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Abstract—In the past decade, a lot of research work has been conducted to support collaborative visualization among remote 
users over the networks, allowing them to visualize and manipulate shared data for problem solving. There are many applications 
of collaborative visualization, such as oceanography, meteorology and medical science. To facilitate user interaction, a critical 
system requirement for collaborative visualization is to ensure that remote users will perceive a synchronized view of the shared 
data. Failing this requirement, the user’s ability in performing the desirable collaborative tasks will be affected. In this paper, we 
propose a synchronization method to support collaborative visualization. It considers how interaction with dynamic objects is 
perceived by application participants under the existence of network latency, and remedies the motion trajectory of the dynamic 
objects. It also handles the false positive and false negative collision detection problems. The new method is particularly well 
designed for handling content changes due to unpredictable user interventions or object collisions. We demonstrate the 
effectiveness of our method through a number of experiments. 

Index Terms—Collaborative visualization, network latency, motion synchronization, distributed synchronization.

 

1 INTRODUCTION 
Collaborative visualization [10] allows geographically separated 
users to access a shared virtual environment to visualize and 
manipulate datasets for problem solving without physical travel. 
Example works include fluid dynamics visualization [27], volume 
visualization [1] and medical data visualization [26]. In contrast to 
those working individually with standalone visualization applications, 
research studies have found that users working in groups through 
collaborative visualization applications can often work out a better 
solution for a given problem [17]. To facilitate collaborative dataset 
manipulation for visualization, CSpray [21] was designed to 
comprise a “spray-paint can metaphor” for users to edit a dataset in a 
graphical way. A control mechanism is provided for users to modify 
the dataset in a mutually exclusive manner. If a user changes the 
dataset, updates of the dataset will be broadcasted to remote users. 
However, the system does not address the inconsistency problem of 
dynamic objects due to network latency. Hence, if we conduct 
visualization on a time-dependent dataset [9], such as thunderstorms 
and tornados, synchronization of the dataset among remote users 
would be difficult. First, as this type of dataset changes continuously 
over time, it is difficult to guarantee that each of these changes will 
be reported timely to the remote users throughout the collaboration 
session. Second, as different users may be connected to each other or 
to the server via different network routes, they may perceive 
different amounts of network latency, and hence delay, in receiving 
the update messages. Although it is possible to introduce a further 
delay for the updated information to be presented to the users at a 
synchronized moment [7], it will substantially affect the interactivity 
of the collaboration.  

Recently, we have developed a method to support global-wise 
synchronization for collaborative applications [14]. The method runs 
a reference simulator for each dynamic object on the application 
server. Each of the clients interested in the object, including those 
that access the objects as well as the owner of the object, will 
execute a gradual synchronization process on the local copy of the 

object to align its motion to that of the reference simulator running at 
the server. Our results show that the method effectively reduces the 
network latency by half and quickly align the motion of the 
replicated object to that of the original dynamic object. However, the 
method still suffers from a high error during the period when an 
interaction has just occurred and before the interaction message has 
reached the client, causing the users to make inappropriate decisions. 
It may also leads to the false positive and false negative collision 
problems as discussed later. 

In this paper, we present a trajectory-preserving synchronization 
method, which significantly extends our previous work [14] to 
support collaborative visualization. It considers how spatial changes 
and interactions of dynamic objects are affected by network latency. 
A set of procedures have been developed to correct the motion 
trajectory of the dynamic objects. In addition, solutions have also 
been provided to handle the false positive and false negative 
collision detection problems. To demonstrate the effectiveness of our 
method, we have conducted experiments on a prototype system for 
flow visualization [25]. With this prototype, users may manipulate 
dynamic objects with the CyberGloves, which are electronic gloves 
for sensing hand and finger motions, to intervene the flow of a 
dataset for visualization. The dynamic and interactive nature of this 
prototype provides an efficacious testbed for verifying the 
effectiveness of the new method.  

The rest of the paper is organized as follows. Section 2 briefly 
summarizes related work. Section 3 outlines the foundation of our 
method. Section 4 presents in detail our trajectory-preserving 
synchronization method. Section 5 shows how the new method 
handles object collisions. Section 6 studies the performance of the 
proposed method with a number of experiments. Finally, Section 7 
briefly concludes the work presented in this paper. 

