	68 14.55138	58.1 2.234043 6.02E+07 391.9365	142 2.672098 3.021189 1.944483 2.08636 2.593216 1.832509 2.152288
243	2959	2028	358	400	440	475	510	461	310	700	60	39.7	3.4	38	256	329 drift	0 marginal uncertain valley-side Rhondda-FCoal Meas	62	47 Cyr-Ysgo	103	82 18.37948	36.3 2.258065 2.24E+07 281.6862	117 2.491362 2.845098 1.778151 2.012837 2.449766 1.913814 2.068186
244	2965	2020	237	248	312	393	510	392	430	680	130	42.3	3.7	98	257	342 drift	0 poor uncertain valley-hearRhondda-FCoal Meas	24	18 Tarren-y-B	155	75 19.82246	38.6 1.581395 4.53E+07 356.5357	156 2.633468 2.832509 2.113943 2.190332 2.552103 1.875061 2.193125
245	2984	2016	275	290	346	391	433	380	235	480	70	44.1	10.1	56	275	308 drift	0 marginal uncertain valley-side Rhondda-FCoal Meas	0	356 Cefnrhos-ç	105	71 24.0755	34 2.042553 1.18E+07 227.9464	116 2.371068 2.681241 1.845098 2.021189 2.357833 1.851258 2.084458
246	2919	2006	330	365	396	490	522	480	300	880	105	56.3	5.7	62	309	343 drift	0 poor uncertain valley-side Rhondda-FCoal Meas	100	97 C. Blaenrh	150	66 26.56505	50.6 2.933333 3.96E+07 340.8514	160 2.477121 2.944483 2.021189 2.176091 2.532565 1.819544 2.20412
247	2930	1976	253	330	417	514	523	494	970	1224	143	60.5	4.4	206	333	386 drift	0 well-define LLS glacie valley-side Rhondda-FCoal Meas	44	55 Saerbren,	241	164 13.95282	56.1 1.261856 2.86E+08 658.9565	261 2.986772 3.087781 2.155336 2.382017 2.818857 2.214844 2.416641
248	2927	1962	321	350	412	544	559	541	890	1184	165	66.6	2	208	308	373 major bog	0 well-define LLS glacie valley-hearRhondda-FCoal Meas	80	76 Parc, Cwm	220	91 13.88467	64.6 1.330337 2.32E+08 614.3108	223 2.94939 3.073352 2.217484 2.342423 2.788388 1.959041 2.348305
249	2932	1953	337	350	410	508	524	503	410	785	146	63.4	3.1	104	337	386 major bog	0 well-define LLS glacie valley-side Rhondda-FCoal Meas	43	48 Graig Fact	166	73 22.04194	60.3 1.914634 5.34E+07 376.6349	171 2.612784 2.89487 2.164353 2.220108 2.575921 1.863323 2.232996
250	2898	1945	308	320	427	537	565	460	594	854	130	49.6	4.4	186	329	399 drift	1 well-define LLS glacie valley-hearRhondda-FCoal Meas	146	128 Blaengarw	152	119 14.35354	45.2 1.43771 7.71E+07 425.6271	229 2.773787 2.931458 2.113943 2.181844 2.629029 2.075547 2.359835
251	2965	1937	330	350	378	460	472	438	250	360	85	40.6	11.3	105	259	390 drift	0 marginal none valley-side Rhondda-FCoal Meas	33	21 Bwllfa, Dar	108	48 23.36434	29.3 1.44 9720000 213.4136	130 2.39794 2.556303 1.929419 2.033424 2.329222 1.681241 2.113943
252	2973	1977	350	365	413	471	481	471	400	500	65	46	4.8	70	229	328 drift	0 marginal uncertain valley-side Rhondda-FCoal Meas	29	40 Maerdy, C	121	63 16.83057	41.2 1.25 2.42E+07 289.249	121 2.60206 2.69897 1.812913 2.082785 2.461272 1.799341 2.082785
