1	
2	
3	
4	
5	
6	Hf-Nd isotope and trace element constraints on subduction
7	inputs at island arcs: limitations of Hf anomalies as sediment
8	input indicators
9	
10	Heather K. Handley ^{1,2*} , Simon Turner ² , Colin G. Macpherson ¹ , Ralf Gertisser ³ , Jon P.
11	Davidson ¹
12	¹ Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK.
13	² GEMOC, Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW
14	2109, Australia.
15	³ School of Physical and Geographical Sciences, Earth Sciences and Geography, Keele
16	University, Keele, ST5 5BG, UK.
17	
18	
19	
20	
21	
22	*Corresponding author. GEMOC, Department of Earth and Planetary Sciences, Macquarie
23	University, Sydney, NSW 2109 Australia. Telephone: +61 2 9850 4405. Fax: +61 2 9850
24	8943. Email: heather.handley@mq.edu.au

1 Abstract

2 New Nd-Hf isotope and trace element data for Javanese volcanoes are combined with 3 recently published data to place constraints on subduction inputs at the Sunda arc in 4 Indonesia and assess the value of Hf anomalies (expressed as Hf/Hf* and Sm/Hf ratios) as 5 tracers of such inputs. The Hf anomaly does not correlate with Hf isotope ratio in Javanese 6 lavas, however, Hf/Hf* and Sm/Hf ratios do correlate with SiO₂. Contrary to previous work, 7 we show that Hf anomaly variation may be controlled by fractionation of clinopyroxene 8 and/or amphibole during magmatic differentiation and does not represent the magnitude or 9 type of subduction input in some arcs. Correlation of Sm/Hf with indices of differentiation 10 for other arcs (e.g. Vanuatu, New Britain, Mariana) suggests that differentiation control on 11 Sm/Hf ratios in volcanic arc rocks may be a relatively common phenomenon. This study 12 corroborates the use of Nd-Hf isotope co-variations in arc volcanic rocks to ascertain 13 subduction input characteristics. The trajectories of regional volcano groups (East, Central 14 and West Java) in Nd-Hf isotope space reveal heterogeneity in the subducted sediment input 15 along Java, which reflects present-day spatial variations in sediment compositions on the 16 down-going plate in the Java Trench.

17

18 1. Introduction

Ascertaining inputs to the mantle wedge in subduction zones is crucial if we are to understand crustal recycling, constrain the geochemical evolution of mantle reservoirs and investigate the fate of subducted sediments. Using the appropriate geochemical tools to ascertain such inputs (slab fluid and/or melt) is therefore of the utmost importance. Several workers have shown that Hf isotope ratios provide great potential to document mantle source compositions and subducted sediment inputs at island arcs (e.g. White and Patchett 1984; Pearce et al., 1999; Woodhead et al., 2001). Hf, as a high field strength element (HFSE), is

1 thought to behave conservatively, i.e. to have low solubility in aqueous fluids (cf. Woodhead 2 et al., 2001) and should therefore largely avoid transportation to the mantle wedge during 3 dehydration of subducted sediment or crust. Experimental investigations (Tatsumi et al., 4 1986; Brenan et al., 1995; You et al., 1996; Kessel et al., 2005) and conclusions from other 5 arc studies (McCulloch and Gamble, 1991; Pearce and Peate, 1995; Münker et al., 2004; 6 Turner et al., 2009) suggest that both Nd and Hf are relatively fluid immobile elements (e.g. 7 compared to Sr). Although limited Hf isotope data is available for altered oceanic crust 8 (AOC) to test the immobility of these elements, recent work by Chauvel et al. (2009) has 9 shown that altered basalts from the western Pacific are indistinguishable in their Hf-Nd 10 isotopic ratio compared to unaltered Pacific MORB. This confirms previous suggestions (e.g. 11 White and Patchett, 1984) that hydrothermal alteration has little or no effect on these ratios 12 (cf. Sr isotopes; Staudigel et al., 1995) and, importantly, then affords the opportunity to 13 constrain sedimentary subduction input additions at island arcs.

14 Hf concentration anomalies of erupted lavas have also been promoted as a tracer of 15 subducted sediment input (e.g. Pearce et al., 1999; Marini et al., 2005; Tollstrup and Gill, 16 2005). The Hf anomaly is most commonly defined as the relative depletion/enrichment of Hf compared to Nd and Sm on an extended chondrite-normalised rare earth element (REE) 17 18 diagram (e.g. Pearce et al., 1999). Therefore, the Sm/Hf ratio is suggested by some as the 19 simplest way of quantifying Hf anomalies in arc lavas (e.g. Marini et al., 2005). Using Sm/Hf 20 ratios also enables direct comparison between data sets, avoiding variations produced in Hf 21 anomaly values due to the choice of different normalising factors, e.g. C1 chondrite, depleted 22 mantle MORB (DMM) and primitive mantle (PM). Pearce et al. (1999) calculate Hf 23 anomalies based on Yb-normalised Hf and Nd element ratios to minimise the effects of 24 partial melting and fractional crystallisation. However, the authors indicate that normalisation 25 by Yb is unsuitable if amphibole crystallisation is involved in petrogenesis. As amphibole is

1 thought to be important in the formation of many arc lavas (e.g. Foden and Green, 1992; 2 Davidson et al., 2007) calculation of Hf anomalies using this method may not be appropriate. 3 Negative Hf anomalies are common in arc lavas, and are interpreted as addition of a 4 subduction component with a high Nd/Hf ratio (Pearce et al., 1999). However, the addition of 5 a sediment component with a low Nd/Hf ratio cannot adequately explain the positive Hf 6 anomalies Pearce et al. (1999) observe in the Izu-Bonin-Mariana Protoarc lavas. In contrast, 7 Salters and Hart (1991) suggested that HFSE variations in arc lavas are not solely due to the 8 addition of a slab-derived component and attribute HFSE depletions to a HFSE-depleted sub-9 arc mantle reservoir.

10 Consequently, further research is required to ascertain the use of Hf anomalies as 11 source input indicators. Using new, and recently published (e.g. Handley et al., 2007; 2008a; 12 2010) Nd-Hf isotope and trace element data from Java, this paper investigates the dominant 13 control on Hf anomaly variation and constrains subducted sediment contributions in Javanese 14 arc lavas. Variations in sediment composition deposited on the down-going plate along the 15 Java Trench provide an ideal location to test whether the heterogeneous nature of sediments 16 in the trench can be tracked in the output of the volcanoes. Identifying whether a 17 homogeneous (as proposed by Edwards et al., 1993) or heterogeneous subduction component 18 is involved in petrogenesis will also help to elucidate the nature of the subduction component 19 in the Sunda arc. Our results emphasise that much greater care needs to be taken, when 20 choosing trace element ratios to determine source component characteristics, by prior 21 consideration of the potential influence of magmatic differentiation processes.

22

23 2. Geological Setting and Sample Selection

The island of Java is located in the central section of the Sunda arc, which extends from the Andaman Islands north of Sumatra to Flores in the Banda Sea (Hamilton, 1979, Fig. 1).

Present volcanic activity is related to the northward subduction of the Indo-Australian Plate
 beneath the Eurasian Plate. The tectonic features of the area are described in depth by
 Hamilton (1979). Recent work highlighting the structural complexity of the Java crust is
 detailed in Smyth et al. (2007) and Clements et al. (2009).

5 Across-arc changes in chemistry are recognised at the Sunda arc (Rittman, 1953; 6 Whitford and Nicholls, 1976; Hutchinson, 1976; Edwards, 1990), therefore, the rear-arc 7 volcanoes of Muriah (370 km above the Wadati-Benioff zone (WBZ) in Central Java) and 8 Ringgit Beser (210 km above the WBZ in East Java) are excluded from data comparison. To 9 ease the recognition of general along-arc contrasts in the large Javanese dataset on bivariate 10 diagrams, volcanoes are grouped into East, Central and West Java provenance based on 11 geographical boundaries. The boundary for Central Java passes between Cereme and Slamet 12 volcanoes in the West and Wilis and Kelut volcanoes in the East (Fig. 1b). Krakatau, in the 13 Sunda Strait (west of Java) is included, accordingly, within the West Java group. A summary 14 of the volcanic data used and source references (Table A.1) and a compilation of major and 15 trace element data for samples with new isotope data (Table A.2) are presented in Appendix 16 A. New Nd-Hf isotope data are presented for Gede Volcanic Complex (GVC) and Guntur in 17 West Java and Merapi in Central Java (Table 1). All new major element, trace element and 18 Sr-Nd isotope data are listed for Merbabu (Central Java) and Merapi in Table 2. See Fig. 1b 19 for the location of volcanoes with new data presented.

Despite unequivocal evidence for the incorporation of a subducted sediment component in other arcs, e.g. from studies of the cosmogenic isotope ¹⁰Be (Tera et al., 1986; Morris et al., 1990), it is uncertain whether trench sediments are largely subducted or accreted at the Java Trench. ¹⁰Be data from Sunda arc lavas cannot confirm sediment input to the mantle wedge (Edwards et al., 1993), but also do not preclude it. The presence of an accretionary prism in the fore-arc region of the Sunda arc at Java (Kopp et al., 2001) clearly

shows that off-scraping of some proportion of trench sediments occurs. Nevertheless, even 1 2 where large accretionary prisms are formed at convergent margins, some portion of the 3 sedimentary pile is still thought to be subducted (Westbrook et al., 1988; von Huene and 4 Scholl, 1991; Clift and Vannucchi, 2004). Von Huene and Scholl (1991) assume that 70-80% 5 of the trench sediment is subducted at accretionary margins. Plank and Langmuir (1998) 6 proposed that 300 m of sediment is subducted beneath Java. The sediment type and mass 7 deposited in the trench vary along the arc. Up to 5 km of sedimentary material fills the 8 Sumatra Trench, less than 1 km exists in the western Java Trench and virtually no trench 9 sediments are present in the eastern Java Trench (Plank and Langmuir, 1998). The thicker 10 sedimentary deposits present at the site of subduction in West Java, compared with East Java, 11 are a result of the closer proximity of West Java to turbiditic material sourced from the 12 Himalayan collision zone and deep-sea fans surrounding India (Plank and Langmuir, 1998). 13 Sediments deposited on the Indian Ocean Plate south of the trench are relatively uniform in 14 thickness along the arc (200-400 m) (Hamilton, 1979; Moore et al., 1980; Plank, 1993) and dominantly pelagic (Hamilton, 1979). The large contrast between some element 15 16 concentrations in sediments and the depleted upper mantle (assumed island-arc magma 17 source), suggests that even a small amount of subducted sediment may exert a large control 18 on the composition of arc lavas. Identification of such contrasts in geochemistry between the 19 arc-mantle source and erupted lavas, which are not a result of magmatic differentiation, are 20 key to answering the question of heterogeneity in the subducted component along Java.

The local Indian Ocean sediments used in geochemical comparisons and modelling (from locations displayed in Fig. 1a), have been broadly grouped as detrital sand-rich, with a high abundance of terrigenous detrital phases (e.g. turbidites), or pelagic clay-rich (e.g. pelagic clay). Despite variation in chemistry for some elements, within each group there are strong links between sediment geochemistry and mineralogy. For example, detrital sand-rich sediments are generally higher in Zr and Hf (attributed to the higher abundance of zircon)
 than pelagic clay-rich sediments (e.g. Carpentier et al., 2009).

3

4 3. Analytical techniques

5 For details on the analytical procedures for published data used in this study, refer to the 6 source references in Table A.1. (Appendix A). The new Merapi (M95-028, M96-50 and 7 M96-175) and Merbabu major element, trace element and Sr-Nd isotopic data were collected 8 over the same time period as the Merapi data published in Gertisser and Keller (2003), using 9 the same procedures and data quality constraints given by the authors. Trace element 10 concentrations of Merapi whole-rock powders (M96-102, M98-030 and M98-031) were determined on the PerkinElmer ELAN 6000 quadrupole ICP-MS at Durham University 11 12 following the analytical procedure and instrument operating conditions described by Ottley et 13 al. (2003). The procedure is the same as that used (during the same time period) for all the 14 Javanese volcanic rock trace element data presented by Handley et al. (2007; 2008a; 2010) 15 used as comparison data in this study. During this period, calibration of the ELAN was 16 achieved during each session via the use of in-house standards and international reference 17 materials: W2, BHVO-1, AGV1, BE-N and BIR1 together with procedural blanks (3 per 18 batch). Accuracy of the analytical method is shown by the agreement of the analyses with 19 international standard data (Table B.1. Appendix B). Total procedural blanks were typically 20 low and maximum blank concentrations (n = 70) are displayed in Table B.1 (Appendix B). 21 Multiple analyses of blanks and standards during each session, e.g. at the start, mid-way, and 22 at the end of a run, allowed any drift in the instrument calibration to be detected. Table B.2 23 (Appendix B) shows sample reproducibility, measured by replicate analysis of an internal rock standard, KI 202 from Ijen VC over the period of study. Comparisons between XRF 24 (Sitorus, 1990) and ICP-MS (Handley et al., 2007) measurements for Zr are shown in Fig. 25

1 B.1 (Appendix B) and display good agreement ($R^2 = 0.97$) suggesting that dissolution of 2 accessory minerals, such as zircon, was successful during sample preparation for ICP-MS 3 analysis.

4 Preparation of whole rock powders for Nd and Hf isotope analysis was undertaken in 5 the Arthur Holmes Isotope Geology Laboratory (AHIGL) at Durham University. The sample 6 dissolution procedure and chemical separation of Hf and Nd from rock samples follows that 7 presented by Dowall et al. (2003). Nd and Hf isotope ratios were determined on the AHIGL 8 ThermoElectron Neptune Multi-collector Plasma Mass Spectrometer (MC-ICP-MS). Details 9 of instrument operating conditions are presented in Nowell et al. (2003) and Dowall et al. (2003). Instrumental mass bias was corrected for using a ¹⁴⁶Nd/¹⁴⁵Nd ratio of 2.079143 10 (equivalent to the more commonly used ¹⁴⁶Nd/¹⁴⁴Nd ratio of 0.7219) and ¹⁷⁹Hf/¹⁷⁷Hf ratio of 11 0.7325 using an exponential law. Data quality was monitored over several analytical sessions 12 by regular analysis of standard reference materials during each run. The reproducibility of 13 ¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf ratios for the respective standard solutions in each of the 14 15 individual analytical sessions is better than 19 and 28 ppm (2σ), respectively. The average 16 reproducibility and accuracy of Nd and Hf isotope ratios of standard solutions over the period 17 of study are shown in Table B.3 (Appendix B) For consistency in dataset comparison Nd-Hf 18 isotope data are presented in plots relative to J&M and JMC 475 standard values of 0.511110 19 (Royse et al., 1998) and 0.282160 (Nowell et al., 1998), respectively. Blank samples 20 processed (at least 2 per sample batch) were analysed by ICP-MS on the PerkinElmer ELAN 21 6000 quadrupole at Durham University. Total analytical blanks were below 219 pg for Nd 22 and 73 pg for Hf. These values are insignificant considering the quantity of Nd and Hf 23 processed from the volcanic rocks ($\sim 5 \mu g$ and $\sim 0.9 \mu g$, respectively). Inter-laboratory 24 comparison of Nd isotope analyses for Guntur, comparing the analyses from this study and 25 those by Edwards et al. (1993), are presented in Table B.4 (Appendix B).