2 RELATED WORK 

2.1 Collaborative Applications 
A unique characteristic of collaborative applications is the need to 
distribute state updates to remote sites over the network to update the 
states of the shared objects at these sites. Because of network latency, 
different remote sites may receive the updates after different amounts 
of delay, causing the view discrepancy problem at these sites. 
Nevertheless, traditional applications such as [2] and [12] may still 
work well under the existence of network latency as long as the state 
updates are received by the remote sites in a correct order. This is 
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because these applications typically have a large time gap between 
any two consecutive updates as compared with the network latency. 
As such, the network latency becomes insignificant and the users can 
implicitly perceive synchronized application content at all times. 

However, collaborative applications that involve time-dependent 
data and continuous user interaction may be different from the above 
applications. The state update events in these applications are 
continuous [18] in nature. In order for users to interact with the 
system based on the same updated view of the data, the updates need 
to be presented to the remote users either without any delay or at 
least within a very short period of time. However, this is not trivial to 
achieve. An early attempt to explore the discrepant views among 
remote users on shared data due to network latency was done in 
DEVA3 [22], which claimed that inconsistency may be tolerated if 
latency is small enough. Some works have been conducted to study 
how the delay in delivering state updates will affect the interactivity 
of collaborative applications [4, 21]. To cope with the latency 
problem, adaptations could be performed at either the user or the 
system side. For user side adaptation, [24] proposes to explicitly 
disclose delay information to the users and let the users adjust their 
behavior by themselves to cope with the state discrepancy problem. 
Unfortunately, this arrangement is subjective to different users and 
would heavily slow down the user interaction. 

For system side adaptation, a popular approach is to use dead 
reckoning [16]. With this approach, the controlling client of a 
dynamic object runs a motion predictor for the object. Other clients 
accessing the object also run the same motion predictor to drive the 
motion of the local copies of the object. The controlling client is 
required to keep track of the error between the actual and predicted 
motions of the object, and sends the updated motion information to 
the other clients when the error is higher than a given threshold. 
Although this approach is very simple, it does not guarantee that the 
state of a shared object could be synchronized among all the remote 
clients.  

In [18], a local-lag mechanism is proposed to address this 
problem. When the controlling client issues a state update of the 
dynamic object, the update will be sent to the remote clients 
immediately but not to the sender itself until a local-lag period is 
expired. This is to reduce the discrepancy between the sender and the 
receivers. However, as different pairs of clients may suffer from 
different amounts of latency, a single value of local-lag can only be 
used to synchronize two clients, the sender and the receiver, but not 
among a number of clients. In [3], users make use of the reference 
state information from the server to correct the states of their local 
copies of the dynamic objects. Again, there is no control mechanism 
to guarantee that the states generated at a client would be 
synchronized with those at other clients. 

2.2 Clock Synchronization 
The synchronization problem has also been studied by researchers 
working on clock synchronization. In particular, Network Time 
Protocol (NTP) [19] has been adopted as a standard for computers 
connected via the Internet to synchronize their clocks to within 10ms 
of error. It relies on selecting and filtering time information from a 
set of time servers. On the other hand, there are also different 
strategies proposed in adjusting the local clock when the correct time 
information is received [10, 12, 20]. Backward correction [11] and 
forward correction [23] are two approaches, which make a backward 
or a forward adjustment on the clock value, respectively. 
Undesirably, they introduce a time discontinuity problem to the 
clock. [13] addresses this problem by speeding up or slowing down a 
clock to synchronize it against a reference clock. However, it incurs 
a severe run-time overhead as it needs to adjust the time once at 
every clock tick. Hence, it generally requires hardware support. To 
reduce the overhead, [15] proposes an adaptive method for clock 
synchronization. It uses a time server to propagate time information 
to the clients via a re-synchronization process for the clients to 
determine their clock drift rates. The time between two consecutive 

re-synchronization processes will be shortened or lengthened based 
on the drift rate of a client clock. It is set inversely proportion to 
clock drift rate. At the client, clock correction is performed by 
extrapolating the clock continuously with the newest clock drift rate 
determined in the latest re-synchronization process. 

