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Abstract 1 

New Nd-Hf isotope and trace element data for Javanese volcanoes are combined with 2 

recently published data to place constraints on subduction inputs at the Sunda arc in 3 

Indonesia and assess the value of Hf anomalies (expressed as Hf/Hf* and Sm/Hf ratios) as 4 

tracers of such inputs. The Hf anomaly does not correlate with Hf isotope ratio in Javanese 5 

lavas, however, Hf/Hf* and Sm/Hf ratios do correlate with SiO2. Contrary to previous work, 6 

we show that Hf anomaly variation may be controlled by fractionation of clinopyroxene 7 

and/or amphibole during magmatic differentiation and does not represent the magnitude or 8 

type of subduction input in some arcs. Correlation of Sm/Hf with indices of differentiation 9 

for other arcs (e.g. Vanuatu, New Britain, Mariana) suggests that differentiation control on 10 

Sm/Hf ratios in volcanic arc rocks may be a relatively common phenomenon. This study 11 

corroborates the use of Nd-Hf isotope co-variations in arc volcanic rocks to ascertain 12 

subduction input characteristics. The trajectories of regional volcano groups (East, Central 13 

and West Java) in Nd-Hf isotope space reveal heterogeneity in the subducted sediment input 14 

along Java, which reflects present-day spatial variations in sediment compositions on the 15 

down-going plate in the Java Trench. 16 

 17 

1. Introduction 18 

Ascertaining inputs to the mantle wedge in subduction zones is crucial if we are to 19 

understand crustal recycling, constrain the geochemical evolution of mantle reservoirs and 20 

investigate the fate of subducted sediments. Using the appropriate geochemical tools to 21 

ascertain such inputs (slab fluid and/or melt) is therefore of the utmost importance. Several 22 

workers have shown that Hf isotope ratios provide great potential to document mantle source 23 

compositions and subducted sediment inputs at island arcs (e.g. White and Patchett 1984; 24 

Pearce et al., 1999; Woodhead et al., 2001). Hf, as a high field strength element (HFSE), is 25 
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thought to behave conservatively, i.e. to have low solubility in aqueous fluids (cf. Woodhead 1 

et al., 2001) and should therefore largely avoid transportation to the mantle wedge during 2 

dehydration of subducted sediment or crust. Experimental investigations (Tatsumi et al., 3 

1986; Brenan et al., 1995; You et al., 1996; Kessel et al., 2005) and conclusions from other 4 

arc studies (McCulloch and Gamble, 1991; Pearce and Peate, 1995; Münker et al., 2004; 5 

Turner et al., 2009) suggest that both Nd and Hf are relatively fluid immobile elements (e.g. 6 

compared to Sr). Although limited Hf isotope data is available for altered oceanic crust 7 

(AOC) to test the immobility of these elements, recent work by Chauvel et al. (2009) has 8 

shown that altered basalts from the western Pacific are indistinguishable in their Hf-Nd 9 

isotopic ratio compared to unaltered Pacific MORB. This confirms previous suggestions (e.g. 10 

White and Patchett, 1984) that hydrothermal alteration has little or no effect on these ratios 11 

(cf. Sr isotopes; Staudigel et al., 1995) and, importantly, then affords the opportunity to 12 

constrain sedimentary subduction input additions at island arcs. 13 

Hf concentration anomalies of erupted lavas have also been promoted as a tracer of 14 

subducted sediment input (e.g. Pearce et al., 1999; Marini et al., 2005; Tollstrup and Gill, 15 

2005). The Hf anomaly is most commonly defined as the relative depletion/enrichment of Hf 16 

compared to Nd and Sm on an extended chondrite-normalised rare earth element (REE) 17 

diagram (e.g. Pearce et al., 1999). Therefore, the Sm/Hf ratio is suggested by some as the 18 

simplest way of quantifying Hf anomalies in arc lavas (e.g. Marini et al., 2005). Using Sm/Hf 19 

ratios also enables direct comparison between data sets, avoiding variations produced in Hf 20 

anomaly values due to the choice of different normalising factors, e.g. C1 chondrite, depleted 21 

mantle MORB (DMM) and primitive mantle (PM). Pearce et al. (1999) calculate Hf 22 

anomalies based on Yb-normalised Hf and Nd element ratios to minimise the effects of 23 

partial melting and fractional crystallisation. However, the authors indicate that normalisation 24 

by Yb is unsuitable if amphibole crystallisation is involved in petrogenesis. As amphibole is 25 
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thought to be important in the formation of many arc lavas (e.g. Foden and Green, 1992; 1 

Davidson et al., 2007) calculation of Hf anomalies using this method may not be appropriate. 2 

Negative Hf anomalies are common in arc lavas, and are interpreted as addition of a 3 

subduction component with a high Nd/Hf ratio (Pearce et al., 1999). However, the addition of 4 

a sediment component with a low Nd/Hf ratio cannot adequately explain the positive Hf 5 

anomalies Pearce et al. (1999) observe in the Izu-Bonin-Mariana Protoarc lavas. In contrast, 6 

Salters and Hart (1991) suggested that HFSE variations in arc lavas are not solely due to the 7 

addition of a slab-derived component and attribute HFSE depletions to a HFSE-depleted sub-8 

arc mantle reservoir. 9 

Consequently, further research is required to ascertain the use of Hf anomalies as 10 

source input indicators. Using new, and recently published (e.g. Handley et al., 2007; 2008a; 11 

2010) Nd-Hf isotope and trace element data from Java, this paper investigates the dominant 12 

control on Hf anomaly variation and constrains subducted sediment contributions in Javanese 13 

arc lavas. Variations in sediment composition deposited on the down-going plate along the 14 

Java Trench provide an ideal location to test whether the heterogeneous nature of sediments 15 

in the trench can be tracked in the output of the volcanoes. Identifying whether a 16 

homogeneous (as proposed by Edwards et al., 1993) or heterogeneous subduction component 17 

is involved in petrogenesis will also help to elucidate the nature of the subduction component 18 

in the Sunda arc. Our results emphasise that much greater care needs to be taken, when 19 

choosing trace element ratios to determine source component characteristics, by prior 20 

consideration of the potential influence of magmatic differentiation processes. 21 

 22 

2. Geological Setting and Sample Selection 23 

The island of Java is located in the central section of the Sunda arc, which extends from the 24 

Andaman Islands north of Sumatra to Flores in the Banda Sea (Hamilton, 1979, Fig. 1). 25 
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Present volcanic activity is related to the northward subduction of the Indo-Australian Plate 1 

beneath the Eurasian Plate. The tectonic features of the area are described in depth by 2 

Hamilton (1979). Recent work highlighting the structural complexity of the Java crust is 3 

detailed in Smyth et al. (2007) and Clements et al. (2009). 4 

Across-arc changes in chemistry are recognised at the Sunda arc (Rittman, 1953; 5 

Whitford and Nicholls, 1976; Hutchinson, 1976; Edwards, 1990), therefore, the rear-arc 6 

volcanoes of Muriah (370 km above the Wadati-Benioff zone (WBZ) in Central Java) and 7 

Ringgit Beser (210 km above the WBZ in East Java) are excluded from data comparison. To 8 

ease the recognition of general along-arc contrasts in the large Javanese dataset on bivariate 9 

diagrams, volcanoes are grouped into East, Central and West Java provenance based on 10 

geographical boundaries. The boundary for Central Java passes between Cereme and Slamet 11 

volcanoes in the West and Wilis and Kelut volcanoes in the East (Fig. 1b). Krakatau, in the 12 

Sunda Strait (west of Java) is included, accordingly, within the West Java group. A summary 13 

of the volcanic data used and source references (Table A.1) and a compilation of major and 14 

trace element data for samples with new isotope data (Table A.2) are presented in Appendix 15 

A. New Nd-Hf isotope data are presented for Gede Volcanic Complex (GVC) and Guntur in 16 

West Java and Merapi in Central Java (Table 1). All new major element, trace element and 17 

Sr-Nd isotope data are listed for Merbabu (Central Java) and Merapi in Table 2. See Fig. 1b 18 

for the location of volcanoes with new data presented.  19 

Despite unequivocal evidence for the incorporation of a subducted sediment 20 

component in other arcs, e.g. from studies of the cosmogenic isotope 10Be (Tera et al., 1986; 21 