2 4. Results

3 4.1. Hf concentration anomaly

4 New major and trace element concentrations of Merapi and Merbabu volcanoes are presented 5 in Table 2. Hf/Hf* is calculated as the relative depletion/enrichment of Hf compared to Nd 6 and Sm on an extended chondrite-normalised rare earth element (REE) plot (Fig. 2). The 7 bracketing elements of Nd and Sm are chosen as they possess peridotite/melt coefficients either side of Hf (e.g. Salters, 1996; Pearce et al., 1999). Fig. 2a shows Hf/Hf* versus 8 ¹⁷⁶Hf/¹⁷⁷Hf isotope ratio for Javanese volcanic rocks. The arc lavas are displaced from Indian 9 10 Mid-Ocean Ridge Basalt (IMORB), thought to represent the mantle wedge beneath the Sunda arc (e.g. Handley et al., 2007; Gertisser et al., submitted), to lower ¹⁷⁶Hf/¹⁷⁷Hf ratios. Hf/Hf* 11 of the lavas (0.53-1.38) extend to both higher and lower values than IMORB (Hf/Hf* = 0.8-12 1.2). In contrast to the apparent correlation in Mariana volcanic rocks (Tollstrup and Gill, 13 14 2005) no correlation is observed between Hf anomaly or Sm/Hf (inset diagram) and Hf isotopes; the Javanese lavas exhibit a wide range in Hf/Hf* for a relatively small variation in 15 ¹⁷⁶Hf/¹⁷⁷Hf isotopes, particularly for the East Java group (Fig. 2a). Due to the extremely 16 17 limited Hf isotope data (with accompanying Nd isotope data) available for local Indian Ocean and Java Trench sediments (n = 5), the range of Hf/Hf* of the sediments are indicated along 18 19 the y-axis. The pelagic, clay-rich sediments display negative Hf/Hf* (<1), while the detrital, sand-rich sediments possess values ≥ 1 . Sediment samples for which Hf isotope data are 20 available show that the sand-dominated, turbidite sediments extend to lower ¹⁷⁶Hf/¹⁷⁷Hf 21 22 isotope ratios than the clay-rich pelagic sediment (and an associated Mn nodule). A noteable 23 observation, previously unmentioned and/or unobserved for other data sets, is that Hf/Hf* in 24 Javanese lavas correlates positively with SiO₂ (Fig. 2b). This feature is explored in detail in 25 section 5.1.

2 4.2. Hf and Nd isotope variation

3 New whole-rock Nd-Hf isotope data are given in Table 1 and displayed in Fig. 3. The 4 Javanese volcanic rocks are displaced from IMORB and Pacific- and Atlantic-MORB (other 5 MORB) fields towards lower ε Nd and ε Hf, and lie on mixing lines between average IMORB 6 and local sediments from the down-going slab. West Java lavas exhibit a strong positive 7 correlation in Nd-Hf isotope space. Central Java lavas also display a positive correlation but 8 the data are located at higher EHf values for similar ENd values compared to West Java lavas. 9 East Java lavas exhibit somewhat constant ε Hf and a restricted range in ε Nd compared to the 10 West Java lavas (Fig. 3b).

11

12 5. Discussion

13 5.1 Hf anomaly variation: 'source' or 'process' control

14 The lack of correlation between Hf anomaly (Hf/Hf* and Sm/Hf) and Hf isotope ratio, and 15 the correlation of Hf anomaly with SiO₂ in Javanese volcanic rocks (Figs. 2 and 4) strongly 16 suggest that magmatic differentiation at crustal depths may control Hf/Hf* variation. This 17 hypothesis conflicts with recently published discussions, which consider subducted sediment 18 as the dominant control on Hf/Hf* variation in arc rocks (e.g. Marini et al., 2005; Tollstrup 19 and Gill, 2005). The positive correlation of the Java data in Fig. 2b, traverses the line of 20 $Hf/Hf^* = 1$, which suggests the shift between negative to positive Hf anomaly values is 21 related to a single process, and one that commonly occurs in magma genesis at all Javanese 22 volcanoes. Several authors suggest that fractionation between Sm and Hf is negligible, for 23 example during partial melting of fertile mantle and at the early stages of subsequent 24 fractional crystallisation (e.g. Pearce et al., 1999; Chauvel and Blichert-Toft, 2001), such that 25 Sm/Hf may be a good proxy for source composition (e.g. Marini et al., 2005). However, a

1 literature survey on experimental, theoretical and calculated phenocryst-matrix distribution 2 coefficients (D) in basaltic-andesitic compositions reveals that for several major rock-forming 3 minerals, such as plagioclase, clinopyroxene and amphibole, determined distribution 4 coefficient Sm/Hf ratios ($D_{Sm/Hf}$) are > 1 (e.g. Fig. 4a). Thus, Sm is more compatible than Hf 5 in these minerals and therefore, crystal fractionation of such minerals should lead to 6 decreasing Sm/Hf ratio in the melt with progressive crystal fractionation (and simultaneous 7 modification of Hf anomaly values). Thirwall et al. (1994) suggest a similar control of 8 amphibole and/or clinopyroxene fractionation on Zr/Sm ratios in some Lesser Antilles 9 volcanic rocks. The absolute D values for Sm (and Hf) are low for plagioclase in basalt to 10 and esite compositions, e.g $D_{\rm Sm}$ 0.044-0.11 (Luhr and Carmichael, 1980; Dostal et al., 1983; 11 Fujimaki et al., 1984; Bacon and Druitt, 1988; McKenzie and O'Nions, 1991; Aignertorres et 12 al., 2007) compared to $D_{\rm Sm}$ values of 0.8-1.6 for clinopyroxene (Larson, 1979; Luhr and Carmichael, 1980; Dostal et al., 1983; Fujimaki et al., 1984; Bacon and Druitt, 1988; 13 McKenzie and O'Nions, 1991; Hart and Dunn, 1993; Johnson, 1998) and 0.66-2.221 for 14 15 amphibole (Luhr and Carmichael, 1980; Dostal et al., 1983; Fujimaki et al., 1984; Bacon and 16 Druitt, 1988; Brenan et al., 1995). Thus, plagioclase fractionation is unlikely to exert as much 17 influence as clinopyroxene and/or amphibole on the Sm/Hf ratio of the remaining melt 18 composition during differentiation. Fig. 4a also shows that $D_{\text{Sm/Hf}}$ values are dependent on 19 rock composition, which is particularly evident for clinopyroxene, where $D_{Sm/Hf}$ values 20 progressively increase with increasing silica content.

Fig. 4b shows the strong negative correlation observed between Sm/Hf and SiO₂ for individual volcanic rock suites from Java and the inset diagram also shows the correlation of Sm/Hf with CaO). To investigate whether fractional crystallisation of common mineral phases can explain the Sm/Hf whole rock ratios, a 3-step fractional crystallisation model has been developed using a typical Javanese volcanic rock mineral assemblage, and incorporating

1 the increase in $D_{\text{Sm/Hf}}$ with increasing SiO₂. Step 1: removal of plagioclase, clinopyroxene, 2 magnetite and olivine from KI 63 basalt. Steps 2 and 3: removal of plagioclase, 3 clinopyroxene, magnetite and orthopyroxene from basaltic andesite and andesite, respectively. Full details of modelling parameters (including the *D* values used for each step) 4 are given in the caption to Fig. 4c. For ease of modelling, Sm/Hf ratio, rather than Hf/Hf* is 5 6 used to represent the Hf anomaly of the lavas. The model reveals the significant control 7 crystal fractionation of a typical mineral assemblage can exert on the Sm/Hf ratios of the 8 volcanic rocks and replicates the general array of the Java data. Variations in model input 9 parameters such as mineral mode and composition, parent whole-rock composition and 10 distribution coefficients also enable more acceptable and less acceptable models to be 11 produced. It is noted that despite the low absolute D values for Sm (and Hf) in plagioclase in 12 basalt to andesite compositions, its dominance of the mineral mode in Java volcanic rocks (e.g. Gertisser and Keller, 2003; Handley et al., 2007) enables plagioclase to exert a 13 14 significant degree of control on model trends (not shown) depending on the particular modal 15 content chosen. The grey shaded area in Fig. 4c shows the relative impact of the choice of 16 partition coefficients for clinopyroxene in Step 3 using the observed range of D_{cox} values for Sm and Hf given in Fig. 4a for andesitic compositions, which encompasses a range in $D_{\text{Sm/Hf}}$ 17 18 of 2-4. The shaded area shows the wide variation of solutions possible using reasonable sets 19 of distribution coefficients. Fractional crystallisation of a mineral assemblage including 20 clinopyroxene and/or amphibole during magmatic differentiation at Javanese volcanoes is 21 therefore proposed to exert a major control on the Hf anomaly variation of the lavas. Furthermore, the vertical data array observed in Fig. 2a (wide range of Hf/Hf* exhibited by 22 the lavas over a relatively small range in ¹⁷⁶Hf/¹⁷⁷Hf) and lack of correlation between Sm/Hf 23 and ¹⁷⁶Hf/¹⁷⁷Hf (Fig. 2a inset) illustrates that the data do not lie on a simple mixing 24 trajectories with subducted sediment (cf. ENd versus EHf; Fig. 3). The magnitude of the 25

negative Hf anomaly observed in the chemically least evolved rocks (highest MgO, lowest SiO₂ content) may present the best representation of sediment input. However, as most arc rocks are relatively fractionated and have low MgO contents (particularly on Java), even the Sm/Hf ratio of basalt is likely to have undergone some degree of modification due to magmatic differentiation. This is illustrated by Thirlwall et al. (1994) who show that fractional crystallisation (and AFC) have strong effects on HFSE/REE (Zr/Sm) ratios, even in volcanic rocks samples with 6-10 wt% MgO.

8 Interestingly, a negative correlation between Sm/Hf ratio and the silica content of 9 lavas is also observed in other volcanic arcs (e.g. Vanuatu, New Britain, Mariana, Fig. 4d), 10 suggesting that differentiation control on the Sm/Hf ratio of volcanic rocks may be a 11 relatively common phenomenon. This observation may go some way to explain the observed 12 positive Hf anomalies in more fractionated rock compositions. It may also provide an 13 explanation for the positive Hf anomalies observed in the relatively evolved (up to 67 wt% 14 SiO₂) Protoarc lavas from the Mariana arc investigated by Pearce et al. (1999), as a moderate 15 negative correlation does in fact exist between Sm/Hf and SiO₂ for the Protoarc lavas (Fig. 16 4d).

17

18 5.2. Nd-Hf isotope constraints on source inputs

19 Contamination of the mantle source by a fluid created during dehydration of the AOC is 20 largely undetectable on plots of ε Nd- ε Hf (e.g. Handley et al., 2007). Therefore, displacement 21 of the Java data from the MORB field is likely to be the result of a 'crustal' input during 22 magma genesis (subducted sediment +/- assimilated arc crust). Crustal assimilation has been 23 implicated in the western Sunda arc (Gasparon et al., 1994; Gasparon and Varne, 1998) and 24 on Java (Chadwick et al., 2007; Handley et al., 2008a). Therefore, prior to discussing 25 subducted sediment inputs it is important to assess the potential of crustal assimilation to

1 modify the isotope ratios. Fig. 5 shows Hf isotope ratio versus SiO₂ (as an index of 2 differentiation) for West, Central and East Java volcanic rocks. The new Hf isotope data are displayed as solid symbols in Figs. 5b and c. Despite the wide variation in ¹⁷⁶Hf/¹⁷⁷Hf isotope 3 ratios exhibited by West Java volcanoes (Fig. 5a), individual volcanic suites from that region 4 5 display relatively horizontal trends (Fig. 5b) that are inconsistent with significant crustal 6 contamination of isotopically distinct material (inset Fig. 5d, arrows labelled AFC). Less individual volcanic suite data are available for Central and East Java, but for the data 7 8 available, the absence of correlations between Hf isotope ratios and SiO₂ also preclude 9 significant isotopic modification via crustal assimilation. The Ijen Volcanic Complex in East 10 Java (Fig. 5d) produces lavas with remarkably homogenous Hf isotope ratios over a relatively 11 wide range in SiO₂. This method of assessment naturally assumes that the crustal assimilation 12 is coupled with fractional crystallisation (i.e. AFC, e.g. DePaolo, 1981), and that the 13 fractional crystallisation is responsible for the observed silica range. However, modelling of δ^{18} O mineral data and 87 Sr/ 86 Sr whole-rock isotope data also support 'source' contamination 14 rather than a 'crustal' contamination mechanism for the same volcanic rock samples from 15 16 Gede Volcanic Complex, Salak volcano and Ijen Volcanic Complex (Handley et al., 2010).

17 Incorporation of a subducted component in the mantle source dominated either by clay- or sand-rich local sediment will produce very different mixing trends in Nd-Hf isotope 18 19 space due to the contrasting Nd/Hf ratios of the sediments (e.g. Patchett et al., 1984; 20 Carpentier et al., 2009). Pelagic, clay-rich Indian Ocean sediments have variable and relatively high Nd/Hf (6-42, n = 9, Plank and Langmuir, 1998; Ben Othman et al., 1989; 21 22 Gasparon and Varne, 1998) resulting in convex-up mixing trends towards higher EHf relative 23 to ENd, whereas continentally derived detrital/sand-rich local sediments tend to have relatively low Nd/Hf (4-7, n = 6, Ben Othman et al., 1989; Vervoort et al., 1999; Gasparon 24 and Varne, 1998) producing relatively straight mantle source-sediment mixing curves, 25

1 associated with lower EHf relative to ENd (Fig. 3a inset). Therefore, we can examine whether 2 the different isotopic arrays exhibited by separate geographical groups on Java reflect 3 variations in the composition of subducting sediment. Simple bulk-mixing calculations 4 between average IMORB mantle source and pelagic clay (curve B) and sand-rich turbidite 5 (curves C and D) sediments are presented in Figs. 3a and b. Due to the lack of local sediment 6 Nd-Hf isotope data (n = 5) a mixing curve using Mn nodule (Curve A) was also calculated to 7 further exemplify mixing with high Nd/Hf and 'pelagic' Nd-Hf isotope composition material. 8 We acknowledge that Mn nodules are unlikely to represent the entire subducting sedimentary 9 section at the Java Trench. However, recent work by Chauvel et al. (2009) shows that almost 10 all pelagic sediment types (chert, clay and carbonate lithologies) at drill Site 1149 in the 11 western Pacific plot within the Fe-Mn crusts and nodule field in ɛNd-ɛHf isotope space, 12 supporting the use of a Mn nodule to represent that of pelagic sediment. The end member 13 compositions used in modelling are displayed in Table 3. The mixing curves suggest that 14 displacement of Javanese arc lavas from IMORB ENd and EHf ratios and domain trajectories 15 can be explained by addition of a small amount (generally < 5 %) of turbidite-dominated, 16 sand-rich, low Nd/Hf sedimentary material to the mantle source of West Java lavas, and addition of a similar-sized, sedimentary component dominated by pelagic clay-rich, higher 17 18 Nd/Hf material to the mantle source of Central Java lavas. The limited spread of the East Java 19 field is largely due to the lack of Nd-Hf isotope data from other volcanoes except Ijen 20 Volcanic Complex (one sample from both Semeru and Lamongan, Fig. 3b). The Ijen data lie 21 on the detrital-rich sediment-mantle source mixing lines. However, an alternative solution 22 was proposed by Handley et al. (2007), who show that Sr-Nd-Hf isotope data trends are 23 consistent with mixing of high Nd/Hf sediment with a mantle-wedge source composition of 24 slightly lower than average IMORB Hf isotope ratio (Fig. 3b inset). This is further supported 25 by new Nd-Hf isotope data for Tambora volcano (Gertisser et al., submitted), located to the east of Java (Fig. 1a), where the subducting sediment is also proposed to be clay-dominated (e.g. DSDP site 261). The Tambora data display a relatively horizontal array (cf. West Java); showing significant range in ɛNd over a limited range in ɛHf (Fig. 3b inset), consistent with mantle source contamination by high Nd/Hf sediment. This interpretation of Javanese volcanic rock data is consistent with the greater amount of continentally-derived, detrital-rich turbidite sediment observed in the trench opposite West Java compared to Central and East Java, due to the closer proximity of West Java to the Himalayan/Ganges turbidite source.