Although methods used in clock synchronization appear to 
address the synchronization problem in collaborative visualization, it 
is difficult to apply them directly to address the problem. First, the 
time value in clock synchronization is only a parameter with a single 
degree-of-freedom, while the motion parameters of the datasets for 
visualization may have three or higher degrees-of-freedom. Second, 
the clock information is periodic, i.e., the occurrence of a time event 
is predictable. This simplifies the synchronization problem. In 
contrast, the motion of the datasets for visualization is likely 
unpredictable, especially when user interactions or object collisions 
are possible. Third, in clock synchronization, the time server is the 
prime reference for all clocks, which only need to synchronize to the 
changes from the time server. In collaborative visualization, however, 
any user may initiate its own actions to manipulate a dataset and 
such actions need to be synchronized among all the users. 

3 FOUNDATION 

3.1 Consistency Control Model 
In [14], we proposed a relaxed consistency control model to 
synchronize the object states among remote clients in collaborative 
applications. We observed that application users would likely pay 
more attention on the state trajectory of a dynamic object, i.e., the 
continuous sequence of state changes of the object, rather than on the 
individual states of the object in order for them to determine their 
actions to respond. Hence, we proposed to relax the strict time-
dependent consistency control requirement on individual states of a 
replicated object among all relevant clients to allow the state 
trajectories of the replicated object among the relevant sites to 
deviate from that of the correct one by an acceptable amount. 
Formally speaking, given that the states of a replicated object at two 
remote sites at time t are si(t) and sj(t), the state discrepancy D of the 
object between the two sites during any time period Ta and Tb should 
be smaller than an application specific tolerance, . Therefore, 

b

a

T

T ji dttstsD |)()(|  (1)

This relaxed model could be reverted back to the original strict 
time-dependent consistency control model if we shorten the time 
period so that Ta = Tb and set tolerance = 0. 

3.2 Gradual Synchronization 
To implement the consistency control model, we have developed a 
gradual synchronization method [14] to trade accuracy of individual 
states of a dynamic object for the preservation of the state trajectory 
of the object. We assume that a collaborative application has a client-
server architecture. The server runs a simulator, called a reference 
simulator, for each dynamic object. This reference simulator serves 
as a standard reference for synchronizing the motion of all copies of 
the object at different remote clients. Each client interested in an 
object will also run a simulator as a local copy of the object. This 
method effectively reduces the latency of a client to obtain the 
updated state of an object from a double round-trip time delay to a 
single one.  

To simulate object motions, we need to apply appropriate motion 
equations [8] to drive the motion of the objects. For example, we 
may apply a first-order predictor (or a more advanced method [5]) to 
drive an object when it is under the user’s control: 

Vtppnew  (2)

where p is the current position of the dynamic object, t is the time 
difference between p and pnew, and V is the motion vector of the 
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object. When we need to simulate object interactions and responses, 
we may apply a second-order predictor instead: 

  22AtVtppnew  
AtVVnew  

(3)
(4)

where A is the acceleration vector of the dynamic object, and t is the 
time difference between V and Vnew. For the simulation of flows, 
such as water, smoke or fire, we may apply appropriate motion 
equations according to their behaviors [6].  

During run-time, two motion timers Ts and Tc are maintained at 
the server and the client, respectively. They are the virtual clocks 
indicating how long a dynamic object has been performing certain 
movement as perceived by the server and by the client. Hence, they 
represent t in Eq. (2) to (4). When a dynamic object changes its 
motion, each interested client will gradually align the motion of its 
local copy of the object to that of the reference simulator at the 
server by adjusting the increment rate of Tc of the object. The 
simulator of the object at the client and the reference simulator of the 
object at the server are said to be synchronized when Tc = Ts.  

In general, this method successfully maintains the consistency of 
dynamic objects in collaborative applications, except between the 
period when an interaction has just occurred and before the update 
message reaches the remote client. During this period, the two sites 
can have a very high discrepancy. Although this discrepancy will be 
settled shortly after the update message is received at the remote 
client, it still produces a high visual error during this period. This can 
be serious if the interactions occur frequently. 