Morris et al., 1990), it is uncertain whether trench sediments are largely subducted or 22 

accreted at the Java Trench. 10Be data from Sunda arc lavas cannot confirm sediment input to 23 

the mantle wedge (Edwards et al., 1993), but also do not preclude it. The presence of an 24 

accretionary prism in the fore-arc region of the Sunda arc at Java (Kopp et al., 2001) clearly 25 
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shows that off-scraping of some proportion of trench sediments occurs. Nevertheless, even 1 

where large accretionary prisms are formed at convergent margins, some portion of the 2 

sedimentary pile is still thought to be subducted (Westbrook et al., 1988; von Huene and 3 

Scholl, 1991; Clift and Vannucchi, 2004). Von Huene and Scholl (1991) assume that 70-80% 4 

of the trench sediment is subducted at accretionary margins. Plank and Langmuir (1998) 5 

proposed that 300 m of sediment is subducted beneath Java. The sediment type and mass 6 

deposited in the trench vary along the arc. Up to 5 km of sedimentary material fills the 7 

Sumatra Trench, less than 1 km exists in the western Java Trench and virtually no trench 8 

sediments are present in the eastern Java Trench (Plank and Langmuir, 1998). The thicker 9 

sedimentary deposits present at the site of subduction in West Java, compared with East Java, 10 

are a result of the closer proximity of West Java to turbiditic material sourced from the 11 

Himalayan collision zone and deep-sea fans surrounding India (Plank and Langmuir, 1998). 12 

Sediments deposited on the Indian Ocean Plate south of the trench are relatively uniform in 13 

thickness along the arc (200-400 m) (Hamilton, 1979; Moore et al., 1980; Plank, 1993) and 14 

dominantly pelagic (Hamilton, 1979). The large contrast between some element 15 

concentrations in sediments and the depleted upper mantle (assumed island-arc magma 16 

source), suggests that even a small amount of subducted sediment may exert a large control 17 

on the composition of arc lavas. Identification of such contrasts in geochemistry between the 18 

arc-mantle source and erupted lavas, which are not a result of magmatic differentiation, are 19 

key to answering the question of heterogeneity in the subducted component along Java. 20 

The local Indian Ocean sediments used in geochemical comparisons and modelling 21 

(from locations displayed in Fig. 1a), have been broadly grouped as detrital sand-rich, with a 22 

high abundance of terrigenous detrital phases (e.g. turbidites), or pelagic clay-rich (e.g. 23 

pelagic clay). Despite variation in chemistry for some elements, within each group there are 24 

strong links between sediment geochemistry and mineralogy. For example, detrital sand-rich 25 
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sediments are generally higher in Zr and Hf (attributed to the higher abundance of zircon) 1 

than pelagic clay-rich sediments (e.g. Carpentier et al., 2009). 2 

 3 

3. Analytical techniques 4 

For details on the analytical procedures for published data used in this study, refer to the 5 

source references in Table A.1. (Appendix A). The new Merapi (M95-028, M96-50 and 6 

M96-175) and Merbabu major element, trace element and Sr-Nd isotopic data were collected 7 

over the same time period as the Merapi data published in Gertisser and Keller (2003), using 8 

the same procedures and data quality constraints given by the authors. Trace element 9 

concentrations of Merapi whole-rock powders (M96-102, M98-030 and M98-031) were 10 

determined on the PerkinElmer ELAN 6000 quadrupole ICP-MS at Durham University 11 

following the analytical procedure and instrument operating conditions described by Ottley et 12 

al. (2003). The procedure is the same as that used (during the same time period) for all the 13 

Javanese volcanic rock trace element data presented by Handley et al. (2007; 2008a; 2010) 14 

used as comparison data in this study. During this period, calibration of the ELAN was 15 

achieved during each session via the use of in-house standards and international reference 16 

materials: W2, BHVO-1, AGV1, BE-N and BIR1 together with procedural blanks (3 per 17 

batch). Accuracy of the analytical method is shown by the agreement of the analyses with 18 

international standard data (Table B.1. Appendix B). Total procedural blanks were typically 19 

low and maximum blank concentrations (n = 70) are displayed in Table B.1 (Appendix B). 20 

Multiple analyses of blanks and standards during each session, e.g. at the start, mid-way, and 21 

at the end of a run, allowed any drift in the instrument calibration to be detected. Table B.2 22 

(Appendix B) shows sample reproducibility, measured by replicate analysis of an internal 23 

rock standard, KI 202 from Ijen VC over the period of study. Comparisons between XRF 24 

(Sitorus, 1990) and ICP-MS (Handley et al., 2007) measurements for Zr are shown in Fig. 25 
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B.1 (Appendix B) and display good agreement (R2 = 0.97) suggesting that dissolution of 1 

accessory minerals, such as zircon, was successful during sample preparation for ICP-MS 2 

analysis. 3 

Preparation of whole rock powders for Nd and Hf isotope analysis was undertaken in 4 

the Arthur Holmes Isotope Geology Laboratory (AHIGL) at Durham University. The sample 5 

dissolution procedure and chemical separation of Hf and Nd from rock samples follows that 6 

presented by Dowall et al. (2003). Nd and Hf isotope ratios were determined on the AHIGL 7 

ThermoElectron Neptune Multi-collector Plasma Mass Spectrometer (MC-ICP-MS).  Details 8 

of instrument operating conditions are presented in Nowell et al. (2003) and Dowall et al. 9 

(2003). Instrumental mass bias was corrected for using a 146Nd/145Nd ratio of 2.079143 10 

(equivalent to the more commonly used 146Nd/144Nd ratio of 0.7219) and 179Hf/177Hf ratio of 11 

0.7325 using an exponential law. Data quality was monitored over several analytical sessions 12 

by regular analysis of standard reference materials during each run. The reproducibility of 13 

143Nd/144Nd and 176Hf/177Hf ratios for the respective standard solutions in each of the 14 

individual analytical sessions is better than 19 and 28 ppm (2σ), respectively. The average 15 

reproducibility and accuracy of Nd and Hf isotope ratios of standard solutions over the period 16 

of study are shown in Table B.3 (Appendix B) For consistency in dataset comparison Nd-Hf 17 

isotope data are presented in plots relative to J&M and JMC 475 standard values of 0.511110 18 

(Royse et al., 1998) and 0.282160 (Nowell et al., 1998), respectively. Blank samples 19 

processed (at least 2 per sample batch) were analysed by ICP-MS on the PerkinElmer ELAN 20 

6000 quadrupole at Durham University. Total analytical blanks were below 219 pg for Nd 21 

and 73 pg for Hf. These values are insignificant considering the quantity of Nd and Hf 22 

processed from the volcanic rocks (~5 µg and ~0.9 µg, respectively). Inter-laboratory 23 

comparison of Nd isotope analyses for Guntur, comparing the analyses from this study and 24 

those by Edwards et al. (1993), are presented in Table B.4 (Appendix B). 25 
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 1 

4. Results 2 

4.1. Hf concentration anomaly 3 

New major and trace element concentrations of Merapi and Merbabu volcanoes are presented 4 

in Table 2. Hf/Hf* is calculated as the relative depletion/enrichment of Hf compared to Nd 5 

and Sm on an extended chondrite-normalised rare earth element (REE) plot (Fig. 2). The 6 

bracketing elements of Nd and Sm are chosen as they possess peridotite/melt coefficients 7 

either side of Hf (e.g. Salters, 1996; Pearce et al., 1999). Fig. 2a shows Hf/Hf* versus 8 

176Hf/177Hf isotope ratio for Javanese volcanic rocks. The arc lavas are displaced from Indian 9 

Mid-Ocean Ridge Basalt (IMORB), thought to represent the mantle wedge beneath the Sunda 10 

arc (e.g. Handley et al., 2007; Gertisser et al., submitted), to lower 176Hf/177Hf ratios. Hf/Hf* 11 

of the lavas (0.53-1.38) extend to both higher and lower values than IMORB (Hf/Hf* = 0.8-12 

1.2). In contrast to the apparent correlation in Mariana volcanic rocks (Tollstrup and Gill, 13 

2005) no correlation is observed between Hf anomaly or Sm/Hf (inset diagram) and Hf 14 

isotopes; the Javanese lavas exhibit a wide range in Hf/Hf* for a relatively small variation in 15 