8 We recognise that subducted sediment is more likely to be added to the mantle wedge 9 as a partial melt rather than as a bulk component (as modelled here). However, due to the 10 many assumptions required in order to calculate a partial melt composition (such as sediment 11 composition and residual mineralogy, degree of melting, depth of melting, thermal conditions 12 of the melting region and appropriate distribution coefficients), we use bulk-mixing models 13 to illustrate the broad effects of mantle-sediment mixing. Partial melting of sediment with 14 residual phases such as zircon is likely to increase the Nd/Hf ratio of the sediment 15 component. However, this increase would be offset by the presence of residual monazite 16 which is suggested to have $D_{\rm Hf}$ 4-5 orders of magnitude lower than $D_{\rm Sm}$ and thereby lowering 17 the Nd/Hf ratio of the sediment-melt (Tollstrup and Gill, 2005 and references therein). Ultimately, partial melting of sediment is likely to reduce the percentage of subducted 18 19 sediment suggested by bulk-mixing models.

20

21 5.3. Implications for magma genesis in the Sunda arc

Gasparon and Varne (1998) argue that crustal assimilation, opposed to subducted slab input, is the dominant process responsible for the isotopic and geochemical variability and "enrichment" along the Sunda arc. Despite field evidence of crustal anatectic melts in Sumatra and West Java (Hamilton, 1979; Gasparon and Varne, 1995) and more recently

1 implicated crustal contamination at Salak (Handley et al., 2008a) and Merapi (Chadwick et 2 al., 2007), findings from this study suggest the dominant geochemical control on Nd-Hf 3 isotope and some trace element characteristics occurs through subducted slab input to the 4 mantle wedge followed by subsequent evolution through magmatic differentiation, largely 5 excluding crustal contamination. Addition of a subducted slab component to the Sunda arc 6 mantle wedge is advocated by several other authors (e.g. Edwards, 1990; Turner and Foden, 7 2001; Gertisser and Keller, 2003; Handley et al., 2007, 2010), although Edwards et al. (1993) 8 propose a homogeneous slab contribution along the Sunda arc. We attribute the different 9 trajectories of Javanese volcanic groups in Nd-Hf isotope space to the incorporation of a 10 heterogeneous subduction component, which largely reflects spatial variations observed in 11 present day sediment types deposited on the down-going plate along the Java Trench (Fig. 3). 12 A positive correlation in Nd-Hf isotope space for West Java volcanic rocks is consistent with 13 the incorporation of a dominantly continental-derived, detrital-rich sedimentary component, 14 whereas, the arrays of volcanic data in Nd-Hf isotope space for Central and East Java 15 volcanoes are consistent with a more pelagic, clay-rich subducted sedimentary component 16 and possibly stronger slab-fluid imprint, as concluded for Ijen Volcanic Complex (Handley et 17 al., 2007). The along arc variation in sediment type proposed in magma genesis is consistent 18 with the decreasing thickness of turbidite deposits in the trench from Sumatra to East Java.

19 The tholeiitic basalts from Guntur display some of the least sediment-contaminated 20 Nd-Hf isotope ratios, despite being located in West Java where the thickest sediment pile is 21 present in the adjacent trench (cf. Central/East Java). Guntur volcano sits within a fault-22 bound tectonic triangle (e.g. Soeria-Atmadja et al., 1994) where the crust may be thinner and 23 decompression melting (cf. slab-fluxing) may be important in magma genesis (Handley, 24 2006). Mafic glass inclusion data from neighbouring Galunggung volcano show that pressure-release melting of the mantle wedge contributes to magma production within this
 region (Sisson and Bronto, 1998).

3 The required along-arc heterogeneity in the subduction component along the Sunda 4 arc, restricts the applicability of modelling slab inputs using a 'bulk composition' sediment 5 approach. The bulk Java subducted sediment composition calculated by Plank and Langmuir 6 (1998) does not produce an acceptable mixing array with the mantle wedge to fit the data 7 array of from either East or West Java volcanic centres (Handley et al., 2007). Combining our 8 results with those of Vroon (1992) and Vroon et al. (1995) for sediments and volcanic rocks 9 of the Banda arc (East Indonesia), heterogeneity in the recycled subduction component can 10 now be traced along most of the Indonesian arc. In the west Sunda arc we see the importance 11 of detrital-rich, terrigenous subducted sediments (of Himalayan/Ganges source), which 12 moving eastwards, changes to dominantly pelagic sediment in the central and eastern Sunda 13 arc region e.g. East Java and Sumbawa (Tambora; Gertisser et al., submitted). Further east at 14 the Banda arc, we see a return to the involvement of detrital-rich terrigenous sediment and a 15 larger degree of mantle contamination moving from northeast to southwest, corresponding to 16 increasing fluxes of continental material into the trench towards the sector where the collision 17 between Australia and the Banda arc began.

18

19 6. Conclusions

This study highlights and corroborates the importance of Hf and Nd isotopes as petrogenetic tools for identifying and characterising sediment subduction in arc volcanic rocks. However, contrary to previous interpretations, Hf anomalies may not represent subduction input in some arcs, particularly the Sunda arc. We show it is possible to create significant variation in Hf anomaly through fractional crystallisation involving clinopyroxene and/or amphibole as the major mafic mineral phases. Subsequently, it may not be appropriate to use Sm/Hf in

1 volcanic rocks as a proxy for magmatic source composition without prior consideration of 2 differentiation control. Source studies of island arcs often neglect to assess the impact of 3 magmatic differentiation effects prior to source input evaluation, however, we re-emphasise 4 in this paper that it must be a prerequisite. This study also presents a potential implication for 5 melting in the presence of a clinopyroxene-rich residue, which may also affect calculated Hf 6 anomalies in arc lavas. A preliminary investigation of Sm/Hf variation with SiO₂ for other 7 arcs suggests that Sm/Hf fractionation via differentiation processes is a ubiquitous feature of 8 arc magmas.

9 New Nd-Hf isotopic and trace element data of Sunda arc volcanoes reveal significant 10 heterogeneity in the subduction component along the Sunda arc. This is attributed to 11 incorporation of subducted sediment, the composition of which is controlled by observed 12 spatial variations in the sediments deposited on the down-going Indian Ocean plate. Due to 13 significant heterogeneity in the subduction input along Java, using an average 'bulk-14 sediment' to represent the subduction component for the whole arc is, therefore, unsuitable.

15

16 Acknowledgements

17 We would like to thank Akhmad Zaennudin and his colleagues at the Volcanic Survey of 18 Indonesia in Bandung for invaluable logistical help and guidance in the field. Geoff Nowell 19 and Chris Ottley at Durham University are thanked for technical support and analytical 20 assistance. Simon Suggate and Helen Smyth compiled the Digital Elevation Model map of 21 Java from SRTM data. Robert Hall provided samples for Guntur. The manuscript 22 significantly benefited from the editorial comments of Richard Carlson and reviews by 23 Catherine Chauvel and Matthew Thirlwall. Sample collection and analysis were supported by 24 a NERC studentship (NER/S/A/2001/06127) and the SEARG at Royal Holloway University 25 of London. S.T. acknowledges the support of Australian Research Council Federation and Professorial Fellowships. This is contribution 703 from the Australian Research Council
 National Key Centre for the Geochemical Evolution and Metallogeny of Continents
 (http://www.gemoc.mq.edu.au).

4

5 Figure Captions

6 Fig. 1. a) Schematic illustration of the tectonic features of the Sunda arc. Open squares 7 indicate the location of Indian Ocean sediment drill and dredge sites (taken from Gasparon 8 and Varne (1998) and Vroon (1992)). The suggested southeast limit of terrigenous turbidite 9 deposits in the trench is also shown (Hamilton, 1979). b) Map of Java showing volcano location. The volcanoes for which new geochemical and isotopic data are presented in this 10 11 study (Gede Volcanic Complex, Guntur, Merapi and Merbabu) are shown in bold. Krakatau 12 is not shown (immediately west of West Java). The two white lines in north-south orientation indicate the geographical boundaries of West, Central and East Java. The Digital Elevation 13 14 Model of Java is complied from SRTM data (Shuttle Radar Topography Mission, NASA 15 data).

16

Fig. 2. a) Hf concentration anomaly (Hf/Hf*) variation with ¹⁷⁶Hf/¹⁷⁷Hf isotope ratio for 17 Javanese volcanic rocks. The average ${}^{176}\text{Hf}/{}^{177}\text{Hf} 2\sigma$ error (± 0.000010) is smaller than the 18 19 symbol size. Hf/Hf* is calculated using the equation: $[(Hf/Hf_N)/[(Sm/Sm_N)+(Nd/Nd_N)/2]]$. 20 Normalising values for C1 chondrite are taken from McDonough and Sun, 1995. See Table A.1 (Appendix A) for Java volcanic data sources. Clay-rich sediment data: White et al. 21 22 (1986); Ben Othman et al. (1989); Plank and Langmuir (1998); Gasparon and Varne (1998) 23 Detrital, sand-rich sediment data: the same references as those for clay-rich sediment plus 24 Vervoort et al. (1999). IMORB data: Salters (1996); Chauvel and Blichert-Toft, (2001). The inset diagram shows Sm/Hf versus ¹⁷⁶Hf/¹⁷⁷Hf isotope ratio for Javanese volcanic rocks. b) 25

Hf/Hf* versus SiO₂ for Java volcanic rocks. Inset diagram shows the relative enrichment
 (Hf/Hf* >1) or depletion (Hf/Hf* <1) of Hf relative to Nd and Sm on an extended chondrite-
 normalised REE diagram. Java data sources are given in Table A.1 (Appendix A).

4

5 Fig. 3. a) EHf-ENd diagram showing displacement of Javanese volcanic rocks from the 6 IMORB and other MORB (Pacific and Atlantic) fields. Bulk-mixing models between 7 IMORB source and local high Nd/Hf (15-33) sediment (curves A & B), and local low Nd/Hf 8 (6-7) sediment (curves, C and D) are displayed. A = Mn nodule (V34-62, White et al., 1986; 9 Ben Othman et al., 1989), B = pelagic clay (V34-45, White et al., 1986; Ben Othman et al.,1989) C and D = deep-sea turbidite sediments V28-357-M (CA30-M) and V28-357-M 10 11 (CA30-S), respectively (Vervoort et al., 1999). End member compositions are given in Table 3. Sediment sample locations are shown in Fig. 1a. Java data fields are distinguished by 12 13 geographical region and data sources are given in Table A.1 (Appendix A). Inset: A 14 schematic illustration of the mixing curves produced from mixing 'sand-rich' low Nd/Hf 15 sediments and 'clay-rich' high Nd/Hf sediments with a MORB-like mantle source. b) A close 16 up view of the ε Hf- ε Nd diagram shown in *a* with the individual fields of Javanese volcanic 17 suites displayed. Mantle-sediment mixing as in a. Inset: EHf-ENd diagram illustrating mixing curves produced between three IMORB source compositions with lower than average ¹⁷⁶ 18 Hf/177Hf isotope ratios (MD37-05-02, Chauvel and Blichert-Toft, 2001; 54R-1, 115-121, 19 20 Nowell et al., 1998; MD34 D2, Chauvel and Blichert-Toft, 2001) and sediment A, modified 21 from Handley et al., 2007. The Tambora data are from Gertisser et al. (submitted).

22

Fig. 4. a) Distribution coefficients (*D*) of Sm and Hf for basaltic-andesitic rock compositions taken from the literature. Note that in all cases $D_{\text{Sm/Hf}} > 1$. Clinopyroxene: Larsen (1979); Luhr and Carmichael (1980); Dostal et al. (1983); Fujimaki et al. (1984); Bacon and Druitt

1 (1988); McKenzie and O'Nions (1991); Hart and Dunn (1993); Johnson (1998). Amphibole: 2 Luhr and Carmichael (1980); Dostal et al. (1983); Fujimaki et al. (1984); Bacon and Druitt 3 (1988); Brenan et al. (1995). b.a. = basaltic andesite. b) Sm/Hf versus SiO₂ showing a 4 coherent negative correlation for Javanese volcanic rocks and for all individual volcanic 5 suites. Volcanoes with 3 or less data points (Krakatau, Tangkubahn Parahu, Papandayan, 6 Sumbing, Semeru and Lamongan) are plotted but have not been delimited. Inset diagram: 7 Sm/Hf versus SiO₂ showing the Sm/Hf ratios of local sediment (for data sources see Fig. 1a 8 caption). c) Sm/Hf versus SiO₂ of Javanese volcanic rocks showing model fractionation 9 curves for the removal of a typical Java mineral assemblage of plagioclase, clinopyroxene, 10 magnetite plus olivine or orthopyroxene from Ijen Volcanic Complex basalt (KI 63). Step 1 11 $(D_{\text{bulk(basalt)}})$: removal of plag (0.72), cpx (0.18), ol (0.05) and mag (0.05) using D values: 12 plag: Sm, 0.11; Hf, 0.01 (McKenzie and O'Nions, 1991); cpx: Sm, 0.239; Hf, 0.2 (Johnson, 13 1998); ol: Sm, 0.0049; Hf, 0.0038 (Fujimaki et al., 1984); mag: Sm, 0.29; Hf, 0.30 (Luhr and 14 Carmichael, 1980). Steps 2 (D_{bulk(b.a.)}) and 3 (D_{bulk(andesite)}): removal of plag (0.7), cpx (0.17), 15 opx (0.09) and mag (0.04) using D values: plag: Sm, 0.1024; Hf, 0.0151 (Fujimaki et al., 1984); opx: Sm, 0.0278; Hf, 0.0508 (Fujimaki et al., 1984); mag: Sm, 0.29; Hf, 0.30 (Luhr 16 17 and Carmichael, 1980); cpx step 2: Sm, 0.8; Hf, 0.3 (Dostal et al., 1983); cpx step 3: Sm, 1.3; 18 Hf, 0.34 (Luhr and Carmichael, 1980). Grey shaded field exemplifies the possible range in 19 model solutions produced due to variations in D_{cpx} Sm and Hf chosen for Step 3. $D_{Sm/Hf (cpx)} =$ 2 uses D_{cpx} Sm, 0.3774; Hf, 0.1730 (Fujimaki et al., 1984); D_{Sm/Hf (cpx)} = 4 uses D_{cpx} Sm, 1.6; 20 21 Hf, 0.46 (Bacon and Druitt, 1998). Whole-rock and mineral compositions are taken from 22 Handley et al. (2007). Tick marks on fractionation curves are given for 10% increments. The 23 Sm/Hf ratios of IMORB use data from Price et al. (1986), Salters (1996) and Chauvel and 24 Blichert-Toft (2001). Inset: Sm/Hf versus CaO for Javanese volcanic rocks. Data sources are 25 shown in Table A.1 (Appendix A). d) Sm/Hf variation with SiO₂ for other volcanic arc rocks.

Vanuatu: Peate et al. (1997); Handley et al. (2008b). Mariana: Woodhead et al. (2001); Elliott
 et al. (1997); Pearce et al. (1999). Lesser Antilles: Woodhead et al., 2001; Turner et al.
 (1996); Davidson et al. (1993); Heath et al. (1998). New Britain: Woodhead et al. (2001).
 Depleted MORB mantle (DMM) from Workman and Hart (2005).