4 TRAJECTORY-PRESERVING SYNCHRONIZATION 
The new synchronization method extends our earlier method [14] by 
considering how interactions are perceived by the remote users or the 
server in the existence of network latency. It includes separate 
mechanisms for handling client-server and client-client 
synchronizations. To simplify our discussion, Figures 1 to 3 help 
illustrate our method graphically. We assume that client A initiates a 
motion change to a dynamic object, which can be a user controlled 
object or a primitive object of a dataset in flow simulation. A motion 
command is then generated as a result of the motion change and sent 
to the server to update the motion of the corresponding reference 
simulator S. Concurrently, client B is visualizing the change of the 
object and needs to gather updates of the object from the reference 
simulator running at the server. 

4.1 Client-Server Synchronization 
As shown in Figure 1, before a new motion occurs at Pinit, the 
motions of the dynamic object at client A and of its reference 
simulator S are synchronized. When the object is driven to move in a 
new direction Vnew by a script, by a user interaction or by an object 
collision, a motion command is generated. However, as it will take 
time for this motion command to reach the server, S will continue to 
move in its current direction until Pstart, when the server receives the 
motion command. This discrepant motion is represented as the 
expected motion vector Vr, and its motion would last for the time 
duration of a half round-trip delay.  

To remedy the state discrepancy problem during motion change, 
we propose to adjust the motion of the dynamic object at A gradually 
to align with that of S. This motion remediation method helps 
minimize the state discrepancy raised during a motion change while 
preserving the motion trajectory as much as possible. It is shown by 
the blue arrows in Figure 2. First, instead of driving the dynamic 
object at A solely with Vnew, we let it move in the direction of the 
vector sum of Vnew and Vr for the time duration est

SAT , where est
SAT  is 

the estimated latency between client A and the server collected from 
recent statistics [14]. Note that est

SAT  is used instead of the real 
latency (half round-trip time) TA–S, since the most updated TA–S is not 
currently available at the client. After that, we set the motion of the 
dynamic object to move in the direction of Vnew. Once the server has 
received the new motion command from A, it will reply the client by 

sending it the values of Pstart and Ts. Upon the reception of such 
information, A will evaluate the residual state discrepancy Vdis as the 
vector difference between Pcurr of the object at the server and the 
current position of the object at A, where Pcurr = Pstart + (TA–S + Ts) × 
Vnew and TA–S is the most updated latency. With the value of Vdis, we 
may further remedy the motion of the dynamic object at A to move 
in the direction of the vector sum of Vnew and Vdis. Hence, such 
motion could eventually be synchronized with that of S at Psync. 
Finally, we again resume the motion of the object at A to move in the 
direction of Vnew. 

 
Fig. 1. The state discrepancy problem during motion change. 
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Vdis
Pcurr

Pstart
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Fig. 2. Motion remediation in client-server synchronization. 

4.2 Client-Client Synchronization 
Figure 3 shows our motion remediation process to address the state 
discrepancy problem in client-client communications. Using the 
same scenario and notation as in the client-server synchronization 
example, we consider the situation that client B is interested in the 
motion of the dynamic object driven by client A. Hence, the server 
needs to propagate the motion information of the object to B. Before 
the object is driven to move in a new direction, the motions of S at 
the server and the local copy of the object at B are synchronized at 
Pstart. Assuming that S is driven to move in a new direction Vnew 
when an interaction occurs, Vnew will then be propagated to B. Again, 
it will take time for this motion command to arrive at B. Thus, the 
local copy of the object at B is expected to continuous moving in its 
current direction until client B receives Vnew. Then, B will estimate 
the state discrepancy Vdis as the vector difference between Pcurr of the 
object at the server and the current position of it at B, where 

new
est

BSstartcurr VTPP . Note that est
BST  is the estimated latency 

between client B and the server collected from recent statistics. With 
Vdis, we may amend the motion of the object in B to move in the 
direction of the vector sum of Vnew and Vdis such that it could 
eventually be closely synchronized with that of S at Psync. At this 
point, we resume the motion of the local copy of the object to move 
in the direction of Vnew. This adjusted client motion is shown as 
brown arrows in Figure 3. Hereafter, when client B receives the most 
updated latency TS–B, it will adjust the increment rate of Tc using TS–B, 
which is the gradual synchronization process for client B to remedy 
any residual state discrepancy [14]. 
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Fig. 3. Motion remediation in client-client synchronization. 