176Hf/177Hf isotopes, particularly for the East Java group (Fig. 2a). Due to the extremely 16 

limited Hf isotope data (with accompanying Nd isotope data) available for local Indian Ocean 17 

and Java Trench sediments (n = 5), the range of Hf/Hf* of the sediments are indicated along 18 

the y-axis. The pelagic, clay-rich sediments display negative Hf/Hf* (<1), while the detrital, 19 

sand-rich sediments possess values ≥ 1. Sediment samples for which Hf isotope data are 20 

available show that the sand-dominated, turbidite sediments extend to lower 176Hf/177Hf 21 

isotope ratios than the clay-rich pelagic sediment (and an associated Mn nodule). A noteable 22 

observation, previously unmentioned and/or unobserved for other data sets, is that Hf/Hf* in 23 

Javanese lavas correlates positively with SiO2 (Fig. 2b). This feature is explored in detail in 24 

section 5.1. 25 
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4.2. Hf and Nd isotope variation 2 

New whole-rock Nd-Hf isotope data are given in Table 1 and displayed in Fig. 3. The 3 

Javanese volcanic rocks are displaced from IMORB and Pacific- and Atlantic-MORB (other 4 

MORB) fields towards lower εNd and εHf, and lie on mixing lines between average IMORB 5 

and local sediments from the down-going slab. West Java lavas exhibit a strong positive 6 

correlation in Nd-Hf isotope space. Central Java lavas also display a positive correlation but 7 

the data are located at higher εHf values for similar εNd values compared to West Java lavas. 8 

East Java lavas exhibit somewhat constant εHf and a restricted range in εNd compared to the 9 

West Java lavas (Fig. 3b). 10 

 11 

5. Discussion 12 

5.1 Hf anomaly variation: ‘source’ or ‘process’ control 13 

The lack of correlation between Hf anomaly (Hf/Hf* and Sm/Hf) and Hf isotope ratio, and 14 

the correlation of Hf anomaly with SiO2 in Javanese volcanic rocks (Figs. 2 and 4) strongly 15 

suggest that magmatic differentiation at crustal depths may control Hf/Hf* variation. This 16 

hypothesis conflicts with recently published discussions, which consider subducted sediment 17 

as the dominant control on Hf/Hf* variation in arc rocks (e.g. Marini et al., 2005; Tollstrup 18 

and Gill, 2005). The positive correlation of the Java data in Fig. 2b, traverses the line of 19 

Hf/Hf* = 1, which suggests the shift between negative to positive Hf anomaly values is 20 

related to a single process, and one that commonly occurs in magma genesis at all Javanese 21 

volcanoes. Several authors suggest that fractionation between Sm and Hf is negligible, for 22 

example during partial melting of fertile mantle and at the early stages of subsequent 23 

fractional crystallisation (e.g. Pearce et al., 1999; Chauvel and Blichert-Toft, 2001), such that 24 

Sm/Hf may be a good proxy for source composition (e.g. Marini et al., 2005). However, a 25 
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literature survey on experimental, theoretical and calculated phenocryst-matrix distribution 1 

coefficients (D) in basaltic-andesitic compositions reveals that for several major rock-forming 2 

minerals, such as plagioclase, clinopyroxene and amphibole, determined distribution 3 

coefficient Sm/Hf ratios (DSm/Hf) are > 1 (e.g. Fig. 4a). Thus, Sm is more compatible than Hf 4 

in these minerals and therefore, crystal fractionation of such minerals should lead to 5 

decreasing Sm/Hf ratio in the melt with progressive crystal fractionation (and simultaneous 6 

modification of Hf anomaly values). Thirwall et al. (1994) suggest a similar control of 7 

amphibole and/or clinopyroxene fractionation on Zr/Sm ratios in some Lesser Antilles 8 

volcanic rocks. The absolute D values for Sm (and Hf) are low for plagioclase in basalt to 9 

andesite compositions, e.g DSm 0.044-0.11 (Luhr and Carmichael, 1980; Dostal et al., 1983; 10 

Fujimaki et al., 1984; Bacon and Druitt, 1988; McKenzie and O’Nions, 1991; Aignertorres et 11 

al., 2007) compared to DSm values of 0.8-1.6 for clinopyroxene (Larson, 1979; Luhr and 12 

Carmichael, 1980; Dostal et al., 1983; Fujimaki et al., 1984; Bacon and Druitt, 1988; 13 

McKenzie and O’Nions, 1991; Hart and Dunn, 1993; Johnson, 1998) and 0.66-2.221 for 14 

amphibole (Luhr and Carmichael, 1980; Dostal et al., 1983; Fujimaki et al., 1984; Bacon and 15 

Druitt, 1988; Brenan et al., 1995). Thus, plagioclase fractionation is unlikely to exert as much 16 

influence as clinopyroxene and/or amphibole on the Sm/Hf ratio of the remaining melt 17 

composition during differentiation. Fig. 4a also shows that DSm/Hf values are dependent on 18 

rock composition, which is particularly evident for clinopyroxene, where DSm/Hf values 19 

progressively increase with increasing silica content. 20 

 Fig. 4b shows the strong negative correlation observed between Sm/Hf and SiO2 for 21 

individual volcanic rock suites from Java and the inset diagram also shows the correlation of 22 

Sm/Hf with CaO). To investigate whether fractional crystallisation of common mineral 23 

phases can explain the Sm/Hf whole rock ratios, a 3-step fractional crystallisation model has 24 

been developed using a typical Javanese volcanic rock mineral assemblage, and incorporating 25 
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the increase in DSm/Hf with increasing SiO2. Step 1: removal of plagioclase, clinopyroxene, 1 

magnetite and olivine from KI 63 basalt. Steps 2 and 3: removal of plagioclase, 2 

clinopyroxene, magnetite and orthopyroxene from basaltic andesite and andesite, 3 

respectively. Full details of modelling parameters (including the D values used for each step) 4 

are given in the caption to Fig. 4c. For ease of modelling, Sm/Hf ratio, rather than Hf/Hf* is 5 

used to represent the Hf anomaly of the lavas. The model reveals the significant control 6 

crystal fractionation of a typical mineral assemblage can exert on the Sm/Hf ratios of the 7 

volcanic rocks and replicates the general array of the Java data. Variations in model input 8 

parameters such as mineral mode and composition, parent whole-rock composition and 9 

distribution coefficients also enable more acceptable and less acceptable models to be 10 

produced. It is noted that despite the low absolute D values for Sm (and Hf) in plagioclase in 11 

basalt to andesite compositions, its dominance of the mineral mode in Java volcanic rocks 12 

(e.g. Gertisser and Keller, 2003; Handley et al., 2007) enables plagioclase to exert a 13 

significant degree of control on model trends (not shown) depending on the particular modal 14 

content chosen. The grey shaded area in Fig. 4c shows the relative impact of the choice of 15 

partition coefficients for clinopyroxene in Step 3 using the observed range of Dcpx values for 16 

Sm and Hf given in Fig. 4a for andesitic compositions, which encompasses a range in DSm/Hf 17 

of 2-4. The shaded area shows the wide variation of solutions possible using reasonable sets 18 

of distribution coefficients. Fractional crystallisation of a mineral assemblage including 19 

clinopyroxene and/or amphibole during magmatic differentiation at Javanese volcanoes is 20 

therefore proposed to exert a major control on the Hf anomaly variation of the lavas. 21 

Furthermore, the vertical data array observed in Fig. 2a (wide range of Hf/Hf* exhibited by 22 

the lavas over a relatively small range in 176Hf/177Hf) and lack of correlation between Sm/Hf 23 

and 176Hf/177Hf (Fig. 2a inset) illustrates that the data do not lie on a simple mixing 24 

trajectories with subducted sediment (cf. εNd versus εHf; Fig. 3). The magnitude of the 25 
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negative Hf anomaly observed in the chemically least evolved rocks (highest MgO, lowest 1 

SiO2 content) may present the best representation of sediment input. However, as most arc 2 

rocks are relatively fractionated and have low MgO contents (particularly on Java), even the 3 