5

Fig. 5. a) ¹⁷⁶Hf/¹⁷⁷Hf variation with SiO₂ for Javanese volcanic rocks separated by geographic 6 region. b), c) and d) show ¹⁷⁶Hf/¹⁷⁷Hf variation with SiO₂ for individual volcanic suites of 7 8 West, Central and East Java, respectively. New data is displayed as solid symbols, previously 9 published data is shown by open symbols. Arrows labelled SH, AFC and FC in *d* indicate the 10 hypothesised data trends related to: mantle source heterogeneity (SH), combined assimilation 11 and fractional crystallisation (AFC) and fractional crystallisation (FC). AFC trends can be 12 positive or negative depending on the Hf isotope ratio of the assimilated material. The field 13 for Gede Volcanic complex is divided in two due to the large difference in Hf isotopic 14 composition of the Older Quaternary Volcanic group (2 samples at significantly higher ¹⁷⁶Hf/¹⁷⁷Hf), situated to the east of the main Gede Complex (Handley et al., 2010). The low 15 ¹⁷⁶Hf/¹⁷⁷Hf Merapi data point is from Woodhead et al. (2001). Data sources are shown in 16 17 Table A.1 (Appendix A).

18

19 References

Aignertorres, M., Blundy, J., Ulmer, P. and Pettke, T., 2007. Laser Ablation ICPMS study of
 trace element partitioning between plagioclase and basaltic melts: an experimental
 approach. Contrib. Mineral. Petrol. 153, 647-667.

Bacon, C.R., Druitt, T.H., 1988. Compositional Evolution of the Zoned Calcalkaline Magma
Chamber of Mount-Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol. 98, 22425 256.

1	Ben Othman, D.B., White, W.M., Patchett, J., 1989. The geochemistry of marine sediments,
2	island arc magma genesis, and crust-mantle recycling. Earth Planet. Sci. Lett. 94, 1-21.
3	Brenan, J., Shaw, H.F., Phinney, D.L., Ryerson, J.F., 1995. Mineral-aqueous fluid
4	partitioning of trace elements at 900°C and 2.0 Gpa: Constraints on the trace element
5	geochemistry of mantle and deep crustal fluids. Geochim. Cosmochim. Acta 59, 3331-
6	3350.
7	Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition
8	of CHUR: Constraints from unequilibrated chondrites and implications for the bulk
9	composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48-57.
10	Carn, S.A., Pyle, D.M., 2001. Petrology and geochemistry of the Lamongan Volcanic Field,
11	East Java, Indonesia: Primitive Sunda Arc magmas in an extensional tectonic setting? J.
12	Petrol. 42, 1643-1683.
13	Carpentier, M., Chauvel, C., Maury, R.C., Mattielli, N., 2009. The "zircon effect" as recorded
14	by the chemical and Hf isotopic compositions of Lesser Antilles forearc sediments.
15	Earth Planet. Sci. Lett. 287, 86-99.
16	Chadwick, J.P., Troll, V.R., Ginibre, C., Morgan, D., Gertisser, R., Waight, T.E., Davidson,
17	J.P., 2007. Carbonate Assimilation at Merapi Volcano, Java, Indonesia: Insights from
18	Crystal Isotope Stratigraphy. J Petrol 48, 1793-1812.
19	Chauvel, C., Blichert-Toft, J., 2001. A hafnium isotope and trace element perspective on
20	melting of the depleted mantle. Earth Planet. Sci. Lett. 190, 137-151.
21	Chauvel, C., Marini, J.C., Plank, T., Ludden, J.N., 2009. Hf-Nd input flux in the Izu-Mariana
22	subduction zone and recycling of subducted material in the mantle. Geochem. Geophys.
23	Geosystems 10, Q01001, doi:10.1029/2008GC002101.
24	Claproth, R., 1988. Petrography and geochemistry of volcanic rocks from Ungaran, Central
25	Java, Indonesia. Unpublished PhD Thesis. University of Wollongong, Australia.

1	Clements, B., Hall, R., Smyth, H.R., Cottam, M.A., 2009. Thrusting of a volcanic arc: a new
2	structural model for Java. Petrol. Geosci. 15, 159-174.

- Clift, P.D., Vannucchi, P. 2004. Controls on tectonic accretion versus erosion in subduction
 zones: Implications for the origin and recycling of the continental crust, Rev. Geophys.
 42, RG2001, doi:10.1029/2003RG000127.
- Davidson, J.P., Boghossian, N.D., Wilson M., 1993. The geochemistry of the igneous rock
 suite of St. Martin, Northern Lesser Antilles. J. Petrol. 34, 839-866.
- Bavidson, J.P., Hora, J.M., Garrison, J.M., Dungan, M.A., 2005. Crustal Forensics in Arc
 Magmas. J. Volcanol. Geotherm. Res. 140, 157-170
- Davidson, J., Turner, S., Handley, H., Macpherson, C., Dosseto, A., 2007. Amphibole
 "sponge" in arc crust? Geology 35, 787-790.
- DePaolo, D.J., 1981. Trace element and isotopic effects of combined wallrock assimilation
 and fractional crystallization. Earth Planet. Sci. Lett. 53, 189-202.
- Dostal, J., Dupuy, C., Carron, J.P., Dekerneizon, M.L., Maury, R.C., 1983. Partition Coefficients of Trace-Elements Application to Volcanic-Rocks of St-Vincent, West-
- 16 Indies. Geochim. Cosmochim. Acta 47, 525-533. doi: 10.1016/0016-7037(83)90275-2.
- 17 Dowall, D.P, Nowell, G.M., Pearson, D.G., 2003. Chemical pre-concentration procedures for
- high-precision analysis of Hf-Nd-Sr isotopes in geological materials by plasma
 ionisation multi-collector mass spectrometry (PIMMS) techniques. Plasma Source Mass
- 20 Spectrometry. Spec.Pub. Royal Soc. Chem., 321-337.
- 21 Edwards, C.M.H., 1990. Petrogenesis of tholeiitic, calc-alkaline and alkaline volcanic rocks,
- Sunda arc, Indonesia. Unpublished Ph.D. Thesis, Royal Holloway, University of
 London, UK.

1	Edwards, C.M.H., Morris, J.D., Thirlwall, M.F., 1993. Separating mantle from slab
2	signatures in arc lavas using B/Be and radiogenic isotope systematics. Nature 362, 530-
3	533.
4	Elliott T.R., Plank T., Zindler A., White W., Bourdon B., 1997. Element transport from slab
5	to volcanic front at the Mariana arc. J. Geophys. Res. B102, 14991-15019.
6	Foden, J., Green, D.H., 1992. Possible role of amphibole in the origin of andesite: some
7	experimental and natural evidence. Contrib. Mineral. Petrol. 109, 479-493.
8	Fujimaki, H., Tatsumoto, M., Aoki, Ki., 1984. Partition coefficients of Hf, Zr, and REE
9	between phenocrysts and groundmasses. J. Geophys. Res. 89, 662-672.
10	Gasparon, M., Hilton, D.R., Varne, R., 1994. Crustal contamination processes traced by
11	helium isotopes: examples from the Sunda arc, Indonesia. Earth Planet. Sci. Lett. 126,
12	15-22.
13	Gasparon, M., Varne, R., 1995. Sumatran granitoids and their relationship to Southest Asian
14	terranes. Tectonophysics 251, 277-299.
15	Gasparon, M., Varne, R., 1998. Crustal assimilation versus subducted sediment input in west
16	Sunda arc volcanics: an evaluation. Mineral. Petrol. 64, 89-117.
17	Gertisser R., 2001. Gunung Merapi (Java, Indonesien): eruptionsgeschichte und magmatische
18	evolution eines hochrisiko-vulkans. Ph.D. Thesis, Universität Freiburg.
19	Gertisser, R., Keller, J., 2003. Trace element and Sr, Nd, Pb and O isotope variations in
20	medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia:
21	evidence for the involvement of subducted sediments in Sunda Arc magma genesis. J.
22	Petrol. 44, 457-489.
23	Gertisser, R., Self, S., Thomas, L. Handley, H., van Calsteren, P., Wolff, J. (submitted).
24	Magma Generation Processes and Timescales Leading to the Great Tambora Eruption
25	in 1815. J. Petrol.

1	Gerbe, MC., Gourgaud, A., Sigmarsson, O., Harmon, R.S., Joron, J-L., Provost, A., 1992.
2	Mineralogical and geochemical evolution of the 1982-1983 Galunggung eruption
3	(Indonesia). Bull. Volc. 54, 284-298.
4	Hamilton, W.B., 1979. Tectonics of the Indonesian region. U.S. Geological Survey
5	Professional Paper 1078.
6	Handley, H.K., 2006. Geochemical and Sr-Nd-Hf-O isotopic constraints on volcanic
7	petrogenesis at the Sunda arc, Indonesia. PhD thesis, Durham University.
8	Handley, H.K., Macpherson, C.G., Davidson, J.P., Berlo, K., Lowry, D., 2007. Constraining
9	fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen
10	Volcanic Complex, Indonesia. J. Petrol. 48, 1155-1183.
11	Handley, H.K., Davidson, J.P., Macpherson, C.G., 2008a. Untangling differentiation in arc
12	lavas: constraints from unusual minor and trace element variations at Salak Volcano,
13	Indonesia. Chem. Geol. 255, 360-376.
14	Handley, H.K., Turner, S.P., Smith, I.E., Stewart, R.B., Cronin, S.J., 2008b. Rapid timescales
15	of differentiation and evidence for crustal contamination at intra-oceanic arcs:
16	geochemical and U-Th-Ra-Sr-Nd isotopic constraints from Lopevi volcano, Vanuatu,
17	SW Pacific. Earth Planet. Sci. Lett. 273, 184-194.
18	Handley, H.K., Macpherson, C.G., Davidson, J.P., 2010. Geochemical and Sr-O isotopic
19	constraints on magmatic differentiation at Gede Volcanic Complex, West Java,
20	Indonesia. Contrib. Mineral. Petrol. 159, 885-908.
21	Hart, S.R., Dunn, T., 1993. Experimental cpx/melt partitioning of 24 trace elements. Contrib.
22	Mineral. Petrol. 113, 1-8.
23	Hartono, U., 1995. The petrology and geochemistry of the Wilis and Lawu volcanoes, east
24	Java, Indonesia. Unpublished PhD Thesis, University of Tasmania, Australia.

1	Heath, E., Macdonald, R., Belkin, H., Hawkesworth, C.J., Sigurdsson H., 1998.
2	Magmagenesis at Soufriere Volcano, St. Vincent, Lesser Antilles arc. J. Petrol. 39,
3	1721-1764.
4	Hutchinson, C.S., 1976. Indonesian active volcanic arc: K, Sr and Rb variation with depth to
5	the Benioff zone. Geology 4, 407-408.
6	Johnson, K.T.M., 1998. Experimental determination of partition coefficients for rare earth
7	and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at
8	high pressures. Contrib. Mineral. Petrol. 133, 60-68.
9	Kessel, R., Schmidt, M.W., Ulmer, P., Pettke, T., 2005. Trace element signature of
10	subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature
11	437, 724-727.
12	Kopp, H., Flueh, E.R., Klaeshen, D., Bialas, J., Reichert, C., 2001. Crustal structure of the
13	Sunda margin at the onset of oblique subduction. Geophys. J. Int. 147, 449-474.
14	Larsen, L.M., 1979. Distribution of REE and Other Trace-Elements between Phenocrysts and
15	Peralkaline Undersaturated Magmas, Exemplified by Rocks from the Gardar Igneous
16	Province, South Greenland. Lithos 12, 303-315.
17	Luhr, J.F., Carmichael, I.S.E., 1980. The Colima volcanic complex, Mexico. I: post-caldera
18	andesites from Volcan Colima. Contrib. Mineral. Petrol. 71, 343-372.
19	Mandeville, C.W., Carey, S., Sigurdsson, H., 1996. Magma mixing, fractional crystallisation
20	and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia. J.
21	Volcanol. Geotherm. Res. 74, 243-274.
22	Marini, J.C., Chauvel, C., Maury, R.C., 2005. Hf isotope compositions of northern Luzon arc
23	lavas suggest involvement of pelagic sediments in their source. Contrib. Mineral. Petrol.
24	149, 216-232.

1	McDonough, W.F., Sun, Ss., 1995. The composition of the Earth. Chem. Geol. 120, 223-
2	253.
3	McKenzie, D., O'Nions, R.K., 1991. Partial melt distributions from inversion of rare Earth
4	element concentrations. J. Petrol. 32, 1021-1091.
5	McCulloch, M.T., Gamble J.A., 1991. Geochemical and geodynamical constraints on
6	subduction zone magmatism. Earth Planet. Sci. Lett. 102, 358-374.
7	Moore, G.F., Curray, J.R., Moore, D.G., Karig, D.E., 1980. Variations in geologic structure
8	along the Sunda fore arc, Northeastern Indian Ocean. In: The Tectonic and Geologic
9	Evolution of Southeast Asian Seas and Islands, ed. Hayes, D., Geophys. Monogr., 23,
10	145-160.
11	Morris, J.D., Leeman, W.P., Tera, F., 1990. The subducted component in island arc lavas:
12	constraints from Be isotopes and B-Be systematics. Nature 344, 31-36.
13	Münker, C., Worner, G., Yogodzinski, G., Churikova, T., 2004. Behaviour of high field
14	strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas.
15	Earth Planet. Sci. Lett. 224, 275-293.
16	Nowell, G.M., Kempton, P.D., Noble, S.R., Fitton, J.G., Saunders, A.D., Mahoney, J.J.,
17	Taylor, R.N., 1998. High precision Hf isotope measurements of MORB and OIB by
18	thermal ionisation mass spectrometry: insights into the depleted mantle. Chem. Geol.
19	149, 211-233.
20	Nowell, G.M, Pearson, D.G, Ottley, C.J., Schweiters, J., 2003. Long-term performance
21	characteristics of a plasma ionisation multi-collector mass spectrometer (PIMMS): the
22	ThermoFinnigan Neptune. Plasma Source Mass Spectrometry. Spec. Pub. Royal Soc.
23	Chem., 307-320.

1	Ottley, C.J, Pearson, D.G., Irvine, G.J., 2003. A routine method for the dissolution of
2	geological samples for the analysis of REE and trace elements via ICP-MS. Plasma
3	Source Mass Spectrometry. Spec. Pub. Royal Soc. Chem., 221-230.
4	Patchett, P.J., White, W.M., Feldmann, H., Kielinczuk, S., Hofmann, A.W., 1984.
5	Hafnium/rare earth element fractionation in the sedimentary system and crustal
6	recycling into the Earth's mantle. Earth Planet. Sci. Lett. 69, 365-378.
7	Pearce, J.A., Kempton, P.D., Nowell, G.M., Noble, S.R., 1999. Hf-Nd Element and Isotope
8	Perspective on the Nature and Provenance of Mantle and Sunduction Components in
9	Western Pacific Arc-Basin Systems. J. Petrol. 40, 1579-1611.
10	Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc
11	magmas. Ann. Rev. Earth Planet. Sci. 24, 251–285.
12	Plank, T., 1993. Mantle melting and crustal recycling at subduction zones. Ph.D. thesis.
13	Columbia University, New York.
14	Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its
15	consequences for the crust and mantle. Chem. Geol. 145, 325-394.
16	Rittman, A., 1953. Magmatic character and tectonic position of the Indonesian volcanoes.
17	Bull. Volcanol. 14, 45-58.
18	Royse, K., Kempton, P.D., Darbyshire, D.P.F., 1998. NERC Isotope Geosciences Laboratory
19	Report Series, 121.
20	Salters, V.J.M., 1996. The generation of mid-ocean ridge basalts from the Hf and Nd isotope
21	perspective. Earth Planet. Sci. Lett. 141, 109-123.
22	Salters, V.J.M., Hart, S.R. 1991. The mantle sources of ocean islands and arc basalts: the Hf
23	isotope connection. Earth Planet. Sci. Lett. 104, 364-380.
24	Sissons, T.W., Bronto, S., 1998. Evidence for pressure-release melting beneath magmatic
25	arcs from basalt at Galunggung, Indonesia. Nature 391, 883-886.