4.3 Synchronization at an Arbitrary Moment 
One important advantage of the new method is that a prior 
synchronized state between a dynamic object and its reference 
simulator is not required before a new synchronization cycle could 
be taken place. Hence, our method can synchronize new motion 
commands generated at any arbitrary moment, including during 
motion remediation. We explain this with the example shown in 
Figure 4. While client A is executing a motion remediation process, 
it sends out another motion command to indicate that the motion of 
the dynamic object has been changed to Vnew. Although the previous 
object motion command at A has still not been synchronized with the 
reference simulator at the server, we may start a new client-server 
synchronization process for the new motion command by applying 
the new motion on the object immediately.  

Instead of moving in Vnew, the dynamic object at A moves in the 
direction of the vector sum of Vnew and Vr for the time duration of 

est
SAT , followed by the direction of Vnew until the client has received 

Pstart and Ts from the server. Upon receiving such information, the 
client evaluates the residual state discrepancy Vdis as the vector 
difference between Pcurr of the object at the server and the current 
position of the object at A, in the same way as described in Section 
4.1. With Vdis, we may further amend the motion of the object at A to 
move in the direction of the vector sum of Vnew and Vdis such that this 
motion and that of S could eventually be synchronized at Psync. 
Finally, we resume the motion of the object at A to move in the 
direction of Vnew. 

 

Fig. 4. Motion remediation at an arbitrary moment. 

5 HANDLING OF OBJECT COLLISIONS 
Another critical issue in collaborative visualization is to assert a 
consistent view among remote users in object collisions. This issue 
typically does not exist in a standalone visualization application, 
since updated states of dynamic objects are maintained and presented 
within a single client, where delay can be neglected. However, 
because of network latency and since each user may suffer from a 
different amount of network latency, object collision information 
may be presented to different users at different time moments. This 

may lead to inconsistent object collision results. This problem is still 
an open research topic.  

To our knowledge, [20] is the only work that attempts to address 
this problem. It uses dead reckoning to guide the motions of dynamic 
objects and addresses the inconsistency problem as follows. First, 
when a client needs to detect possible collisions between two remote 
objects or between one remote object and one static object, it uses 
the local state information of these objects to compute a temporary 
collision result for visual presentation. The collision result may then 
be overridden by an updated one from the remote client when it is 
available. This may, however, introduce temporary inconsistency on 
the collision results among remote users. Second, when a client 
predicts that a collision will likely occur between its own controlled 
object and a remote object, the system would instruct the remote 
client to propagate the state of the remote object more frequently to 
this client. This helps decrease the error in evaluating the collision 
detection result at the client. This unfortunately would increase the 
network loading. In addition, the false positive and false negative 
collision results, which will be discussed next, are not considered in 
this method. 

5.1 The Collision Problem 
In our method, when an object collision occurs, we evaluate and 
interpret the collision response as motion commands according to the 
reactions of the colliding objects. The motion commands would then 
be fed as input to the motion predictors of the objects to update the 
object motions. In this way, our synchronization method could 
natively support the global-wise consistency of object collisions 
among the participants, i.e., the participating clients and the server. 
However, because of network latency, the new motion commands 
will still be received and interpreted by each participant at a different 
time moment. This may lead to a false positive or a false negative 
collision detection result, which corresponds to an invalid or a 
missing collision instance of an object, respectively. 

We have identified all possible false positive and false negative 
collision detection results as shown in Table 1. We assume that the 
roles of the clients and of the server are the same as those mentioned 
in Section 4. From Table 1, there are mainly two reasons leading to 
the collision problem. First, when an object in client A changes its 
motion during motion remediation, i.e., same situation as Section 4.3, 
the motion of this object at client A and that of the reference 
simulator at the server will be different temporarily. Second, as it 
takes time for the motion commands to be delivered to client B, the 
motion of the object in B will also be different from that of the 
reference simulator at the server. In both cases, inconsistent collision 
results may be produced. 