Sm/Hf ratio of basalt is likely to have undergone some degree of modification due to 4 

magmatic differentiation. This is illustrated by Thirlwall et al. (1994) who show that 5 

fractional crystallisation (and AFC) have strong effects on HFSE/REE (Zr/Sm) ratios, even in 6 

volcanic rocks samples with 6-10 wt% MgO. 7 

Interestingly, a negative correlation between Sm/Hf ratio and the silica content of 8 

lavas is also observed in other volcanic arcs (e.g. Vanuatu, New Britain, Mariana, Fig. 4d), 9 

suggesting that differentiation control on the Sm/Hf ratio of volcanic rocks may be a 10 

relatively common phenomenon. This observation may go some way to explain the observed 11 

positive Hf anomalies in more fractionated rock compositions. It may also provide an 12 

explanation for the positive Hf anomalies observed in the relatively evolved (up to 67 wt% 13 

SiO2) Protoarc lavas from the Mariana arc investigated by Pearce et al. (1999), as a moderate 14 

negative correlation does in fact exist between Sm/Hf and SiO2 for the Protoarc lavas (Fig. 15 

4d). 16 

 17 

5.2. Nd-Hf isotope constraints on source inputs 18 

Contamination of the mantle source by a fluid created during dehydration of the AOC is 19 

largely undetectable on plots of εNd-εHf (e.g. Handley et al., 2007). Therefore, displacement 20 

of the Java data from the MORB field is likely to be the result of a ‘crustal’ input during 21 

magma genesis (subducted sediment +/- assimilated arc crust). Crustal assimilation has been 22 

implicated in the western Sunda arc (Gasparon et al., 1994; Gasparon and Varne, 1998) and 23 

on Java (Chadwick et al., 2007; Handley et al., 2008a). Therefore, prior to discussing 24 

subducted sediment inputs it is important to assess the potential of crustal assimilation to 25 
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modify the isotope ratios. Fig. 5 shows Hf isotope ratio versus SiO2 (as an index of 1 

differentiation) for West, Central and East Java volcanic rocks. The new Hf isotope data are 2 

displayed as solid symbols in Figs. 5b and c. Despite the wide variation in 176Hf/177Hf isotope 3 

ratios exhibited by West Java volcanoes (Fig. 5a), individual volcanic suites from that region 4 

display relatively horizontal trends (Fig. 5b) that are inconsistent with significant crustal 5 

contamination of isotopically distinct material (inset Fig. 5d, arrows labelled AFC). Less 6 

individual volcanic suite data are available for Central and East Java, but for the data 7 

available, the absence of correlations between Hf isotope ratios and SiO2 also preclude 8 

significant isotopic modification via crustal assimilation. The Ijen Volcanic Complex in East 9 

Java (Fig. 5d) produces lavas with remarkably homogenous Hf isotope ratios over a relatively 10 

wide range in SiO2. This method of assessment naturally assumes that the crustal assimilation 11 

is coupled with fractional crystallisation (i.e. AFC, e.g. DePaolo, 1981), and that the 12 

fractional crystallisation is responsible for the observed silica range. However, modelling of 13 

δ18O mineral data and 87Sr/86Sr whole-rock isotope data also support ‘source’ contamination 14 

rather than a ‘crustal’ contamination mechanism for the same volcanic rock samples from 15 

Gede Volcanic Complex, Salak volcano and Ijen Volcanic Complex (Handley et al., 2010). 16 

Incorporation of a subducted component in the mantle source dominated either by 17 

clay- or sand-rich local sediment will produce very different mixing trends in Nd-Hf isotope 18 

space due to the contrasting Nd/Hf ratios of the sediments (e.g. Patchett et al., 1984; 19 

Carpentier et al., 2009). Pelagic, clay-rich Indian Ocean sediments have variable and 20 

relatively high Nd/Hf (6-42, n = 9, Plank and Langmuir, 1998; Ben Othman et al., 1989; 21 

Gasparon and Varne, 1998) resulting in convex-up mixing trends towards higher εHf relative 22 

to εNd, whereas continentally derived detrital/sand-rich local sediments tend to have 23 

relatively low Nd/Hf (4-7, n = 6, Ben Othman et al., 1989; Vervoort et al., 1999; Gasparon 24 

and Varne, 1998) producing relatively straight mantle source-sediment mixing curves, 25 
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associated with lower εHf relative to εNd (Fig. 3a inset). Therefore, we can examine whether 1 

the different isotopic arrays exhibited by separate geographical groups on Java reflect 2 

variations in the composition of subducting sediment. Simple bulk-mixing calculations 3 

between average IMORB mantle source and pelagic clay (curve B) and sand-rich turbidite 4 

(curves C and D) sediments are presented in Figs. 3a and b. Due to the lack of local sediment 5 

Nd-Hf isotope data (n = 5) a mixing curve using Mn nodule (Curve A) was also calculated to 6 

further exemplify mixing with high Nd/Hf and ‘pelagic’ Nd-Hf isotope composition material. 7 

We acknowledge that Mn nodules are unlikely to represent the entire subducting sedimentary 8 

section at the Java Trench. However, recent work by Chauvel et al. (2009) shows that almost 9 

all pelagic sediment types (chert, clay and carbonate lithologies) at drill Site 1149 in the 10 

western Pacific plot within the Fe-Mn crusts and nodule field in εNd-εHf isotope space, 11 

supporting the use of a Mn nodule to represent that of pelagic sediment. The end member 12 

compositions used in modelling are displayed in Table 3. The mixing curves suggest that 13 

displacement of Javanese arc lavas from IMORB εNd and εHf ratios and domain trajectories 14 

can be explained by addition of a small amount (generally < 5 %) of turbidite-dominated, 15 

sand-rich, low Nd/Hf sedimentary material to the mantle source of West Java lavas, and 16 

addition of a similar-sized, sedimentary component dominated by pelagic clay-rich, higher 17 

Nd/Hf material to the mantle source of Central Java lavas. The limited spread of the East Java 18 

field is largely due to the lack of Nd-Hf isotope data from other volcanoes except Ijen 19 

Volcanic Complex (one sample from both Semeru and Lamongan, Fig. 3b). The Ijen data lie 20 

on the detrital-rich sediment-mantle source mixing lines. However, an alternative solution 21 

was proposed by Handley et al. (2007), who show that Sr-Nd-Hf isotope data trends are 22 

consistent with mixing of high Nd/Hf sediment with a mantle-wedge source composition of 23 

slightly lower than average IMORB Hf isotope ratio (Fig. 3b inset). This is further supported 24 

by new Nd-Hf isotope data for Tambora volcano (Gertisser et al., submitted), located to the 25 
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east of Java (Fig. 1a), where the subducting sediment is also proposed to be clay-dominated 1 

(e.g. DSDP site 261). The Tambora data display a relatively horizontal array (cf. West Java); 2 

showing significant range in εNd over a limited range in εHf (Fig. 3b inset), consistent with 3 

mantle source contamination by high Nd/Hf sediment. This interpretation of Javanese 4 

volcanic rock data is consistent with the greater amount of continentally-derived, detrital-rich 5 

turbidite sediment observed in the trench opposite West Java compared to Central and East 6 

Java, due to the closer proximity of West Java to the Himalayan/Ganges turbidite source. 7 

We recognise that subducted sediment is more likely to be added to the mantle wedge 8 

as a partial melt rather than as a bulk component (as modelled here). However, due to the 9 

many assumptions required in order to calculate a partial melt composition (such as sediment 10 

composition and residual mineralogy, degree of melting, depth of melting, thermal conditions 11 

of the melting region and appropriate distribution coefficients), we use bulk-mixing models 12 

to illustrate the broad effects of mantle-sediment mixing. Partial melting of sediment with 13 

residual phases such as zircon is likely to increase the Nd/Hf ratio of the sediment 14 

component. However, this increase would be offset by the presence of residual monazite 15 

which is suggested to have DHf 4-5 orders of magnitude lower than DSm and thereby lowering 16 

the Nd/Hf ratio of the sediment-melt (Tollstrup and Gill, 2005 and references therein). 17 

Ultimately, partial melting of sediment is likely to reduce the percentage of subducted 18 

sediment suggested by bulk-mixing models. 19 

 20 

5.3. Implications for magma genesis in the Sunda arc 21 

Gasparon and Varne (1998) argue that crustal assimilation, opposed to subducted slab input, 22 

is the dominant process responsible for the isotopic and geochemical variability and 23 

"enrichment" along the Sunda arc. Despite field evidence of crustal anatectic melts in 24 