1	Sitorus, K., 1990. Volcanic stratigraphy and geochemistry of the Idjen Caldera Complex,
2	East Java, Indonesia. MSc thesis, University of Wellington, New Zealand.
3	Smyth, H.R., Hamilton, P.J., Hall, R., Kinny, P.D., 2007. The deep crust beneath island arcs:
4	Inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia.
5	Earth Planet. Sci. Lett. 258, 269-282.
6	Soeria-Atmadja, R., Maury, R.C., Bellon, H., Pringgoprawiro, H., Polve, M., Priadi, B.,
7	1994. Tertiary magmatic belts in Java. J. Southeast Asian Earth Sci. 9, 13-27.
8	Staudigel, H., Davies, G.R., Hart, S.R., Marchant, K.M., Smith, B.M., 1995. Large scale
9	isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites
10	417/418. Earth Planet. Sci. Lett. 130, 169-185.
11	Tatsumi, Y., Hamilton, D.L., Nesbitt, R.W., 1986. Chemical characteristics of fluid phase
12	released from a subducted lithosphere and origin of arc magmas: evidence from high-
13	pressure experiments and natural rocks. J. Volcanol. Geotherm. Res. 29, 293-309.
14	Tera, F., Brown, L., Morris, J., Sacks, I.S., Klein, J., Middleton, R., 1986. Sediment
15	incorporation in island-arc magmas: inferences from ¹⁰ Be. Geochim. Cosmochim. Acta,
16	50, 535-550.
17	Thirlwall, M.F., Smith, T.E., Graham, A.M., Theodorou, N., Hollings, P., Davidson, J.P.,
18	Arculus, R.J., 1994. High Field Strength Element Anomalies in Arc Lavas: Source or
19	Process? J. Petrol., 35, 819-838. doi:10.1093/petrology/35.3.819
20	Tollstrup, D.L., Gill, J.B., 2005. Hafnium systematics of the Mariana arc: evidence for
21	sediment melt and residual phases. Geology 33, 737-740.
22	Turner, S., Foden. J., 2001. U, Th and Ra disequilibria, Sr, Nd and Pb isotope and trace
23	element variations in Sunda arc lavas: predominance of a subducted sediment
24	component. Contrib. Mineral. Petrol. 142, 43-57.

1	Turner S.P., Hawkesworth C.J., van Calsteren P., Heath E., Macdonald R., Black S., 1996. U-
2	series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth
3	Planet. Sci. Lett. 142, 191-207.
4	Turner, S., Handler, M., Bindeman, I., Suzuki, K., 2009. New insights into the origin of O-
5	Hf-Os isotope signatures in arc lavas from Tonga-Kermadec. Chem. Geol., 266, 196-
6	202.
7	van Gerven, M., Pichler, H., 1995. Some aspects of the volcanology and geochemistry of the
8	Tengger Caldera, Java, Indonesia: eruption of a K-rich tholeiitic series. J. Southeast
9	Asian Earth Sci. 11, 125-133.
10	Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., Albarede, F., 1999. Relationships between Lu-
11	Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet. Sci.
12	Lett. 168, 79-99.
13	von Huene, R., Scholl. D.W., 1991. Observations at convergent margins concerning sediment
14	subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29,
15	279-316.
16	Vroon P.Z., 1992. Subduction of continental material in the Banda Arc, Eastern Indonesia:
17	Sr-Nd-Pb isotope and trace-element evidence from volcanics and sediments. Ph.D.
18	Thesis University of Utrecht.
19	Vroon, P.Z., van Bergen, M.J., Klaver, G. J., White, W.M., 1995. Strontium, neodymium,
20	and lead isotopic and trace-element signatures of the East Indonesian sediments:
21	Provenance and implications for Banda Arc magma genesis. Geochim. Cosmochim.
22	Acta 59, 2573-2598.
23	Vukadinovic, D., Sutawidjaja, I., 1995. Geology, mineralogy and magma evolution of
24	Gunung Slamet Volcano, Java, Indonesia. J. Southeast Asian Earth Sci. 11, 135-164.

1	Westbrook, G.K., Ladd, J.W., Buhl, P., Bangs, N., Tiley, G.J., 1988. Cross section of an
2	accretionary wedge: Barbados Ridge Complex. Geology 16, 631-635.
3	White, W.M., Patchett, J., 1984. Hf-Nd-Sr isotopes and incompatible element abundances in
4	island arcs: implications for magma origins and crustal-mantle evolution. Earth Planet.
5	Sci. Lett. 67, 167-185.
6	White, W.M., Patchett, J., BenOthman, D., 1986. Hf isotope ratios of marine sediments and
7	Mn nodules; evidence for a mantle source of Hf in seawater. Earth Planet. Sci. Lett. 79,
8	46-54.
9	Whitford, D.J., 1975. Geochemistry and petrology of volcanic rocks from the Sunda arc,
10	Indonesia, PhD Thesis (unpublished), Australian National University, Canberra,
11	Australia.
12	Whitford, D.J., Nicholls, I.A., 1976. Potassium variations in lavas across the Sunda arc in
13	Java and Bali. In: R.W. Johnson (Editor), Volcanism in Australasia. Elsevier,
14	Amsterdam, pp. 63-75.
15	Woodhead, J.D., Hergt, J.M., Davidson, J.P., Eggins, S.M., 2001. Hafnium isotope evidence
16	for 'conservative' element mobility during subduction processes. Earth Planet. Sci. Lett.
17	192, 331-346.
18	Workman, R.K., Hart, S.R., 2005. Major and trace element composition of the depleted
19	MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53-72.
20	You, CF., Castillo, P.R., Gieskes, J.M., Chan. L.H., Spivack, A.J., 1996. Trace element
21	behaviour in hydrothermal experiments: Implications for fluid processes at shallow
22	depths in subduction zones. Earth Planet. Sci. Lett. 140, 41-52.
23	

Table 1. New Nd and Hf isotope data of volcanic rocks from Java

Province	Volcano	Sample	Latitude (S)	Longitude (E)	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	εNd	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	εHf
West Java	Gede VC	G01A	06°42'16.9"	107°01'39.6"	0.512647	15	0.33	0.282977	21	6.78
West Java	Gede VC	G01B	06°42'16.9"	107°01'39.6"	0.512653	10	0.46	0.282951	09	5.86
West Java	Gede VC	G10	06°44'51.5"	107°02'28.3"	0.512700	15	1.36	0.282975	07	6.72
West Java	Gede VC	G16	06°49'47.6"	106°55'35.3"	0.512629	12	-0.02	0.282952	10	5.90
West Java	Gede VC	G17	06°47'27.7"	106°59'40.6"	0.512681	16	0.99	0.282976	08	6.76
West Java	Gede VC	G18	06°47'23.5"	106°58'59.8"	0.512660	16	0.58	0.282963	08	6.28
West Java	Gede VC	G19	06°47'12.7"	106°58'43.1"	0.512701	11	1.39	0.282988	07	7.17
West Java	Gede VC	G20	06°47'03.1"	106°58'30.6"	0.512675	13	0.87	0.282975	08	6.73
West Java	Gede VC	G21	06°46'59.8"	106°58'44.8"	0.512678	21	0.93	0.282972	07	6.61
West Java	Gede VC	G22	Kawah Wadon cr	ater edge	0.512664	14	0.66	0.282968	07	6.46
West Java	Gede VC	G23	06°46'40.5"	106°58'31.7"	0.512656	12	0.52	0.282957	08	6.07
West Java	Gede VC	G25	06°46'03.0"	106°58'49.1"	0.512677	15	0.92	0.282975	09	6.71
West Java	Gede VC	G26	50m from the Ge	ede Observatorv	0.512694	16	1.24	0.282997	07	7.49
West Java	Gede VC	G28	06°43'05.6"	106°57'54.4"	0.512683	11	1.04	0.282974	15	6.68
West Java	Gede VC	G30	06°42'36.5"	106°56'47.2"	0.512646	12	0.32	0.282956	08	6.04
West Java	Gede VC	G33	06°42'20.4"	106°58'35.8"	0.512699	09	1.35	0.282990	10	7.24
West Java	Gede VC	G35	06°49'48.6"	106°55'58.7"	0.512646	12	0.32	0.282939	09	5.44
West Java	Gede VC	G36A	06°49'48.6"	106°55'58.7"	0.512654	11	0.47	0.282955	11	6.01
West Java	Gede VC	G40	06°44'20.9"	107°00'30.6"	0.512679	10	0.96	0.282972	08	6.61
West Java	Gede VC	G42	06°44 51.5"	107°00'20.6"	0.512660	14	0.58	0.282967	08	6.43
West Java	Gede VC	G44	06°45'19.1"	107°01'04.4"	0.512702	14	1.40	0.282994	11	7.38
West Java	Gede VC	G46	06°47'42.6"	107°01'09.1"	0.512682	13	1.01	0.282982	14	6.96
West Java	Gede VC	G49	06°46'41.2"	107°03'50.7"	0.512722	10	1.79	0.283058	09	9.65
West Java	Gede VC	G51	06°42'16.9"	107°01'39.6"	0.512656	11	0.52	0.282951	08	5.86
West Java	Gede VC	G52	06°44'32.7"	107°03'55.3"	0.512737	11	2.10	0.283067	07	9.96
West Java	Gede VC	G55	06°48'46.7"	107°03'28.0"	0.512687	20	1.11	0.282978	07	6.82
West Java	Guntur	GU1/T	07°10'30"	107°51'06"	0.512982	08	6.87	0 283157	10	13 16
West Java	Guntur	GU5/T	07°10'18"	107°52'00"	0.512002	16	5.40	0.283147	07	12 70
West Java	Guntur		07 1010	107°51'48"	0.512007	10	5.60	0.200147	00	12.75
West Java	Cuntur		07 10 72	107 51 40	0.512517	00	5.00	0.200104	12	12.00
	Guntur		07 10 30	107 52 12	0.512904	45	1.04	0.203142	10	12.01
west Java	Guntur	GU15/T	07 09 48	107 52 30	0.512882	15	4.91	0.283137	09	12.46
West Java	Guntur	GU16/T	07°09'54"	107°52'42"	0.512893	15	5.12	0.283142	09	12.63
Central Java	Merapi	M95-026	07°31'46"	110°28'42"	0.512738	09	2.11	0.283146	10	12.76
Central Java	Merapi	M95-028	07°35'08"	110°25'37"	0.512729	10	1.93	0.283146	14	12.77
Central Java	Merapi [*]	M96-050	07-35-11"	110-25-36"	0.512742	80	2.18	0.283160	09	13.25
Central Java	Merapi	M96-056	07-33-37"	110-27-38"	0.512776	10	2.85	0.283131	10	12.23
Central Java	Merapi	M96-073	07°34'30"	110°23'13"	0.512785	09	3.02	0.283157	16	13.15
Central Java	Merapi	M96-137	07°33'28"	110°24'01"	0.512769 [°]	07	2.71	0.283148	11	12.83
Central Java	Merapi	M96-142	07°25'36"	110°34'50"	0.512734	10	2.03	0.283128	11	12.13
Central Java	Merapi	M96-175	07°31'38"	110°28'12"	0.512752	12	2.38	0.283185	16	14.15
Central Java	Merapi	M97-021	07°35'24"	110°25'23"	0.512723°	09	1.81	0.283138	10	12.48
Central Java	Merapi	M97-031	07°36'05"	110°25'11"	0.512712°	10	1.60	0.283141	09	12.58
Central Java	Merapi	M97-0392	07°30'44"	110°25'23"	0.512725°	11	1.85	0.283137	11	12.45
Central Java	Merapi	M97-068	07°34'06"	110°22'51"	0.512682°	09	1.01	0.283128	12	12.13
Central Java	Merapi	M98-031	07°31'03"	110°20'48"	0.512746 ^a	09	2.26	0.283141	11	12.58
Central Java	Merapi	M98-047	07°32'29"	110°29'07"	0.512723 ^a	09	1.81	0.283144	07	12.69
Central Java	Merapi	M98-0532	07°30'59"	110°31'21"	0.512770 ^a	10	2.73	0.283160	12	13.25
Central Java	Merapi	M98-096	07°29'57"	110°24'36"	0.512697ª	10	1.31	0.283147	13	12.80
Central Java	Merapi*	M98-107	07°32'19"	110°27'26"	0.512733ª	10	2.01	0.283144	10	12.69

All new data are presented relative to a JMC 475 176 Hf/ 177 Hf value of 0.282160 (Nowell et al., 1998) and a J&M 143 Nd/ 144 Nd value of 5.11110 (Royse et al., 1998), corresponding to Ames 143 Nd/ 144 Nd of 0.512130 and La Jolla 143 Nd/ 144 Nd of 0.51186.

 $\epsilon Hf~$ and ϵNd values were calculated relative to CHUR values of 0.282785 for $^{176} Hf/^{177} Hf$

and 0.512630 for ¹⁴³Nd/¹⁴⁴Nd (Bouvier et al., 2008).

^aGertisser and Keller (2003) ¹⁴³Nd/¹⁴⁴Nd data are presented relative to an Ames ¹⁴³Nd/¹⁴⁴Nd of 0.512130.

Errors in italic are within-run 2SE on the final quoted significant figure taken from Gertisser and Keller (2003).

Location information for Gede VC and Guntur samples are taken from Handley (2006) and Edwards (1990), respectively.

For sample location information and unit descriptions of Merapi volcanic rocks, see Gertisser (2001).

 * indicates sample locations recalculated with GPS software from UTM co-ordinates.