5.2 The Algorithm 
To address the collision problem, we follow our reference simulator 
scheme, where the motion of a dynamic object maintained at a client 
only needs to be synchronized with that of the reference simulator at 
the server. Thus, if we could resolve the collision problem between 
each client (either client A or client B) with the server, we would 
then have handled the problem globally among all participants. 
Based on this observation, we convert the collision problem shown 
in Table 1 into two simpler problems, involving only two parties: 
client A – server (Table 2) and client B – server (Table 3). To 
address the collision problem, we may just handle individual cases 
shown in Tables 2 and 3 as follows: 
 
 Cases (a), (d), (e) and (h): As the collision problem does not 

exist, no actions are required. 

 Cases (c) and (g): A false positive collision occurs at the server. 
When a dynamic object changes its motion, the server will send 
an update message to client B to update the state of the object at 
B. To trade transient discrepancy of client A for global 
consistency, the collision event detected at the server will be sent 
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to both clients A and B to override the object motion there so 
that they will both have the same object state.  

 Case (b): A false negative collision result occurs at the server. 
Since the server does not detect a collision, it will not send out a 
collision event, causing an inconsistency with client A. This 
problem only occurs when client A issues a new motion 
command during motion remediation, which leads to a collision. 
To trade transient discrepancy of client A for global consistency, 
we inhabit client A to perform collision detection until the 
motion remediation process has finished, which typically takes a 
round-trip time. 

 Case (f): A false positive collision result occurs at client B. This 
happens only while the server is sending a motion command to 
client B but the original motion of the object at B has already led 
to a collision. This problem could not be avoided but could be 
quickly corrected by the new motion command from the server, 
and the inconsistent state could only last for a half round-trip 
time. As in case (b), to maintain global consistency, we inhabit 
client B to perform collision detection until the motion 
remediation process has finished. This situation would last for 
another half round-trip time.  

 

6 RESULTS AND DISCUSSIONS 
To study the performance of our method, we have developed a 
prototype to support flow visualization and dynamic user interaction. 
We have tested it on a set of PCs with a P4 2.0GHz CPU, 1GBytes 
RAM and a GeForce4 Ti4200 graphics card. Each client machine has 
a CyberGlove with a 3D tracker connected to it to capture the user’s 
hand gesture and position. The CyberGlove allows a user to 
manipulate the objects in an intuitive way inside the prototype 
environment, where each unit of spatial distance is defined as 1m. 
The user may apply force to an object and use the object to intervene 
a flow simulation. In addition, we have connected the machines 
through TCP connections, which handle the packet lost problem 
automatically, and use timestamps to ensure message ordering. 
Figure 5 shows a series of screenshots from one of our experiments 
on flow visualization. 

Before the experiments, we first collected the latency statistics of 
different network connections as show in Table 4. (Connection 
Overseas 1 measures the latency between Hong Kong and US, while 
Overseas 2 is created to model a long latency connection.) 

 
Table 4. Latency information for different network connections 

Latency (ms) Category 
Mean Max. Min 

LAN (within a department) 5  7  0  
Intranet (within a university) 40  57  32  
Overseas 1 (modeling two nearby countries) 160  186 132  
Overseas 2 (modeling two distant countries) 325  537 294  

 

6.1 Experiment 1 
This experiment compares the performance of the new method with 
our original synchronization method [14] and dead reckoning [16] in 
terms of accuracy. It measures the object position discrepancy 
experienced by relevant machines when two users are connected via 
an overseas link with a network latency of roughly 160ms as shown 
in Figure 6. In the experiment, we use first-order and second-order 
polynomials to model the motion of the object when it is being 
grasped to move and thrown out by a user, respectively. 