Sumatra and West Java (Hamilton, 1979; Gasparon and Varne, 1995) and more recently 25 
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implicated crustal contamination at Salak (Handley et al., 2008a) and Merapi (Chadwick et 1 

al., 2007), findings from this study suggest the dominant geochemical control on Nd-Hf 2 

isotope and some trace element characteristics occurs through subducted slab input to the 3 

mantle wedge followed by subsequent evolution through magmatic differentiation, largely 4 

excluding crustal contamination. Addition of a subducted slab component to the Sunda arc 5 

mantle wedge is advocated by several other authors (e.g. Edwards, 1990; Turner and Foden, 6 

2001; Gertisser and Keller, 2003; Handley et al., 2007, 2010), although Edwards et al. (1993) 7 

propose a homogeneous slab contribution along the Sunda arc. We attribute the different 8 

trajectories of Javanese volcanic groups in Nd-Hf isotope space to the incorporation of a 9 

heterogeneous subduction component, which largely reflects spatial variations observed in 10 

present day sediment types deposited on the down-going plate along the Java Trench (Fig. 3). 11 

A positive correlation in Nd-Hf isotope space for West Java volcanic rocks is consistent with 12 

the incorporation of a dominantly continental-derived, detrital-rich sedimentary component, 13 

whereas, the arrays of volcanic data in Nd-Hf isotope space for Central and East Java 14 

volcanoes are consistent with a more pelagic, clay-rich subducted sedimentary component 15 

and possibly stronger slab-fluid imprint, as concluded for Ijen Volcanic Complex (Handley et 16 

al., 2007). The along arc variation in sediment type proposed in magma genesis is consistent 17 

with the decreasing thickness of turbidite deposits in the trench from Sumatra to East Java. 18 

The tholeiitic basalts from Guntur display some of the least sediment-contaminated 19 

Nd-Hf isotope ratios, despite being located in West Java where the thickest sediment pile is 20 

present in the adjacent trench (cf. Central/East Java). Guntur volcano sits within a fault-21 

bound tectonic triangle (e.g. Soeria-Atmadja et al., 1994) where the crust may be thinner and 22 

decompression melting (cf. slab-fluxing) may be important in magma genesis (Handley, 23 

2006). Mafic glass inclusion data from neighbouring Galunggung volcano show that 24 
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pressure-release melting of the mantle wedge contributes to magma production within this 1 

region (Sisson and Bronto, 1998). 2 

The required along-arc heterogeneity in the subduction component along the Sunda 3 

arc, restricts the applicability of modelling slab inputs using a ‘bulk composition’ sediment 4 

approach. The bulk Java subducted sediment composition calculated by Plank and Langmuir 5 

(1998) does not produce an acceptable mixing array with the mantle wedge to fit the data 6 

array of from either East or West Java volcanic centres (Handley et al., 2007). Combining our 7 

results with those of Vroon (1992) and Vroon et al. (1995) for sediments and volcanic rocks 8 

of the Banda arc (East Indonesia), heterogeneity in the recycled subduction component can 9 

now be traced along most of the Indonesian arc. In the west Sunda arc we see the importance 10 

of detrital-rich, terrigenous subducted sediments (of Himalayan/Ganges source), which 11 

moving eastwards, changes to dominantly pelagic sediment in the central and eastern Sunda 12 

arc region e.g. East Java and Sumbawa (Tambora; Gertisser et al., submitted). Further east at 13 

the Banda arc, we see a return to the involvement of detrital-rich terrigenous sediment and a 14 

larger degree of mantle contamination moving from northeast to southwest, corresponding to 15 

increasing fluxes of continental material into the trench towards the sector where the collision 16 

between Australia and the Banda arc began.  17 

 18 

6. Conclusions 19 

This study highlights and corroborates the importance of Hf and Nd isotopes as petrogenetic 20 

tools for identifying and characterising sediment subduction in arc volcanic rocks. However, 21 

contrary to previous interpretations, Hf anomalies may not represent subduction input in 22 

some arcs, particularly the Sunda arc. We show it is possible to create significant variation in 23 

Hf anomaly through fractional crystallisation involving clinopyroxene and/or amphibole as 24 

the major mafic mineral phases. Subsequently, it may not be appropriate to use Sm/Hf in 25 
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volcanic rocks as a proxy for magmatic source composition without prior consideration of 1 

differentiation control. Source studies of island arcs often neglect to assess the impact of 2 

magmatic differentiation effects prior to source input evaluation, however, we re-emphasise 3 

in this paper that it must be a prerequisite. This study also presents a potential implication for 4 

melting in the presence of a clinopyroxene-rich residue, which may also affect calculated Hf 5 

anomalies in arc lavas. A preliminary investigation of Sm/Hf variation with SiO2 for other 6 

arcs suggests that Sm/Hf fractionation via differentiation processes is a ubiquitous feature of 7 

arc magmas. 8 

New Nd-Hf isotopic and trace element data of Sunda arc volcanoes reveal significant 9 

heterogeneity in the subduction component along the Sunda arc. This is attributed to 10 

incorporation of subducted sediment, the composition of which is controlled by observed 11 

spatial variations in the sediments deposited on the down-going Indian Ocean plate. Due to 12 

significant heterogeneity in the subduction input along Java, using an average ‘bulk-13 

sediment’ to represent the subduction component for the whole arc is, therefore, unsuitable. 14 
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Figure Captions 5 

Fig. 1. a) Schematic illustration of the tectonic features of the Sunda arc. Open squares 6 

indicate the location of Indian Ocean sediment drill and dredge sites (taken from Gasparon 7 

and Varne (1998) and Vroon (1992)). The suggested southeast limit of terrigenous turbidite 8 

deposits in the trench is also shown (Hamilton, 1979). b) Map of Java showing volcano 9 

location. The volcanoes for which new geochemical and isotopic data are presented in this 10 

study (Gede Volcanic Complex, Guntur, Merapi and Merbabu) are shown in bold. Krakatau 11 

is not shown (immediately west of West Java). The two white lines in north-south orientation 12 

indicate the geographical boundaries of West, Central and East Java. The Digital Elevation 13 

Model of Java is complied from SRTM data (Shuttle Radar Topography Mission, NASA 14 

data). 15 

 16 

Fig. 2. a) Hf concentration anomaly (Hf/Hf*) variation with 176Hf/177Hf isotope ratio for 17 

Javanese volcanic rocks. The average 176Hf/177Hf 2σ error (± 0.000010) is smaller than the 18 

symbol size.  Hf/Hf* is calculated using the equation: [(Hf/HfN)/[(Sm/SmN)+(Nd/NdN)/2]. 19 

Normalising values for C1 chondrite are taken from McDonough and Sun, 1995. See Table 20 

A.1 (Appendix A) for Java volcanic data sources. Clay-rich sediment data: White et al. 21 

(1986); Ben Othman et al. (1989); Plank and Langmuir (1998); Gasparon and Varne (1998) 22 

Detrital, sand-rich sediment data: the same references as those for clay-rich sediment plus 23 

Vervoort et al. (1999). IMORB data: Salters (1996); Chauvel and Blichert-Toft, (2001). The 24 

inset diagram shows Sm/Hf versus 176Hf/177Hf isotope ratio for Javanese volcanic rocks. b) 25 



 21 

Hf/Hf* versus SiO2 for Java volcanic rocks. Inset diagram shows the relative enrichment 1 

(Hf/Hf* >1) or depletion (Hf/Hf* <1) of Hf relative to Nd and Sm on an extended chondrite-2 

normalised REE diagram. Java data sources are given in Table A.1 (Appendix A). 3 

 4 

Fig. 3. a) εHf-εNd diagram showing displacement of Javanese volcanic rocks from the 5 

IMORB and other MORB (Pacific and Atlantic) fields. Bulk-mixing models between 6 

IMORB source and local high Nd/Hf (15-33) sediment (curves A & B), and local low Nd/Hf 7 

(6-7) sediment (curves, C and D) are displayed. A = Mn nodule (V34-62, White et al., 1986; 8 

Ben Othman et al., 1989), B = pelagic clay (V34-45, White et al., 1986; Ben Othman et al., 9 

1989) C and D = deep-sea turbidite sediments V28-357-M (CA30-M) and V28-357-M 10 

(CA30-S), respectively (Vervoort et al., 1999). End member compositions are given in Table 11 