Table 2. New major element, trace element and Sr-Nd isotope data of Merbabu and Merapi (Central Java) volcanic rocks												
Volcano	Merbabu	Merbabu	Merbabu	Merbabu	Merbabu	Merbabu	Merapi	Merapi	Merapi	Merapi*	Merapi*	Merapi*
Latitude (S)	07°29'53"	07°30'00"	07°31'08"	07°23'54"	07°21'52"	07°29'13"	07°35'18"	07°32'19"	07°31'03"	07°35'08"	07°35'11"	07°31'38"
Longitude (É)	110°25'46"	110°25'11"	110°21'37"	110°25'53"	110°27'44"	110°34'06"	110°26'34"	110°23'16"	110°20'48"	110°25'37"	110°25'36"	110°28'12"
Sample	MB-1	MB-2	MB-6	MB-16	MB-22	MB-28	M96-102	M98-030	M98-031	M95-028	M96-050	M96-175
SiO ₂	49.55	49.70	50.81	59.07	58.28	51.41	51.87	52.13	51.70	50.20	50.37	56.49
Al ₂ O ₃	21.22	17.23	19.73	18.87	18.76	17.64	20.44	19.02	18.77	19.78	18.68	18.71
Fe ₂ O ₂	9.44	11.01	9.95	6.64	7.14	10.19	8.24	8.49	8.38	9.53	10.12	7.45
MaQ	3.18	5.75	3.78	1.95	2.27	4.54	2.47	2.80	3.09	3.19	4.28	2.58
CaO	10.21	10.81	8 57	6.08	6.72	9.26	8 86	8 72	9.23	9.72	9.26	8.09
Na.O	2.84	2 76	2 78	3.52	3.51	3.09	3 35	3 30	3 35	3 19	3 18	3 59
K O	1 76	1 47	2.70	1 01	1 74	2 10	1 74	1 00	1 00	1 97	1.83	1 59
R ₂ O	0.96	0.92	0.91	0.70	0.72	2.10	0.01	0.79	0.84	1.07	1.00	0.72
HTO ₂	0.00	0.03	0.61	0.70	0.73	1.03	0.87	0.76	0.64	0.12	0.14	0.72
MINU	0.17	0.21	0.18	0.17	0.18	0.17	0.20	0.20	0.20	0.13	0.14	0.17
P ₂ O ₅	0.26	0.18	0.32	0.31	0.30	0.31	0.31	0.31	0.26	0.28	0.28	0.29
LOI	0.66	0.04	1.12	0.71	0.44	-0.44	1.63	2.07	2.49	1.14	1.40	0.71
Iotal	100.15	99.99	100.29	99.93	100.07	99.30	99.92	99.90	100.21	100.16	100.62	100.40
V	249	333	256	92	113	295	259	152	169	331	298	151
Cr	26.0	69.0	14.8	5.7	7.3	59.9	6.0	2.4	2.5	124.1	34.3	10.4
Co	23.0	33.8	25.2	7.5	9.2	30.0	22.9	11.3	13.0	31.0	28.1	14.6
Ni	8.9	19.8	8.9	< d.l.	< d.l.	15.3	7.0	2.2	2.1	43.1	16.4	< d.l.
Cu	148	143	216	19	16	151	36	13	13	n.m.	n.m.	n.m.
Zn	84	89	89	95	91	101	76	76	75	n.m.	n.m.	n.m.
Ga	21	17	19	20	21	21	19	21	21	n.m.	n.m.	n.m.
Rb	24.8	29.4	53.6	45.0	38.5	44.2	24.6	20.5	20.7	23.9	36.2	37.8
Sr	592	460	565	437	431	421	533	544	531	568	467	529
Y	18.2	17.2	19.4	25.5	23.3	23.3	25.0	26.9	24.7	18.0	21.1	22.4
Zr	62	49	65	156	139	85	104	144	133	64	68	114
Nb	1.94	1.50	2.18	6.65	5.73	3.11	4.35	6.28	5.63	2.02	2.42	4.49
Cs	0.78	2.43	3.34	4.87	3.25	3.72	2.04	1.81	1.83	n.m.	n.m.	n.m.
Ba	546	462	677	487	431	545	364	291	307	474	584	428
La	14.6	11.0	19.4	24.1	21.2	17.5	16.3	16.9	14.8	11.6	14.3	18.9
Ce	29.3	21.5	36.5	48.6	42.6	35.0	33.4	37.0	33.8	23.3	28.7	38.2
Pr	3.44	2.72	4.24	5.82	5.30	4.34	4.552	5.288	4.736	2.84	3.57	4.78
Nd	14.9	11.7	18.3	23.2	20.4	18.0	20.0	23.4	21.0	12.1	15.5	20.0
Sm	3.91	3.18	4.12	5.06	4.52	4.17	4.72	5.39	4.97	3.10	3.82	4.22
Eu	1.23	1.06	1.38	1.55	1.43	1.33	1.40	1.53	1.45	1.10	1.33	1.43
Gd	3.60	3.26	4.09	4.70	4.41	4.24	4.74	5.13	4.77	3.15	3.91	4.13
Ib	0.534	0.447	0.610	0.756	0.656	0.629	0.759	0.832	0.773	0.473	0.557	0.603
Dy	3.26	2.87	3.45	4.31	4.14	3.88	4.48	4.82	4.49	2.88	3.49	3.77
Ho	0.601	0.623	0.683	0.859	0.849	0.856	0.926	1.006	0.932	0.606	0.723	0.739
Er	1.73	1.76	2.01	2.59	2.37	2.22	2.52	2.73	2.49	1.69	1.99	2.31
Im	0.29	0.27	0.33	0.42	0.41	0.40	0.391	0.428	0.395	0.258	0.297	0.326
YD	1.72	1.78	2.00	2.80	2.47	2.23	2.54	2.84	2.59	1.61	1.98	2.11
LU	0.280	0.287	0.325	0.470	0.434	0.377	0.416	0.467	0.431	0.249	0.331	0.366
HT T-	1.79	1.59	1.95	3.92	3.82	2.47	2.88	3.95	3.62	1.67	1.93	2.77
la Dh	0.16	0.13	0.19	0.56	0.50	0.25	0.31	0.47	0.41	0.15	0.20	0.38
PD Th	21.6	16.3	25.3	21.2	18.6	22.8	14.9	21.3	20.0	16.6	18.3	25.4
in	6.43	4.37	8.74	9.27	1.98	1.15	5.27	8.18	7.14	4.91	5.40	5.68
U	0.82	0.99	1.79	1.95	1.76	1.71	1.06	1.11	1.09	0.84	1.08	1.35
⁸⁷ Sr/ ⁸⁶ Sr	0.705888	0.705768	0.705825	0.705672	0.705686	0.705812	0.705515	0.705704	0.705540	0.705793	0.705539	0.705105
2SE	10	10	10	10	09	10	09	10	09	09	09	10
¹⁴³ Nd/ ¹⁴⁴ Nd	0.512663	0.512699	0.512653	0.512707	0.512701	0.512683	0.512753	0.512732	0.512746	0.512729	0.512742	0.512752
2SE	08	08	08	07	12	09	09	06	09	10	08	12

Major element and Sr-Nd isotope data of Gertisser and Keller (2003) shown by italic font. < d.l., below detection limit (<5 ppm for Ni); n.m., not measured. ⁸⁷Sr/⁸⁶Sr isotope data presented relative to a NBS 987 ⁸⁷Sr/⁸⁶Sr value of 0.710240. ¹⁴³Nd/¹⁴⁴Nd isotope data presented relative to an Ames ¹⁴³Nd/¹⁴⁴Nd value of 0.512130. Errors on isotope data are within-run 2SE on the final quoted significant figure.

	Nd (ppm)	Hf (ppm)	¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁷⁶ Hf/ ¹⁷⁷ Hf
IMORB Source Sed A	0.97 187 9	0.25 5.73	0.513042	0.283211
Sed B	55.3	3.67	0.512278	0.282712
Sed D	35 31.3	5.09 5.58	0.511930 0.511910	0.282311 0.282230

Table 3. End member compositions used in Hf-Nd isotope mixing calculations

Mantle wedge represented by I-MORB source (I-MORB/10 assuming 10% melting) IMORB data from Chauvel and Blichert-Toft (2001). IMORB average Nd and Hf concentration, Nd and Hf isotope data from Chauvel and Blichert-Toft, 2001.

Local sediments: A = Mn nodule (V34-62, Ben Othman et al., 1989; White et al., 1986) B = pelagic clay (V34-45 White et al., 1986; Ben Othman et al., 1989); C and D = deep sea turbidite sediments V28-357-M (CA30-M) and V28-357-M (CA30-S), respectively (Vervoort et al., 1999).

Appendix B. Additional analytical information

Table B.1. Accepted element abundances of international rock standards compared to those measured over the period of study. Detection limits and maximum measured blanks.