To simplify the discrepancy measurement without loss of 
generality, we observe in this experiment the motion of a selected 
object, which is spherical in shape. The users have a full control on 
the motion of this object and use the object to intervene a flow 
simulation. However, to simplify this experiment, we have confined 
the motion of all the tiny particles of the flow so that they do not 
affect the motion of the selected object. During the experiment, a 
user (client A) is asked to pick up the selected object and move it 
around arbitrarily with a velocity of 1 m/s. After around 4 seconds, 
the user throws the object out with a velocity of 3m/s under 9.8m2/s 
gravity, it hits the floor and bounces up and down several times. The 
elastic coefficient of the object is 0.7. Such interaction is observed by 
a remote user (client B). We have measured the position discrepancy 
of the object between client A – server (Figure 6(a)), server – client 
B (Figure 6(b)), and client A – client B (Figure 6(c)) during a fixed 
period of time. The position discrepancies exhibited by our original 
method, and the new method, and dead reckoning are shown in each 
of the three diagrams. 

We assume that the positions of the object in the three machines 
are synchronized at 1s. As the user sudden changes the motion of the 
object, we can see that there is an increase in discrepancy in all three 
diagrams of Figure 6. In Figure 6(a), as dead reckoning does not 
perform any correction until when the server receives the update 

Table 2. Client A and server 
collision problems 

Case Client A Server 
(a) × × 
(b) O × 
(c) × O 
(d) O O  

Table 3. Server and Client B 
collision problems 

Case Server Client B 
(e) × × 
(f) × O 
(g) O × 
(h) O O  

Table 1. Possible false positive and false negative collision problems (× indicates no collision and O indicates a collision) 

Client A Server Client B Collision Problem and Its Causes 
× × × No collisions occur. The collision problem does not exist. 

× × O Before the new motion command arrives at client B, the motion of the object at B leads to a collision. False 
positive collision occurs. 

× O × Client A issues a new motion command during motion remediation, which does not lead to a collision. 
However, such command causes a false positive collision when it reaches the server. 

× O O Client A issues a new motion command during motion remediation, which does not lead to a collision, while 
client B inherits the same state from the server. False positive collision occurs. 

O × × 
Client A issues a new motion command during motion remediation, which leads to a collision. However, this 
command does not cause a collision when it reaches the server, while client B inherits the same state from the 
server. False negative collision occurs. 

O × O 

Client A issues a new motion command during motion remediation, which leads to a collision. However, the 
new command does not cause a collision when it reaches the server. False negative collision occurs. 
On the other hand, before the new command arrives at client B, the motion of the object at B leads to a 
collision, which does not correspond to the one at client A. False positive collision occurs. 

O O × Client B does not receive the state update in time. False negative collision occurs. 
O O O Collision is detected correctly at all parties. No collision problems arise. 
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message from client A, the discrepancy rises much more rapidly. In 
addition, it also lasts for longer as dead reckoning does not send out 
an update message to the server until the error between the actual 
and the predicted motions is high enough. With our previous method, 
when the object at client A changes motion, A would send out an 
update message to the server immediately and move the object at a 
reduced speed to minimize its discrepancy with the server. Hence, its 
discrepancy rises much slower than dead reckoning. The method that 
we propose here is even more aggressive. It modifies the motion of 
the object at client A to anticipate for the latency existed between A 
and the server. Hence, its discrepancy is further reduced.  

When the server has received and applied the update to the object, 
the object discrepancy using dead reckoning drops immediately. This 
happens at around 1.2s. For our original and the new methods, we 
receive the update message at around 1.16s, after 160ms of latency. 
The reason for our methods to receive the update message slightly 
earlier than dead reckoning is that we do not need a thresholding 
process. Our original method would also have a sudden drop as we 
update the object position at the server to the actual position where 
the object started to change motion at client A. However, the 
discrepancy would not drop to zero as the object in client A has 
already moved some distance. This discrepancy will be further 
reduced as the object in client A continues to move in a reduced 
speed than that of the server until they are synchronized. With the 
new method, the discrepancy gradually reduces to zero 
(approximately) as we continue to correct the object motion at client 
A until it is synchronized with that in the server. 