3. Sediment sample locations are shown in Fig. 1a. Java data fields are distinguished by 12 

geographical region and data sources are given in Table A.1 (Appendix A). Inset: A 13 

schematic illustration of the mixing curves produced from mixing ‘sand-rich’ low Nd/Hf 14 

sediments and ‘clay-rich’ high Nd/Hf sediments with a MORB-like mantle source. b) A close 15 

up view of the εHf-εNd diagram shown in a with the individual fields of Javanese volcanic 16 

suites displayed. Mantle-sediment mixing as in a. Inset: εHf-εNd diagram illustrating mixing 17 

curves produced between three IMORB source compositions with lower than average 176 18 

Hf/177Hf isotope ratios (MD37-05-02, Chauvel and Blichert-Toft, 2001; 54R-1, 115-121, 19 

Nowell et al., 1998; MD34 D2, Chauvel and Blichert-Toft, 2001) and sediment A, modified 20 

from Handley et al., 2007. The Tambora data are from Gertisser et al. (submitted). 21 

 22 

Fig. 4. a) Distribution coefficients (D) of Sm and Hf for basaltic-andesitic rock compositions 23 

taken from the literature. Note that in all cases DSm/Hf > 1. Clinopyroxene: Larsen (1979); 24 

Luhr and Carmichael (1980); Dostal et al. (1983); Fujimaki et al. (1984); Bacon and Druitt 25 
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(1988); McKenzie and O'Nions (1991); Hart and Dunn (1993); Johnson (1998). Amphibole: 1 

Luhr and Carmichael (1980); Dostal et al. (1983); Fujimaki et al. (1984); Bacon and Druitt 2 

(1988); Brenan et al. (1995). b.a. = basaltic andesite. b) Sm/Hf versus SiO2 showing a 3 

coherent negative correlation for Javanese volcanic rocks and for all individual volcanic 4 

suites. Volcanoes with 3 or less data points (Krakatau, Tangkubahn Parahu, Papandayan, 5 

Sumbing, Semeru and Lamongan) are plotted but have not been delimited. Inset diagram: 6 

Sm/Hf versus SiO2 showing the Sm/Hf ratios of local sediment (for data sources see Fig. 1a 7 

caption). c) Sm/Hf versus SiO2 of Javanese volcanic rocks showing model fractionation 8 

curves for the removal of a typical Java mineral assemblage of plagioclase, clinopyroxene, 9 

magnetite plus olivine or orthopyroxene from Ijen Volcanic Complex basalt (KI 63). Step 1 10 

(Dbulk(basalt)): removal of plag (0.72), cpx (0.18), ol (0.05) and mag (0.05) using D values: 11 

plag: Sm, 0.11; Hf, 0.01 (McKenzie and O’Nions, 1991); cpx: Sm, 0.239; Hf, 0.2 (Johnson, 12 

1998); ol: Sm, 0.0049; Hf, 0.0038 (Fujimaki et al., 1984); mag: Sm, 0.29; Hf, 0.30 (Luhr and 13 

Carmichael, 1980). Steps 2 (Dbulk(b.a.)) and 3 (Dbulk(andesite)): removal of plag (0.7), cpx (0.17), 14 

opx (0.09) and mag (0.04) using D values: plag: Sm, 0.1024; Hf, 0.0151 (Fujimaki et al., 15 

1984); opx: Sm, 0.0278; Hf, 0.0508 (Fujimaki et al., 1984); mag: Sm, 0.29; Hf, 0.30 (Luhr 16 

and Carmichael, 1980); cpx step 2: Sm, 0.8; Hf, 0.3 (Dostal et al., 1983); cpx step 3: Sm, 1.3; 17 

Hf, 0.34 (Luhr and Carmichael, 1980). Grey shaded field exemplifies the possible range in 18 

model solutions produced due to variations in Dcpx Sm and Hf chosen for Step 3. DSm/Hf (cpx) = 19 

2 uses Dcpx Sm, 0.3774; Hf, 0.1730 (Fujimaki et al., 1984); DSm/Hf (cpx) = 4 uses Dcpx Sm, 1.6; 20 

Hf, 0.46 (Bacon and Druitt, 1998). Whole-rock and mineral compositions are taken from 21 

Handley et al. (2007). Tick marks on fractionation curves are given for 10% increments. The 22 

Sm/Hf ratios of IMORB use data from Price et al. (1986), Salters (1996) and Chauvel and 23 

Blichert-Toft (2001). Inset: Sm/Hf versus CaO for Javanese volcanic rocks. Data sources are 24 

shown in Table A.1 (Appendix A). d) Sm/Hf variation with SiO2 for other volcanic arc rocks. 25 
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Vanuatu: Peate et al. (1997); Handley et al. (2008b). Mariana: Woodhead et al. (2001); Elliott 1 

et al. (1997); Pearce et al. (1999). Lesser Antilles: Woodhead et al., 2001; Turner et al. 2 

(1996); Davidson et al. (1993); Heath et al. (1998). New Britain: Woodhead et al. (2001). 3 

Depleted MORB mantle (DMM) from Workman and Hart (2005). 4 

 5 

Fig. 5. a) 176Hf/177Hf variation with SiO2 for Javanese volcanic rocks separated by geographic 6 

region. b), c) and d) show 176Hf/177Hf variation with SiO2 for individual volcanic suites of 7 

West, Central and East Java, respectively. New data is displayed as solid symbols, previously 8 

published data is shown by open symbols. Arrows labelled SH, AFC and FC in d indicate the 9 

hypothesised data trends related to: mantle source heterogeneity (SH), combined assimilation 10 

and fractional crystallisation (AFC) and fractional crystallisation (FC). AFC trends can be 11 

positive or negative depending on the Hf isotope ratio of the assimilated material. The field 12 

for Gede Volcanic complex is divided in two due to the large difference in Hf isotopic 13 

composition of the Older Quaternary Volcanic group (2 samples at significantly higher 14 

176Hf/177Hf), situated to the east of the main Gede Complex (Handley et al., 2010). The low 15 

176Hf/177Hf Merapi data point is from Woodhead et al. (2001). Data sources are shown in 16 

Table A.1 (Appendix A). 17 
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Table 1. New Nd and Hf isotope data of volcanic rocks from Java

Province Volcano Sample Latitude (S) Longitude (E) 143Nd/144Nd 2σ εNd 176Hf/177Hf 2σ εHf