		BIR1			VV2			BHVO-1			AGV1	
	Accepted	This stu	dy	Accepted	This st	tudy	Accepted	This stud	ly	Accepted	This st	tudy
PPM	value	value ($n = 26$) 1SD	value	value (n = 1	3) 1SD	value	value ($n = 23$)	1SD	value	value (n = 1	2) 1SD
	4.4	4.2	4 70	25	26	1	21.0	21	2	10.1	10	1
3C T: (v.#0/)	44	43	4.70	1.00	107	0 07	31.0	2 70	2 0 1 0	12.1	1 02	0.00
11 (Wt%)	0.96	0.97	0.08	1.06	1.07	0.07	2.71	2.79	0.12	1.06	1.03	0.06
V	313	334	16.60	262	272	8	317	319	10	123	121	4
Cr	382	418.4	25.2	93	92.5	3.4	289	295.1	8.5	12	7.0	3.4
Mn (wt%)	0.171	0.18	0.01	0.163	0.17	0.01	0.168	0.17	0.01	0.096	0.10	0.01
Co	51.4	55	2	44	45	1	45	45	1	15.1	16	0
Ni	166	199.8	8.2	70	81.4	2.1	121	134.7	3.4	17	16.7	0.7
Cu	126	120	5	103	104	3	136	138	3	60	58	2
Zn	71	60	8	77	84	27	105	100	5	88	84	3
20	10	15	0	20	40	21	105	100	1	20	04	5
Ga	16	15	1	20	18	0	21	21	1	20	20	0
Rb	0.27	0.2	0.0	20	20.2	0.4	11	9.5	0.2	67	67.2	1.2
Sr	108	110	12	194	201	9	403	391	22	662	676	32
Y	16	16	1	24	23	0	27.6	28	0	21	20	0
Zr	22	15	0	94	91	2	179	175	2	225	229	3
Nb	2	0.57	0 02	79	7.66	0.00	10	10 30	0 18	15	14.52	0 14
110	-	0.01	0.02	1.0	7.00	0.00	10	10.00	0.10	10	14.02	0.14
Co	0.45	0.00	0.02	0.00	0.00	0.04	0.12	0.10	0.02	1 26	1 24	0.04
C3	0.45	0.00	0.02	100	177	0.04	120	120	0.05	1.20	1.24	0.04
ва	1.1		0	182	177	4	139	138	3	1221	1219	25
La	0.88	0.6	0.0	11.4	10.8	0.2	15.8	15.6	0.3	38	37.9	0.7
Ce	2.5	1.9	0.0	24	23.4	0.4	39	37.8	0.6	66	66.8	1.2
Pr	0.5	0.38	0.01	5.9	3.18	0.04	5.7	5.62	0.09	6.5	8.65	0.19
Nd	2.5	2.5	0.1	14	13.9	0.2	25.2	26.3	0.4	34	33.2	0.6
Sm	1.08	1 1 1	0.04	3 25	3 38	0.04	6.2	6 31	0.10	5 9	5.85	0.12
Eu	0.54	0.51	0.07	1 1	1 1 1	0.04	2.06	2.07	0.10	1.66	1.69	0.12
Eu	0.54	0.51	0.02	1.1	1.11	0.01	2.06	2.07	0.03	1.00	1.00	0.03
Gđ	1.9	1.94	0.04	3.6	3.86	0.06	6.4	6.55	0.13	5.2	4.83	0.10
Tb	0.41	0.38	0.01	0.63	0.65	0.01	0.96	0.98	0.01	0.71	0.67	0.01
Dy	2.4	2.54	0.08	3.8	3.87	0.06	5.2	5.33	0.07	3.8	3.53	0.06
Ho	0.5	0.57	0.02	0.76	0.80	0.01	0.99	1.00	0.01	0.73	0.67	0.01
Fr	1.8	1.62	0.06	25	2 15	0.02	24	2 43	0.02	1.61	1 73	0.03
Tm	0.27	0.27	0.00	0.20	0.24	0.01	0.22	0.25	0.02	0.22	0.27	0.00
	0.27	0.27	0.01	0.36	0.34	0.01	0.33	0.35	0.01	0.32	0.27	0.01
ΥD	1.7	1.64	0.07	2.05	2.07	0.02	2.02	2.01	0.02	1.67	1.65	0.03
Lu	0.26	0.27	0.01	0.33	0.33	0.00	0.291	0.30	0.00	0.28	0.27	0.01
Hf	0.58	0.59	0.02	2.56	2.42	0.04	4.38	4.47	0.04	5.1	5.12	0.09
Та	0.062	0.05	0.01	0.5	0.50	0.01	1.23	1.26	0.01	0.92	0.91	0.01
tot Pb	3.2	3.2	0.3	9.3	7.9	0.2	2.6	2.2	0.1	36	35.7	0.7
Th	0.031	0.03	0.00	2.2	2.21	0.07	1.08	1.26	0.03	6.5	6.34	0.20
U	0.01	0.01	0.00	0.53	0.49	0.01	0.42	0.42	0.01	1.89	1.87	0.06
								÷··-=				
		BE-N			NBS688		detection	detection	maxim	um blank		
	Accepted	BE-N This stu	dv	Accepted	NBS688 This st	tudv	detection limit	detection limit	maxim me	um blank easured		
 PPM	Accepted value	BE-N This stu value (n = 11	dy) 1SD	Accepted value	NBS688 This st value (n = 1-	tudy 4) 1SD	detection limit solid ng g ⁻¹	detection limit soln pg ml ⁻¹	maxim me (n =	num blank easured 70, ppm)		
PPM	Accepted value	BE-N This stu value (n = 11	idy) 1SD	Accepted value	NBS688 This st value (n = 1-	tudy 4) 1SD	detection limit solid ng g ⁻¹	detection limit soln pg ml ⁻¹	maxim me (n =	num blank easured 70, ppm)	_	
 	Accepted value	BE-N This stu value (n = 11	idy) 1SD 1	Accepted value	NBS688 This st value (n = 1-	tudy 4) 1SD 2	detection limit solid ng g ⁻¹ 212	detection limit soln pg ml ⁻¹	maxim me (n =	num blank easured 70, ppm)	-	
PPM Sc Ti (wt%)	Accepted value 22 2.61	BE-N This stu value (n = 11	dy) 1SD 1	Accepted value 38	NBS688 This st value (n = 1 38 1 16	tudy 4) 1SD 2 0.07	detection limit solid ng g ⁻¹ 212 6380	detection limit soln pg ml ⁻¹ 42 1280	maxim me (n =	num blank easured 70, ppm) 1 0,00	_	
PPM Sc Ti (wt%)	Accepted value 22 2.61	BE-N This stu value (n = 11 23 2.66 2.22	idy) 1SD 1 0.13	Accepted value 38 1.17	NBS688 This st value (n = 1 38 1.16 252	tudy 4) 1SD 2 0.07	detection limit solid ng g ⁻¹ 212 6380 272	detection limit soln pg ml ⁻¹ 42 1280 55	maxim me (n =	num blank easured 70, ppm) 1 0.00	_	
 Sc Ti (wt%) V	Accepted value 22 2.61 235	BE-N This stuvalue (n = 11 23 2.66 233	1 1 0.13 9	Accepted value 38 1.17 242	NBS688 This st value (n = 1 38 1.16 252	2 0.07 8	detection limit solid ng g ⁻¹ 212 6380 273 273	detection limit soln pg ml ⁻¹ 42 1280 55	maxim me (n =	num blank easured 70, ppm) 1 0.00 0	-	
PPM Sc Ti (wt%) V Cr	Accepted value 22 2.61 235 360	BE-N This stu value (n = 11 23 2.66 233 368.1	dy) 1SD 1 0.13 9 15.6	Accepted value 38 1.17 242 332	NBS688 This st value (n = 1 38 1.16 252 333.1	tudy 4) 1SD 2 0.07 8 11.7	detection limit solid ng g ⁻¹ 212 6380 273 532	detection limit soln pg ml ⁻¹ 42 1280 55 106	maxim me (n =	num blank easured 70, ppm) 1 0.00 0 1.6	-	
PPM Sc Ti (wt%) V Cr Mn (wt%)	Accepted value 22 2.61 235 360 0.2	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0	idy 1SD 0.13 9 15.6 0	Accepted value 38 1.17 242 332 0.167	NBS688 This st value (n = 1 38 1.16 252 333.1 0	tudy 4) 1SD 2 0.07 8 11.7 0	detection limit solid ng g ⁻¹ 212 6380 273 532 231	detection limit soln pg ml ⁻¹ 42 1280 55 106 46	maxim me (n =	num blank easured 70, ppm) 1 0.00 0 1.6 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co	Accepted value 22 2.61 235 360 0.2 61	BE-N This stu value (n = 11 23 2.66 233 368.1 0 62	idy 1SD 1 0.13 9 15.6 0 2	Accepted value 38 1.17 242 332 0.167 49	NBS688 This st value (n = 1 38 1.16 252 333.1 0 49	tudy 4) 1SD 2 0.07 8 11.7 0 2	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9	maxim me (n =	um blank aasured 70, ppm) 1 0.00 0 1.6 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni	Accepted value 22 2.61 235 360 0.2 61 267	BE-N This stu value (n = 11 23 2.66 233 368.1 0 62 300.9	dy 1 SD 1 0.13 9 15.6 0 2 10.4	Accepted value 38 1.17 242 332 0.167 49 158	NBS688 This st value (n = 1 38 1.16 252 333.1 0 49 173.4	2 0.07 8 11.7 0 2 5.5	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179	maxim me (n =	uum blank easured 70, ppm) 1 0.00 0 1.6 0 0 0.6	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu	Accepted value 22 2.61 235 360 0.2 61 267 72	BE-N This stuvalue (n = 11) 23 2.66 233 368.1 0 62 300.9 72	ldy 1 SD 1 0.13 9 15.6 0 2 10.4 3	Accepted value 38 1.17 242 332 0.167 49 158 96	NBS688 This st value (n = 1 38 1.16 252 333.1 0 49 173.4 87	2 0.07 8 11.7 0 2 5.5 3	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26	maxim me (n =	num blank easured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn	Accepted value 22 2.61 235 360 0.2 61 267 72 120	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121	dy 1 SD 1 0.13 9 15.6 0 2 10.4 3 4	Accepted value 38 1.17 242 332 0.167 49 158 96 84	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79	2 0.07 8 11.7 0 2 5.5 3 13	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26	maxim me (n =	aum blank easured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0 65	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121 49	idy 1 SD 1 0.13 9 15.6 0 2 10.4 3 4 1	Accepted value 38 1.17 242 332 0.167 49 158 96 84	NBS688 This st value (n = 1. 38 1.16 252 333.1 0 49 173.4 87 79 16	2 0.07 8 11.7 0 2 5.5 3 13 0	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 24.2	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26 6	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0 0.6 0 0 5 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121 18 18	dy) 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16	2 0.07 8 11.7 0 2 5.5 3 13 0	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26 6.9 6.9	maxim me (n =	um blank pasured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0 65 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47	BE-N This stuvalue (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2	dy 1 SD 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91	NBS688 This st value (n = 1 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0	udy 4) 1SD 2 0.07 8 11.7 0 5.5 3 13 0 0.1	detection limit solid ng g ⁻¹ 6380 273 532 231 19.5 897 128 34.3 13.4	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7	maxim me (n =	um blank pasured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0 65 0 0.0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538	dy 1 SD 1 0.13 9 15.6 0 2 10.4 3 4 1.5 138	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174	udy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0 65 0 0.0 0.0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 47 1370 30	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31	dy 1 SD 1 0.13 9 15.6 0 2 10.4 3 4 1.5 138 1	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21	udy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2	maxim me (n =	um blank pasured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0 0 65 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273	dy 1 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5 138 1 5	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61	NBS688 This st value (n = 1 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 1	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5	maxim me (n =	1 0.00 0 1.6 0 0.6 0 0.6 0 0.6 0 0.6 0 0.0 0.0 0.0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56	idy) <u>1SD</u> 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5 138 1 5 1.49	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 1 0 0.06	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0.6 0 65 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56	idy 1 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1.5 138 1 5 1.49	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 1 0.06	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9	maxim me (n =	um blank pasured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8	BE-N This stu- value (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75	dy 1 15D 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5 138 1 5 1.49 0.04	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0.06 0.04	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8	maxim me (n =	1 0.00 0 1.6 0 0.6 0 0.6 0 0.6 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059	idy) 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5 138 1 5 1.49 0.04 24	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 1 0.06 0.04 4	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 9.72 3.79 111	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.6 5 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 0.8	BE-N This stu- value (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1	dy 1 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5 1.49 0.04 24 1 5 1.49	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5 2	NBS688 This st value (n = 1 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5 2	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0 0.1 7 0 0 0.06 0.04 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.72	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75	maxim me (n =	1 0.00 0 1.6 0 0.6 0 65 0 0.0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 82	BE-N This stu- value (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 47.2 27.2 12.2 10.5 10.	idy) <u>1SD</u> 1 0.13 9 15.6 0 2 10.4 3 4 1.5 138 1 5 1.49 0.04 24 1.6 2	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3	NBS688 This st value (n = 1. 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 0.02	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0.01 7 0 0.06 0.04 4 0.02	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Co Xi Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9	dy 1 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1.5 1.38 1 5 1.49 0.04 24 1.5 1.49 0.04 2.4 1.6 2.2	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 0.06 0.04 4 0.1 0.2 0.1 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.6 5 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9	BE-N This stuvalue (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96	dy 1 15D 1 0.13 9 15.6 0 2 10.4 3 4 1 .5 1.38 1 1.5 1.49 0.04 24 1.6 2.2 0.35	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0.06 0.04 4 0.2 0.03	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51	maxim me (n =	1 0.00 0 1.6 0 0.6 0 0.6 0 0.6 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70	BE-N This stuvalue (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9	idy) 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1.5 138 1 5 1.49 0.04 24 1.6 2.2 0.35 1.1	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 1 0.06 0.04 4 0.1 0.23 0.01	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12	BE-N This stu- value (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42	dy 1 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1.5 1.49 0.04 24 1.49 0.04 24 1.49 0.04 21 0.35 1.1 0.21	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5	NBS688 This st value (n = 1 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0.06 0.04 4 0.2 0.03 0.1 0.2 0.03 0.1	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57	maxim me (n =	um blank pasured 70, ppm) 1 0.00 0 1.6 0 0.6 0 0.6 0 0.0 0 0.0 0 0 3 0.02 0.05 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6	BE-N This stu- value (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72	dy 1 15D 1 0.13 9 15.6 0 2 10.4 3 4 1.5 138 1 5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.04	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01	NBS688 This st value (n = 1. 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0.01 7 0 0.06 0.04 4 0.1 0.03 0.1 0.03 0.01	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84 1.78	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.65 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 3.72 10 18	idy) 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5 1.38 1 5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.21 0.21 0.24 0.24 1.6 2.4 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 1 0.06 0.04 4 0.1 0.2 0.03 0.1 0.03 0.01 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84 1.78 3.01	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.6	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.6 5 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9 13	BE-N This stu- value (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 10.18 1.33	dy 1 15D 1 0.13 9 15.6 0 2 10.4 3 4 1.5 1.38 1 1 5 1.49 0.04 24 1.6 0.04 24 1.1 0.04 0.02 0.02	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.5 2	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0 54	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0.01 7 0 0.06 0.04 4 0.2 0.03 0.1 0.2 0.03 0.01 0.05 0.01 0.05 0.01 0.05 0.5 0.	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84 1.78 3.01 0 3	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.06	maxim me (n =	1 0.00 0 1.6 0 0 0.6 0 0.6 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9 1.3	BE-N This stuvalue (n = 11) 23 2.66 233 366.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 10.18 1.33 6 41	idy) 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1.5 138 1 5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.21 0.21 0.24 0.04 0.2 0.35 1.1 0.24 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 0.52	NBS688 This st value (n = 1. 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 2.42	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0.1 7 0 0.1 7 0 0.04 4 0.1 0.2 0.03 0.1 0.03 0.01 0.03 0.01 0.05	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84 1.78 3.01 0.3 2.12	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.66 0.06 0.06	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.65 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9 1.3 6.29	BE-N This stu- value (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 10.18 1.33 6.41 1.33 6.41	dy 1 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5 138 1 .49 0.04 24 1.6 2 .2 0.35 1.1 0.21 0.04 0.9 0.02 0.0	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 3.4	NBS688 This st value (n = 1 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 3.42 2.55 4.33 12.0 1.82 8.9 2.54 3.12	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0 0.1 7 0 0 0.1 7 0 0 0.06 0.04 4 0.2 0.03 0.01 0.03 0.01 0.03 0.01 0.05	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 9.72 3.79 111 3.73 12.2 2.57 13.2 2.57 13.2 2.84 1.78 3.01 0.3 2.12	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.	maxim me (n =	um blank pasured 70, ppm) 1 0.00 0 1.6 0 0.6 0 0.6 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.000000	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 16.9 70 12 3.6 9 1.3 6.29 1.03	BE-N This stuvalue (n = 11 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 10.18 1.33 6.41 1.09	dy 1 15D 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5 138 1 1.5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.04 0.19 0.02 0.08 0.01	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 3.4 0.81	NBS688 This st value (n = 1. 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 3.42 0.74	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0.1 7 0 0.06 0.04 4 0.1 0.06 0.04 4 0.1 0.03 0.1 0.03 0.01 0.05 0.05 0.05 0.01 0.03 0.01 0.05	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84 1.78 3.01 0.3 2.12 0.4	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.6 0.6 0.6 0.6 0.06 0.42 0.08	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9 1.3 6.29 1.03 2.48	BE-N This stuvalue (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 16.9.9 12.42 3.72 10.18 1.33 6.41 1.09 2.44	dy) 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1.5 1.38 1 5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.21 0.02 0.08 0.02 0.08 0.02	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 3.4 0.81 2.1	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 3.42 0.54 3.42 0.74 2.07	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 1 0.06 0.04 4 0.1 0.23 0.1 0.03 0.01 0.05 0.01 0.03 0.03	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.84 1.78 3.01 0.3 2.12 0.4 0.23	detection limit soln pg ml ⁻¹ 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.55 0.6 0.57 0.36 0.6 0.06 0.42 0.08 0.05	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.6 5 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9 1.3 6.29 1.03 2.48 0.37	BE-N This stuvalue (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 10.18 1.33 6.41 1.09 2.44 0.33	dy 1 150 1 0.13 9 15.6 0 2 10.4 3 4 1.5 1.38 1 1.5 1.49 0.04 24 1.6 0.04 24 1.6 0.04 0.04 0.19 0.04 0.04 0.04 0.19 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 3.4 0.81 2.1 0.29	NBS688 This st value (n = 1: 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 3.42 0.54 3.42 0.74 2.07 0.33	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0.1 7 0 0.1 7 0 0.06 0.04 4 0.2 0.03 0.1 0.03 0.01 0.05 0.01 0.03 0.01 0.05 0.01 0.03 0.01 0.05 0.01 0.05 0.01 0.03 0.01 0.05 0.05 0.5 0.	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84 1.78 3.01 0.3 2.12 0.4 0.23 0.4	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.42 0.05 0.08 0.05 0.08	maxim me (n =	um blank pasured 70, ppm) 1 0.00 0 1.6 0 0.6 0 0.6 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Co Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Th Yb	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9 1.3 6.29 1.03 2.48 0.37 1.8	BE-N This stuvalue (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 10.18 1.33 6.41 1.09 2.44 0.33 1.85	dy 1 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1 .5 1.38 1 .5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.21 0.04 0.2 0.35 1.1 0.21 0.2 0.35 1.1 0.21 0.04 0.2 0.35 1.1 0.21 0.04 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.05	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 3.4 0.29 2.05	NBS688 This st value (n = 1. 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 3.42 0.74 2.07 0.33 2.09	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0.1 7 0 0.1 7 0 0.1 7 0 0.1 7 0 0.07 8 0 0 2 5.5 3 13 0 0.1 7 0 0 0 0 0 0 0 0 0 0 0 0 0	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84 1.78 3.01 0.3 2.12 0.4 0.23 0.4 0.4 0.4	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.57 0.36 0.6 0.57 0.36 0.6 0.57 0.36 0.6 0.6 0.6 0.08 0.05 0.06 0.05 0.07 0.06 0.07 0.06 0.08 0.05 0.07 0.06 0.05 0.07 0.06 0.06 0.05 0.07 0.06 0.07 0.07	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.6 5 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Y Lu	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9 1.3 6.29 1.03 2.48 0.37	BE-N This stu- value (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 10.18 1.33 6.41 1.09 2.44 0.33 1.85 0.27	dy 1 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5 138 1 1.5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.21 0.04 0.21 0.04 0.9 0.02 0.08 0.01 0.04 0.02 0.03 0.04	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 3.4 0.81 0.29 2.05 0.35	NBS688 This st value (n = 1 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 3.42 0.74 2.07 0.33 2.09 0.35	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0 0.1 7 0 0 0.1 7 0 0 0.04 4 0.1 0.2 0.03 0.01 0.03 0.01 0.05 0.03 0.01 0.03 0.01 0.03 0.01	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.57 13.2 2.57 13.2 2.84 1.78 3.01 0.3 2.12 0.4 0.23 0.4 0.24 0.44 0.12	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.06 0.42 0.08 0.05 0.08 0.09 0.02	maxim me (n =	um blank pasured 70, ppm) 1 0.00 0 1.6 0 0.6 0 0.6 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 16.9 70 12 3.6 9 1.3 6.29 1.03 6.29 1.03 2.48 0.37 1.8 0.24 5.4	BE-N This stu- value (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 10.18 1.33 6.41 1.09 2.44 0.33 1.85 0.27 5.79	dy 1 15D 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5 138 1 1.5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.04 0.19 0.02 0.08 0.01 0.04 0.19 0.02 0.03 0.00 0.02 0.03 0.00 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.04 0.04 0.15 0.15 0.15 0.24 0.15 0.24 0.35 1.11 0.04 0.19 0.04 0.0	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 3.4 0.81 2.1 0.29 2.05 0.35 0.35 5	NBS688 This st value (n = 1. 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 3.42 0.54 3.42 0.74 2.07 1.62 3.54 3.12 0.54 3.54 3.55 3.12 0.54 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.1 7 0 0.06 0.04 4 0.1 0.06 0.04 4 0.1 0.2 0.03 0.1 0.03 0.03 0.03	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84 1.78 3.01 0.3 2.12 0.4 0.23 0.4 0.44 0.12 0.4 0.44 0.12	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.57 0.36 0.6 0.57 0.36 0.6 0.57 0.36 0.05 0.08 0.05 0.08 0.09 0.02 0.89	maxim me (n =	um blank pasured 70, ppm) 1 0.00 0 1.6 0 0 0.6 0 0 0.0 0.0 0 0.0 0 0.0	_	
PPM Sc Ti (wt%) V Co Ni Co Xn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm EGd Tb Dy Ho Er Tm Y b Lu HTo	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9 1.3 6.29 1.03 2.48 0.37 1.8 0.24 5.5	BE-N This stuvalue (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 10.18 1.33 6.41 1.09 2.44 0.33 1.85 0.27 5.79 6.45	dy) 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1 .5 1.38 1 .5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.21 0.04 24 1.6 2.2 0.35 1.1 0.21 0.04 0.2 0.35 1.1 0.21 0.04 0.2 0.35 1.1 0.21 0.04 0.2 0.05 0.2 0.04 0.2 0.05 0.2 0.04 0.2 0.05 0.2 0.04 0.2 0.05 0.2 0.04 0.05 0.5 0.	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 3.4 0.81 2.1 0.29 2.05 0.35 1.55 0.31	NBS688 This st value (n = 1. 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 3.42 0.74 2.07 0.33 2.09 0.35 1.53 2.09	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.11 7 0 1 0.06 0.04 4 0.1 0.23 0.33 0.11 0.03 0.011 0.033 0.011 0.033 0.011 0.033 0.011 0.033 0.011 0.033	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84 1.78 3.01 0.3 2.12 0.4 0.23 0.4 0.12 4.46 0.98	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.06 0.42 0.08 0.05 0.08 0.09 0.02 0.09 0.02 0.89 0.02 0.89 0.02 0.89 0.02 0.89 0.02 0.89 0.02 0.89 0.02 0.89 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.6 5 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	
PPM Sc Ti (wt%) V Cr Mn (wt%) Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9 1.3 6.29 1.03 2.48 0.37 1.8 0.24 5.5	BE-N This stuvalue (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 6.9 9 12.42 3.72 10.18 1.33 6.41 1.09 2.44 0.33 1.85 0.27 5.79 6.15	dy 1 150 1 10.13 9 15.6 0 2 10.4 3 4 1 1.5 138 1 1.5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.24 1.49 0.04 24 1.5 1.49 0.04 0.4 0.04 0.4 0.02 0.03 0.00 0.03 0.00 0.09 0.04 0	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 3.4 0.81 2.1 0.29 2.05 0.35 1.55 0.31	NBS688 This st value (n = 1 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 3.42 0.54 3.42 0.54 3.42 0.74 0.33 2.09 0.35 1.53 0.30	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0 0.1 7 0 0.06 0.04 4 0.1 0.2 0.03 0.01 0.03 0.01 0.05 0.01 0.03 0.03 0.01 0.03 0.01	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.57 12.8 3.79 111 3.73 12.2 2.57 13.2 2.57 12.8 3.79 111 3.73 12.2 2.57 13.2 2.57 12.8 3.79 111 3.73 12.2 2.57 13.2 2.57 12.8 3.79 111 3.73 12.2 2.57 13.2 2.57 12.8 3.79 111 3.73 12.2 2.57 13.2 2.57 13.2 2.57 12.8 3.79 111 3.73 12.2 2.57 13.2 2.53 10.3 2.12 0.4 0.4 0.52 0.53 0.4 0.4 0.53 0.4 0.4 0.52 0.52 0.52 0.57 13.2 2.57 13.2 2.57 13.2 2.57 13.2 2.53 0.4 0.4 0.4 0.4 0.52 0.4 0.52 0.52 0.52 0.53 0.53 0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.55 0.55 0.55 0.55 0.55	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.57 0.36 0.6 0.64 0.57 0.36 0.6 0.6 0.42 0.08 0.02 0.02 0.89 0.14	maxim me (n =	um blank pasured 70, ppm) 1 0.00 0 1.6 0 0.6 0 0.6 0 0.0 0.0 0 0.0 00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	_	
PPM Sc Ti (wt%) V Co Ni Co Ni Cu Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9 1.3 6.29 1.03 6.29 1.03 2.48 0.24 5.5	BE-N This stu- value (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 10.18 1.33 6.41 1.09 2.44 0.33 1.85 0.27 5.79 6.15 4.4	dy 1 15D 1 0.13 9 15.6 0 2 10.4 3 4 1 1.5 138 1 1.5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.04 0.19 0.02 0.08 0.01 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.00 0.0	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 3.4 0.81 2.1 0.29 2.05 0.35 1.55 0.31	NBS688 This st value (n = 1. 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 3.42 0.54 3.42 0.74 2.07 1.63 0.02	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.11 7 0 0.11 7 0 0.04 4 0.1 0.2 0.03 0.01 0.03 0.01 0.05 0.01 0.03 0.01 0.03 0.01 0.03 0.01	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84 1.78 3.01 0.3 2.12 0.4 0.23 0.4 0.44 0.68	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.57 0.36 0.6 0.57 0.36 0.6 0.57 0.36 0.05 0.08 0.05 0.08 0.09 0.02 0.89 0.14	maxim me (n =	um blank pasured 70, ppm) 1 0.00 0 1.6 0 0 0.65 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	
PPM Sc Ti (wt%) V Co Ni Co Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta	Accepted value 22 2.61 235 360 0.2 61 267 72 120 17 47 1370 30 265 100 0.8 1025 82 152 16.9 70 12 3.6 9 1.3 6.29 1.03 2.48 0.37 1.8 0.24 5.5	BE-N This stu- value (n = 11) 23 2.66 233 368.1 0 62 300.9 72 121 18 48.2 1538 31 273 117.56 0.75 1059 82.1 147.9 17.96 69.9 12.42 3.72 10.18 1.33 6.41 1.09 2.44 0.33 1.85 0.27 5.79 6.15 4.1 1.72	dy) 1SD 1 0.13 9 15.6 0 2 10.4 3 4 1 .5 1.38 1 .5 1.49 0.04 24 1.6 2.2 0.35 1.1 0.21 0.04 24 1.6 2.2 0.35 1.1 0.21 0.04 24 1.6 0.2 0.35 1.1 0.21 0.04 0.2 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.04 0.02 0.02 0.02 0.04 0.02 0.03 0.04 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.00 0.02 0.03 0.00 0.02 0.02 0.02 0.03 0.00 0.02 0.02 0.03 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.0	Accepted value 38 1.17 242 332 0.167 49 158 96 84 17 1.91 169.2 17 61 5 0.24 200 5.3 13 2.4 9.6 2.5 1.01 3.2 0.52 3.4 0.29 2.05 0.35 1.55 0.31 3.3 0.20	NBS688 This st value (n = 1. 38 1.16 252 333.1 0 49 173.4 87 79 16 2.0 174 21 56 4.33 0.02 178 5.3 12.0 1.82 8.9 2.44 0.99 3.12 0.54 3.42 0.74 2.07 0.33 2.09 0.35 1.53 0.30	tudy 4) 1SD 2 0.07 8 11.7 0 2 5.5 3 13 0 0.0.1 7 0 1 0.06 0.04 4 0.1 0.2 0.03 0.1 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03	detection limit solid ng g ⁻¹ 212 6380 273 532 231 19.5 897 128 34.3 13.4 43 20.9 25.2 9.72 3.79 111 3.73 12.2 2.57 13.2 2.84 1.78 3.01 0.3 2.12 0.4 0.23 0.4 0.23 0.4 0.12 4.46 0.68	detection limit soln pg ml -1 42 1280 55 106 46 3.9 179 26 6.9 2.7 0.64 4.2 5 1.9 0.8 22 0.75 2.4 0.75 2.4 0.51 2.6 0.57 0.36 0.6 0.06 0.05 0.26 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.09 0.14	maxim me (n =	um blank basured 70, ppm) 1 0.00 0 1.6 0 0 0.65 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0.0 00.0 0	_	