In Figure 6(b), the discrepancy of dead reckoning suddenly 
increases as the server suddenly correct the object location when it 
receives the update message from client A. This discrepancy 
continues to increase as the object in client B continues to move in 
its current direction until B receives the update message from the 
server. Then, the discrepancy suddenly drops to zero as B applies the 
update to the object. With our original method, the rise in 
discrepancy is similar to dead reckoning except that here it happens 
earlier at about 1.16s instead of 1.2s and drops earlier at about 1.32s. 
However, the discrepancy would not drop to zero as we move the 
object at client B to the location where the object started to change 
motion at the server. This discrepancy will be further reduced as the 
object in client B speeds up until it catches up with the object at the 
server. With the new method, the discrepancy gradually reduces to 
zero as we continue to correct the object motion at client B. 

At about 4s, client A throws the object out, which hits the floor 
and bounces up and down several times. This leads to a series of 

object collisions. We discuss the performance of our method when 
we apply it to collision detection in the next experiment. 
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Fig. 6. Position discrepancies of the three methods, observed between: 
(a) client A and the server, (b) the server and client B, and (c) client A 
and client B. 

In general, we may observe from Figure 6 that although the dead 
reckoning method is very simple, it produces high discrepancy 
during motion changes. Our original method is successful in 
reducing the discrepancy. However, through motion adjustment as 

Fig. 5. Screen shots of our prototype for collaborative visualization. 
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well as using the server as a reference, the new method not only 
further reduces the discrepancy but also shorten the duration of 
discrepancy, as observed in Figure 6(c).  

6.2 Experiment 2 
In this experiment, we follow similar settings as in Experiment 1 but 
focus more on the accuracy of the new method in handling object 
collisions under different types of network connection as shown in 
Table 4. The experiment is conducted by 4 users, clients A to D. 
Each of the users is connected to the server with a different network 
connection and takes turn to act as the controller, who throws the 
selected object out to initiate collisions, and the other three users 
would be the observers, who monitor the motion of the selected 
object. When throwing the object, the controller simply throws the 
object up to the sky and let it fall down on to the floor. Then, the 
object will bounce up and down a few times before it rests on the 
floor. During the experiment, we record the position discrepancy of 
the object between each of the users and the server. The results are 
shown in Figure 7, with each user taking turn to be the controller. 
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Fig. 7. Position discrepancies, during object collisions, of the four 
clients relative to the server when (a) client A, (b) client B, (c) client C, 
or (d) client D, is acting as the controller. 

Since the controller throws out the selected object at around 0.3s, 
we can see from the four diagrams of Figure 7 that the position 
discrepancy between the controller and the server suddenly increases 
at 0.3s in all four diagrams. In Figure 7(a), as client A (the controller) 
has a rather low network latency with the server, it can quickly 

synchronize with the server and the discrepancy begins to drop until 
around 0.6s when the object reaches its highest point in the sky. 
Other observers will gradually synchronize with the server 
depending on their network latencies with the server. Once the server 
has received the message that the object has been thrown out from 
the controller’s hand, the simulation program running in the server 
will take over the motion of the object. At 0.6s, the simulation 
program determines that the object should begin to fall down and 
accelerates as it falls due to gravity. Due to the error in the measured 
network latency as well as the fluctuation (or jittering) of the latency, 
which is further magnified by the acceleration of the object, the 
discrepancies between the four clients and the server gradually 
increase again until about 1.2s when the object hits the floor and 
rebounds. 

Figures 7(b), 7(c) and 7(d) exhibit similar behavior, except that 
their observers’ discrepancies with the server start at a later time 
after the controller has thrown the object out. This is due to the 
increase in network latency between the controller and the server. 

7 CONCLUSION AND FUTURE WORK 
In this paper, we have proposed a synchronization method to support 
collaborative visualization. It considers how interaction with 
dynamic objects is perceived by application participants under the 
existence of network latency, and remedies the motion trajectory of 
the dynamic objects. It also handles the false positive and false 
negative collision detection problems. The new method is 
particularly well designed for handling content changes due to 
unpredictable user interventions or object collisions. Experimental 
results show that our method could effectively provide a good 
consistency control to support collaborative visualization.  

Despite the merits of our proposed method, it does have some 
limitations. For example, it assumes using connection-oriented 
network protocols and message loss is not considered. We would like 
to address this as our future work. In addition, as haptic interfaces 
are becoming popular and it may widen the application of 
collaborative visualization by providing user with force feedback, we 
would also like to extend our work to handle haptic rendering as well. 
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