West Java Gede VC G01A 06°42'16.9" 107°01'39.6" 0.512647 15 0.33 0.282977 21 6.78
West Java Gede VC G01B 06°42'16.9" 107°01'39.6" 0.512653 10 0.46 0.282951 09 5.86
West Java Gede VC G10 06°44'51.5" 107°02'28.3" 0.512700 15 1.36 0.282975 07 6.72
West Java Gede VC G16 06°49'47.6" 106°55'35.3" 0.512629 12 -0.02 0.282952 10 5.90
West Java Gede VC G17 06°47'27.7" 106°59'40.6" 0.512681 16 0.99 0.282976 08 6.76
West Java Gede VC G18 06°47'23.5" 106°58'59.8" 0.512660 16 0.58 0.282963 08 6.28
West Java Gede VC G19 06°47'12.7" 106°58'43.1" 0.512701 11 1.39 0.282988 07 7.17
West Java Gede VC G20 06°47'03.1" 106°58'30.6" 0.512675 13 0.87 0.282975 08 6.73
West Java Gede VC G21 06°46'59.8" 106°58'44.8" 0.512678 21 0.93 0.282972 07 6.61
West Java Gede VC G22 Kawah Wadon crater edge 0.512664 14 0.66 0.282968 07 6.46
West Java Gede VC G23 06°46'40.5" 106°58'31.7" 0.512656 12 0.52 0.282957 08 6.07
West Java Gede VC G25 06°46'03.0" 106°58'49.1" 0.512677 15 0.92 0.282975 09 6.71
West Java Gede VC G26  50m from the Gede Observatory 0.512694 16 1.24 0.282997 07 7.49
West Java Gede VC G28 06°43'05.6" 106°57'54.4" 0.512683 11 1.04 0.282974 15 6.68
West Java Gede VC G30 06°42'36.5" 106°56'47.2" 0.512646 12 0.32 0.282956 08 6.04
West Java Gede VC G33 06°42'20.4" 106°58'35.8" 0.512699 09 1.35 0.282990 10 7.24
West Java Gede VC G35 06°49'48.6" 106°55'58.7" 0.512646 12 0.32 0.282939 09 5.44
West Java Gede VC G36A 06°49'48.6" 106°55'58.7" 0.512654 11 0.47 0.282955 11 6.01
West Java Gede VC G40 06°44'20.9" 107°00'30.6" 0.512679 10 0.96 0.282972 08 6.61
West Java Gede VC G42 06°44 51.5" 107°00'20.6" 0.512660 14 0.58 0.282967 08 6.43
West Java Gede VC G44 06°45'19.1" 107°01'04.4" 0.512702 14 1.40 0.282994 11 7.38
West Java Gede VC G46 06°47'42.6" 107°01'09.1" 0.512682 13 1.01 0.282982 14 6.96
West Java Gede VC G49 06°46'41.2" 107°03'50.7" 0.512722 10 1.79 0.283058 09 9.65
West Java Gede VC G51 06°42'16.9" 107°01'39.6" 0.512656 11 0.52 0.282951 08 5.86
West Java Gede VC G52 06°44'32.7" 107°03'55.3" 0.512737 11 2.10 0.283067 07 9.96
West Java Gede VC G55 06°48'46.7" 107°03'28.0" 0.512687 20 1.11 0.282978 07 6.82
West Java Guntur GU1/T 07°10'30" 107°51'06" 0.512982 08 6.87 0.283157 10 13.16
West Java Guntur GU5/T 07°10'18" 107°52'00" 0.512907 16 5.40 0.283147 07 12.79
West Java Guntur GU7/T 07°10'42" 107°51'48" 0.512917 10 5.60 0.283134 09 12.35
West Java Guntur GU9/T 07°10'30" 107°52'12" 0.512904 08 5.34 0.283142 13 12.61
West Java Guntur GU15/T 07°09'48" 107°52'30" 0.512882 15 4.91 0.283137 09 12.46
West Java Guntur GU16/T 07°09'54" 107°52'42" 0.512893 15 5.12 0.283142 09 12.63

Central Java Merapi* M95-026 07°31'46" 110°28'42" 0.512738a 09 2.11 0.283146 10 12.76
Central Java Merapi* M95-028 07°35'08" 110°25'37" 0.512729 10 1.93 0.283146 14 12.77
Central Java Merapi* M96-050 07°35'11" 110°25'36" 0.512742 08 2.18 0.283160 09 13.25
Central Java Merapi M96-056 07°33'37" 110°27'38" 0.512776a 10 2.85 0.283131 10 12.23
Central Java Merapi M96-073 07°34'30" 110°23'13" 0.512785a 09 3.02 0.283157 16 13.15
Central Java Merapi M96-137 07°33'28" 110°24'01" 0.512769a 07 2.71 0.283148 11 12.83
Central Java Merapi* M96-142 07°25'36" 110°34'50" 0.512734a 10 2.03 0.283128 11 12.13
Central Java Merapi* M96-175 07°31'38" 110°28'12" 0.512752 12 2.38 0.283185 16 14.15
Central Java Merapi M97-021 07°35'24" 110°25'23" 0.512723a 09 1.81 0.283138 10 12.48
Central Java Merapi M97-031 07°36'05" 110°25'11" 0.512712a 10 1.60 0.283141 09 12.58
Central Java Merapi M97-0392 07°30'44" 110°25'23" 0.512725a 11 1.85 0.283137 11 12.45
Central Java Merapi M97-068 07°34'06" 110°22'51" 0.512682a 09 1.01 0.283128 12 12.13
Central Java Merapi M98-031 07°31'03" 110°20'48" 0.512746a 09 2.26 0.283141 11 12.58
Central Java Merapi M98-047 07°32'29" 110°29'07" 0.512723a 09 1.81 0.283144 07 12.69
Central Java Merapi M98-0532 07°30'59" 110°31'21" 0.512770a 10 2.73 0.283160 12 13.25
Central Java Merapi M98-096 07°29'57" 110°24'36" 0.512697a 10 1.31 0.283147 13 12.80
Central Java Merapi* M98-107 07°32'19" 110°27'26" 0.512733a 10 2.01 0.283144 10 12.69

All new data are presented relative to a JMC 475 176Hf/177Hf value of 0.282160 (Nowell et al., 1998) and a 
J&M 143Nd/144Nd value of 5.11110 (Royse et al., 1998), corresponding to Ames 143Nd/144Nd of 0.512130
and La Jolla 143Nd/144Nd of 0.51186.
εHf  and εNd values were calculated relative to CHUR values of 0.282785 for 176Hf/177Hf 
and 0.512630 for 143Nd/144Nd (Bouvier et al., 2008).
aGertisser and Keller (2003) 143Nd/144Nd data are presented relative to an Ames 143Nd/144Nd of 0.512130.
Errors in italic are within-run 2SE on the final quoted significant figure taken from Gertisser and Keller (2003).
Location information for Gede VC and Guntur samples are taken from Handley (2006) and Edwards (1990), respectively.
For sample location information and unit descriptions of Merapi volcanic rocks, see Gertisser (2001). 
* indicates sample locations recalculated with GPS software from UTM co-ordinates. 



Table 2. New major element, trace element and Sr-Nd isotope data of Merbabu and Merapi (Central Java) volcanic rocks
Volcano Merbabu Merbabu Merbabu Merbabu Merbabu Merbabu Merapi Merapi Merapi Merapi* Merapi* Merapi*

Latitude (S) 07°29'53" 07°30'00" 07°31'08" 07°23'54" 07°21'52" 07°29'13" 07°35'18" 07°32'19" 07°31'03" 07°35'08" 07°35'11" 07°31'38"
Longitude (E) 110°25'46" 110°25'11" 110°21'37" 110°25'53" 110°27'44" 110°34'06" 110°26'34" 110°23'16" 110°20'48" 110°25'37" 110°25'36" 110°28'12"

Sample MB-1 MB-2 MB-6 MB-16 MB-22 MB-28 M96-102 M98-030 M98-031 M95-028 M96-050 M96-175
SiO2 49.55 49.70 50.81 59.07 58.28 51.41 51.87 52.13 51.70 50.20 50.37 56.49
Al2O3 21.22 17.23 19.73 18.87 18.76 17.64 20.44 19.02 18.77 19.78 18.68 18.71
Fe2O3 9.44 11.01 9.95 6.64 7.14 10.19 8.24 8.49 8.38 9.53 10.12 7.45
MgO 3.18 5.75 3.78 1.95 2.27 4.54 2.47 2.80 3.09 3.19 4.28 2.58
CaO 10.21 10.81 8.57 6.08 6.72 9.26 8.86 8.72 9.23 9.72 9.26 8.09
Na2O 2.84 2.76 2.78 3.52 3.51 3.09 3.35 3.39 3.35 3.19 3.18 3.59
K2O 1.76 1.47 2.24 1.91 1.74 2.10 1.74 1.99 1.90 1.97 1.83 1.59
TiO2 0.86 0.83 0.81 0.70 0.73 1.03 0.81 0.78 0.84 1.03 1.09 0.72
MnO 0.17 0.21 0.18 0.17 0.18 0.17 0.20 0.20 0.20 0.13 0.14 0.17
P2O5 0.26 0.18 0.32 0.31 0.30 0.31 0.31 0.31 0.26 0.28 0.28 0.29
LOI 0.66 0.04 1.12 0.71 0.44 -0.44 1.63 2.07 2.49 1.14 1.40 0.71
Total 100.15 99.99 100.29 99.93 100.07 99.30 99.92 99.90 100.21 100.16 100.62 100.40