253	2982	1973	282	302	364	462	475	424	420	1165	100	59	2.4	67	252	321 drift	0 marginal uncertain valley-side Rhondda-FCoal Meas	25	15 Tarren Ma	142	82 18.68015	56.6 2.773809 6.95E+07 411.1067	180 2.623249 3.066326 2 2.152288 2.613955 1.913814 2.255272
254	2996	1967	253	254	315	390	419	380	340	593	110	63.4	0	50	231	329 major mora	0 poor uncertain valley-side Rhondda-FCoal Meas	73	77 C. Rhondd	127	62 20.48214	63.4 1.744118 2.56E+07 294.7445	137 2.531479 2.773055 2.041393 2.103804 2.469446 1.792392 2.136721
255	2894	1939	320	359	396	530	555	525	490	471	135	39.5	8.3	117	367	407 drift	0 marginal uncertain valley-side Rhondda-FCoal Meas	145	145 Gwyn, Cwi	205	76 22.70284	31.2 0.961225 4.73E+07 361.6793	210 2.690196 2.673021 2.130334 2.311754 2.558324 1.880814 2.322219
256	2922	1934	370	390	434	532	537	525	386	850	130	50.2	3.7	85	339	404 drift	0 marginal uncertain valley-side Rhondda-FCoal Meas	73	80 Fforch, Tai	155	64 21.87815	46.5 2.202073 5.09E+07 370.4924	162 2.586587 2.929419 2.113943 2.190332 2.568779 1.80618 2.209515
270	2368	3456	110	153	177	330	564	284	440	580	170	80.9	5.7	139	541	564 drift	0 definite uncertain valley-side Nantlle-He microgranit	34	25 Llwyd-y-pri	174	67 21.57655	75.2 1.318182 4.44E+07 354.1142	220 2.643453 2.763428 2.230449 2.240549 2.549143 1.826075 2.342423
271	2374	3453	150	170	220	410	564	382	675	664	207	63.4	3.8	91	512	564 drift	0 definite uncertain valley-side Nantlle-He microgranit	16	23 Ceiliog, Ga	232	70 18.96803	59.6 0.983704 1.04E+08 470.2404	260 2.829304 2.822168 2.31597 2.365488 2.67232 1.845098 2.414973
272	2379	3451	108	160	240	345	485	342	562	536	140	47	8.1	77	431	547 drift	0 marginal uncertain valley-side Nantlle-He microgranit	69	60 Merbwil, Ti	234	132 22.60538	38.9 0.953737 7.05E+07 413.0846	237 2.749736 2.729165 2.146128 2.369216 2.616039 2.120574 2.374748
273	2718	3649	372	372	405	695	790	630	754	1015	295	66.3	0	80	384	477 major mora	0 poor LLS glacie valley-side Carneddaudolerite	105	95 S.C.Eigiau	258	33 18.88967	66.3 1.346154 1.97E+08 582.3075	323 2.877371 3.006466 2.469822 2.41162 2.765152 1.518514 2.509202
274	2721	3657	372	372	395	631	729	629	715	1120	259	66.3	0	26	390	420 major mora	0 marginal LLS glacie valley-side Carneddaudolerite	106	106 N.C.Eigiau	257	23 19.77049	66.3 1.566434 2.06E+08 590.4082	259 2.854306 3.049218 2.4133 2.409933 2.771152 1.361728 2.4133
281	2643	3534	431	460	495	614	619	613	297	310	120	56.3	15.9	61	628	828 outsloping	0 marginal uncertain valley-side Snowdon tuffs, acid c	28	35 Wenallt, G	182	64 31.49974	40.4 1.043771 1.68E+07 255.8958	183 2.472756 2.491362 2.079181 2.260071 2.408063 1.80618 2.262451
283	2628	3557	396	420	507	875	921	835	660	625	370	70.2	11.8	49	731	941 outsloping	0 marginal uncertain valley-side Snowdon ignimbrite,	40	56 Beudy Mav	439	111 33.62992	58.4 0.94697 1.81E+08 565.7564	479 2.819544 2.79588 2.568202 2.642465 2.75263 2.045323 2.680336