Accepted standard values taken from Potts et al., 1992

PPM	KI 202	AVERAGE	1SD	2SD	RSD								
Sc	17	18	17	17	17	17	18	16	16	17	0.6	1.3	3.8
Ti (wt%)	0.75	0.85	0.82	0.81	0.82	0.82	0.82	0.72	0.76	0.80	0.0	0.1	5.3
V	179	182	179	173	176	176	177	179	166	176	4.6	9.3	2.6
Cr	2.6	2.2	1.2	2.8	2.8	2.8	2.8	2.4	1.8	2.4	0.6	1.1	23.7
Mn (wt%)	0.15	0.16	0.16	0.15	0.16	0.16	0.16	0.15	0.15	0.15	0.0	0.0	2.3
Co	37	39	39	38	38	38	38	38	36	38	1.0	2.1	2.7
Ni	4.7	4.7	4.0	4.0	3.6	3.7	3.7	4.8	4.1	4.2	0.5	1.0	11.4
Cu	38	40	38	39	39	39	40	39	36	39	1.3	2.6	3.4
Zn	62	67	67	68	70	68	71	66	63	67	2.9	5.9	4.4
Ga	17	18	18	17	17	17	17	17	17	17	0.5	1.0	2.9
Rb	62.8	72.6	72.1	71.0	70.7	70.9	71.5	71.3	66.2	69.9	3.2	6.5	4.6
Sr	342	427	429	412	411	412	412	381	387	401	27.5	55.0	6.9
Y	26	28	28	28	28	28	28	28	26	27	0.9	1.9	3.4
Zr	168	180	181	178	177	177	177	179	165	176	5.6	11.1	3.2
Nb	7.90	8.41	8.55	8.38	8.34	8.34	8.40	8.36	7.84	8.28	0.2	0.5	2.9
Cs	2.9	3.1	3.1	3.1	3.0	3.0	3.0	3.0	2.8	3.0	0.1	0.2	3.1
Ва	484	628	646	646	643	640	641	655	602	621	53.4	106.9	8.6
La	19.4	20.6	21.1	21.1	21.0	20.8	20.9	21.5	19.7	20.7	0.7	1.4	3.4
Ce	39.9	41.3	42.0	42.0	42.2	42.0	42.1	43.2	39.5	41.6	1.2	2.3	2.8
Pr	5.20	5.36	5.40	5.37	5.43	5.30	5.36	5.52	5.06	5.33	0.1	0.3	2.5
Nd	21.2	22.1	22.2	22.2	22.5	22.2	22.4	22.8	20.9	22.1	0.6	1.2	2.8
Sm	4.57	4.74	4.81	4.79	4.82	4.79	4.85	4.93	4.53	4.76	0.1	0.3	2.7
Eu	1.14	1.23	1.24	1.20	1.22	1.21	1.23	1.26	1.14	1.21	0.0	0.1	3.5
Gd	4.44	4.79	4.75	4.75	4.74	4.73	4.86	4.86	4.46	4.71	0.2	0.3	3.2
Tb	0.70	0.76	0.74	0.75	0.76	0.76	0.75	0.76	0.71	0.74	0.0	0.0	3.3
Dy	4.12	4.41	4.39	4.40	4.43	4.40	4.40	4.50	4.18	4.36	0.1	0.2	2.8
Ho	0.86	0.92	0.94	0.92	0.92	0.92	0.92	0.93	0.88	0.91	0.0	0.1	2.9
Er	2.42	2.53	2.62	2.59	2.60	2.54	2.57	2.59	2.41	2.54	0.1	0.2	3.1
Tm	0.42	0.43	0.44	0.41	0.41	0.40	0.42	0.42	0.38	0.41	0.0	0.0	3.9
Yb	2.55	2.72	2.73	2.70	2.71	2.71	2.70	2.72	2.56	2.68	0.1	0.1	2.7
Lu	0.42	0.46	0.46	0.45	0.45	0.45	0.45	0.45	0.43	0.45	0.0	0.0	3.0
Hf	4.41	4.65	4.73	4.63	4.63	4.62	4.69	4.71	4.42	4.61	0.1	0.2	2.5
Та	0.77	0.81	0.81	0.81	0.82	0.81	0.82	0.81	0.77	0.80	0.0	0.0	2.4
tot Pb	10.4	11.5	11.6	11.6	11.6	11.6	11.6	11.7	10.5	11.3	0.5	1.0	4.6
Th	7.33	8.00	8.25	8.24	8.27	8.14	8.20	8.29	7.46	8.02	0.4	0.7	4.6
U	1.78	1.93	1.99	1.968	2.01	1.962	1.983	2.02	1.79	1.94	0.1	0.2	4.7

Table B.2. Comparison of trace element concentrations of the internal standard (KI 202) analysed over the period of study

Fig. B.1. Comparison of ICP-MS (Handley et al., 2007) versus XRF (Sitorus, 1990) Zr concentration data for IVC volcanic rocks.

800000.0

Element and Standard	Ratio	Accepted or	# standards	Mean measured	Error (± 2SD	Error
		reported value	run	value	absolute)	(± 2SD ppm)
Nd (J&M - pure)	143Nd/144Nd	0.51111 ^e	44	0.511106	0.000009	18
Nd (J&M - Sm doped)	143Nd/144Nd	0.51111 ^ª	30	0.511108	0.000009	17
Nd (J&M all)	143Nd/144Nd	0.51111 ^ª	74	0.511106	0.000010	19
Hf (JMC 475 - H-CONE)	176Hf/177Hf	0.282160 ^b	11	0.282160	0.000008	28
Hf (JMC 475 - ARIDUS X-CONE)	176Hf/177Hf	0.282160 ^b	51	0.282146	0.000004	15

Table B.3. Average reproducibility and accuracy of Nd and Hf isotope ratios for standard solutions measured during this study

References: a Royse et al., 1998; b Nowell et al., 1998.

0.512920^b

Aridus and X-cone long-term average up to period of study at Durham = 0.282145, 2RSD=26 ppm, n = 79 (Nowell et al., 2003; Pearson and Nowell, 2005).

Sample	¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ error	difference
	Edwards et al., 1993	This study	This study	(outside of known error)
GU1/T	0.512964ª	0.512982 [°]	0.000008	0.000010
GU5/T	0.512899 ^a	0.512907 ^c	0.000016	within error
GU7/T	0.512905 ^b	0.512917 ^c	0.000010	0.000002

Table B.4. Inter-laboratory comparison of Guntur ¹⁴³Nd/¹⁴⁴Nd isotope data

Edwards et al. (1993) data are presented relative to La Jolla ¹⁴³Nd/¹⁴⁴Nd of 0.51186.

Measured at: a, Department of Terrestrial magnetism Carnegie Institute of Washington;

0.512904^c

800000.0

b, Royal Holloway College University of London; c, Arthur Holmes Isotope Geology Laboratory at Durham University.

Guntur sample repeats in this study presented relative to J&M ¹⁴³Nd/¹⁴⁴Nd of 0.511110.

¹⁴³Nd/¹⁴⁴Nd error information is not given in Edwards et al., 1993.

References:

GU9/T

- Edwards, CMH, Morris, JD, Thirlwall, MF, 1993. Separating mantle from slab signatures in arc lavas using B/Be and radiogenic isotope systematics. Nature, 362: 530-533.
- Handley HK, Macpherson CG, Davidson JP, Berlo K, Lowry D, 2007. Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen Volcanic Complex, Indonesia. J Petrol 48:1155-1183.
- Nowell, GM, Kempton, PD, Noble, SR, Fitton, JG, Saunders, AD, Mahoney, JJ, Taylor, RN, 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology, 149: 211-233.
- Nowell, GM, Pearson, DG, Ottley, CJ, Schweiters, J, 2003. Long-term performance characteristics of a plasma ionisation multi-collector mass spectrometer (PIMMS): the ThermoFinnigan Neptune. Plasma Source Mass Spectrometry. Spec. Pub. Royal Society of Chemistry, 307-320.

- Pearson, DG, Nowell, GM, 2005. Accuracy and precision in plasma ionisation multicollector mass spectrometry: Constraints from neodymium and hafnium isotope measurements. Plasma Source Mass Spectrometry, Current Trends and Future Developments, 284-314.
- Potts, PJ, Tindle, AG, Webb, PC, 1992. Geochemical reference material compositions: rocks, minerals, sediments, soils, carbonates, refractories and ores used in research and industry. Whittles Publishing, Caithness, U.K.
- Royse, K, Kempton, PD, Darbyshire, DPF, 1998. NERC Isotope Geosciences Laboratory Report Series, 121.
- Sitorus, K, 1990. Volcanic stratigraphy and geochemistry of the Idjen Caldera Complex, East Java, Indonesia. MSc thesis, University of Wellington, New Zealand.