284	2628	3553	588	610	640	916	921	885	502	245	276	52.5	8.1	12	694	926 outsloping	0 marginal uncertain valley-side Snowdon ignimbrite,	67	60 CribGoch I	297	52 30.60998	44.4 0.488048 3.65E+07 331.7993	328 2.700704 2.389166 2.440909 2.472756 2.520875 1.716003 2.515874
290	3267	2344	452	480	521	615	684	615	310	438	106	51.3	12.5	43	330	407 drift	0 marginal uncertain valley-side Black Mou Old Red Si	79	83 Olchon, Bl	163	69 27.73568	38.8 1.412903 2.21E+07 280.7638	163 2.491362 2.641474 2.025306 2.212188 2.448341 1.838849 2.212188
291	3239	2344	503	515	563	642	671	642	382	504	80	43.2	7	55	281	333 drift	0 marginal none valley-side Black Mou Old Red Si	60	57 Efengyl S.,	139	60 19.99515	36.2 1.319372 2.68E+07 299.1136	139 2.582063 2.70243 1.90309 2.143015 2.475836 1.778151 2.143015
292	3254	2307	392	400	445	565	640	560	380	458	132	60.5	3.3	57	364	408 major bog	0 definite LLS glacie valley-side Black Mou Old Red Si	39	35 Maes-y-ffir	168	53 23.85047	57.2 1.205263 2.92E+07 308.0724	173 2.579784 2.660866 2.120574 2.225309 2.488653 1.724276 2.238046
293	3238	2321	430	440	488	602	680	598	669	1494	140	65	1.5	88	328	392 major bog	0 poor LLS glacie valley-side Black Mou Old Red Si	66	60 Esgob, Tai	168	58 14.09668	63.5 2.233184 1.68E+08 551.6903	172 2.825426 3.174351 2.146128 2.225309 2.741695 1.763428 2.235528
294	3013	2242	339	390	451	525	590	515	570	575	110	41.4	11.3	110	403	521 drift	0 marginal uncertain valley-side En. & C. B Old Red Si	307	300 Dyfnant (LI	176	112 17.15922	30.1 1.008772 5.77E+07 386.3834	186 2.755875 2.759668 2.041393 2.245513 2.587018 2.049218 2.269513
295	2843	2182	273	300	343	463	635	448	345	760	130	52.5	3.7	33	379	513 drift	0 marginal uncertain valley-side Wn. Breco Old Red Si	71	73 S. Tawe Fr	175	70 26.89624	48.8 2.202899 4.59E+07 358.006	190 2.537819 2.880814 2.113943 2.243038 2.55389 1.845098 2.278754
296	2837	2191	420	490	525	664	667	616	450	860	140	50.2	5.2	29	416	539 drift	0 marginal uncertain valley-side Wn. Breco Old Red Si	69	74 C. Tawe Fr	196	105 23.5358	45 1.911111 7.59E+07 423.3072	244 2.653213 2.934499 2.146128 2.292256 2.626656 2.021189 2.38739
297	2834	2203	515	600	642	761	761	740	485	1685	140	66.6	2.4	29	271	518 major bog	0 marginal LLS glacie valley-side Wn. Breco Old Red Si	88	84 N. Tawe Fr	225	127 24.88741	64.2 3.474227 1.84E+08 568.6452	246 2.685742 3.2266 2.146128 2.352183 2.754841 2.103804 2.390935
298	2801	2217	500	502	576	700	701	668	705	890	175	78.7	0	110	336	492 major mora	0 classic LLS glacie valley-hearWn. Breco Old Red Si	29	6 L. y Fan F≀	168	76 13.40348	78.7 1.262411 1.05E+08 472.385	200 2.848189 2.94939 2.243038 2.225309 2.674296 1.880814 2.30103