V 249 333 256 92 113 295 259 152 169 331 298 151
Cr 26.0 69.0 14.8 5.7 7.3 59.9 6.0 2.4 2.5 124.1 34.3 10.4
Co 23.0 33.8 25.2 7.5 9.2 30.0 22.9 11.3 13.0 31.0 28.1 14.6
Ni 8.9 19.8 8.9 < d.l. < d.l. 15.3 7.0 2.2 2.1 43.1 16.4 < d.l.
Cu 148 143 216 19 16 151 36 13 13 n.m. n.m. n.m.
Zn 84 89 89 95 91 101 76 76 75 n.m. n.m. n.m.
Ga 21 17 19 20 21 21 19 21 21 n.m. n.m. n.m.
Rb 24.8 29.4 53.6 45.0 38.5 44.2 24.6 20.5 20.7 23.9 36.2 37.8
Sr 592 460 565 437 431 421 533 544 531 568 467 529
Y 18.2 17.2 19.4 25.5 23.3 23.3 25.0 26.9 24.7 18.0 21.1 22.4
Zr 62 49 65 156 139 85 104 144 133 64 68 114
Nb 1.94 1.50 2.18 6.65 5.73 3.11 4.35 6.28 5.63 2.02 2.42 4.49
Cs 0.78 2.43 3.34 4.87 3.25 3.72 2.04 1.81 1.83 n.m. n.m. n.m.
Ba 546 462 677 487 431 545 364 291 307 474 584 428
La 14.6 11.0 19.4 24.1 21.2 17.5 16.3 16.9 14.8 11.6 14.3 18.9
Ce 29.3 21.5 36.5 48.6 42.6 35.0 33.4 37.0 33.8 23.3 28.7 38.2
Pr 3.44 2.72 4.24 5.82 5.30 4.34 4.552 5.288 4.736 2.84 3.57 4.78
Nd 14.9 11.7 18.3 23.2 20.4 18.0 20.0 23.4 21.0 12.1 15.5 20.0
Sm 3.91 3.18 4.12 5.06 4.52 4.17 4.72 5.39 4.97 3.10 3.82 4.22
Eu 1.23 1.06 1.38 1.55 1.43 1.33 1.40 1.53 1.45 1.10 1.33 1.43
Gd 3.60 3.26 4.09 4.70 4.41 4.24 4.74 5.13 4.77 3.15 3.91 4.13
Tb 0.534 0.447 0.610 0.756 0.656 0.629 0.759 0.832 0.773 0.473 0.557 0.603
Dy 3.26 2.87 3.45 4.31 4.14 3.88 4.48 4.82 4.49 2.88 3.49 3.77
Ho 0.601 0.623 0.683 0.859 0.849 0.856 0.926 1.006 0.932 0.606 0.723 0.739
Er 1.73 1.76 2.01 2.59 2.37 2.22 2.52 2.73 2.49 1.69 1.99 2.31
Tm 0.29 0.27 0.33 0.42 0.41 0.40 0.391 0.428 0.395 0.258 0.297 0.326
Yb 1.72 1.78 2.00 2.80 2.47 2.23 2.54 2.84 2.59 1.61 1.98 2.11
Lu 0.280 0.287 0.325 0.470 0.434 0.377 0.416 0.467 0.431 0.249 0.331 0.366
Hf 1.79 1.59 1.95 3.92 3.82 2.47 2.88 3.95 3.62 1.67 1.93 2.77
Ta 0.16 0.13 0.19 0.56 0.50 0.25 0.31 0.47 0.41 0.15 0.20 0.38
Pb 21.6 16.3 25.3 21.2 18.6 22.8 14.9 21.3 20.0 16.6 18.3 25.4
Th 6.43 4.37 8.74 9.27 7.98 7.75 5.27 8.18 7.14 4.91 5.46 5.68
U 0.82 0.99 1.79 1.95 1.76 1.71 1.06 1.11 1.09 0.84 1.08 1.35

87Sr/86Sr 0.705888 0.705768 0.705825 0.705672 0.705686 0.705812 0.705515 0.705704 0.705540 0.705793 0.705539 0.705105
2SE 10 10 10 10 09 10 09 10 09 09 09 10

143Nd/144Nd 0.512663 0.512699 0.512653 0.512707 0.512701 0.512683 0.512753 0.512732 0.512746 0.512729 0.512742 0.512752
2SE 08 08 08 07 12 09 09 06 09 10 08 12

Major element and Sr-Nd isotope data of Gertisser and Keller (2003) shown by italic font.
< d.l., below detection limit (<5 ppm for Ni); n.m., not measured.
87Sr/86Sr isotope data presented relative to a NBS 987 87Sr/86Sr value of 0.710240.
143Nd/144Nd isotope data presented relative to an Ames 143Nd/144Nd value of 0.512130.
Errors on isotope data are within-run 2SE on the final quoted significant figure.



Table 3. End member compositions used in Hf-Nd isotope mixing calculations

Nd (ppm) Hf (ppm) 143Nd/144Nd 176Hf/177Hf

IMORB Source 0.97 0.25 0.513042 0.283211
Sed A 187.9 5.73 0.512236 0.282828
Sed B 55.3 3.67 0.512278 0.282712
Sed C 35 5.09 0.511930 0.282311
Sed D 31.3 5.58 0.511910 0.282230

Mantle wedge represented by I-MORB source (I-MORB/10 assuming 
10% melting) IMORB data from Chauvel and Blichert-Toft (2001).
IMORB average Nd and Hf concentration, Nd and Hf isotope data
from Chauvel and Blichert-Toft, 2001.
Local sediments: A = Mn nodule (V34-62, Ben Othman et al., 1989; White et 
al., 1986) B = pelagic clay (V34-45 White et al., 1986; Ben Othman 
et al., 1989); C and D = deep sea turbidite sediments V28-357-M (CA30-M) 
and V28-357-M (CA30-S), respectively (Vervoort et al., 1999).
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Appendix B. Additional analytical information 

Table B.1. Accepted element abundances of international rock standards compared 
to those measured over the period of study. Detection limits and maximum 
measured blanks.  

Accepted Accepted Accepted Accepted
PPM value value (n = 26) 1SD value value (n = 13) 1SD value value (n = 23) 1SD value value (n = 12) 1SD
Sc 44 43 4.70 35 36 1 31.8 31 2 12.1 12 1

Ti (wt%) 0.96 0.97 0.08 1.06 1.07 0.07 2.71 2.79 0.12 1.06 1.03 0.06
V 313 334 16.60 262 272 8 317 319 10 123 121 4
Cr 382 418.4 25.2 93 92.5 3.4 289 295.1 8.5 12 7.0 3.4

Mn (wt%) 0.171 0.18 0.01 0.163 0.17 0.01 0.168 0.17 0.01 0.096 0.10 0.01
Co 51.4 55 2 44 45 1 45 45 1 15.1 16 0
Ni 166 199.8 8.2 70 81.4 2.1 121 134.7 3.4 17 16.7 0.7
Cu 126 120 5 103 104 3 136 138 3 60 58 2
Zn 71 69 8 77 84 27 105 108 5 88 84 3
Ga 16 15 1 20 18 0 21 21 1 20 20 0
Rb 0.27 0.2 0.0 20 20.2 0.4 11 9.5 0.2 67 67.2 1.2
Sr 108 110 12 194 201 9 403 391 22 662 676 32
Y 16 16 1 24 23 0 27.6 28 0 21 20 0
Zr 22 15 0 94 91 2 179 175 2 225 229 3
Nb 2 0.57 0.02 7.9 7.66 0.09 19 19.39 0.18 15 14.52 0.14

Cs 0.45 0.00 0.02 0.99 0.89 0.04 0.13 0.10 0.03 1.26 1.24 0.04
Ba 7.7 7 0 182 177 4 139 138 3 1221 1219 25
La 0.88 0.6 0.0 11.4 10.8 0.2 15.8 15.6 0.3 38 37.9 0.7
Ce 2.5 1.9 0.0 24 23.4 0.4 39 37.8 0.6 66 66.8 1.2
Pr 0.5 0.38 0.01 5.9 3.18 0.04 5.7 5.62 0.09 6.5 8.65 0.19
Nd 2.5 2.5 0.1 14 13.9 0.2 25.2 26.3 0.4 34 33.2 0.6
Sm 1.08 1.11 0.04 3.25 3.38 0.04 6.2 6.31 0.10 5.9 5.85 0.12
Eu 0.54 0.51 0.02 1.1 1.11 0.01 2.06 2.07 0.03 1.66 1.68 0.03
Gd 1.9 1.94 0.04 3.6 3.86 0.06 6.4 6.55 0.13 5.2 4.83 0.10
Tb 0.41 0.38 0.01 0.63 0.65 0.01 0.96 0.98 0.01 0.71 0.67 0.01
Dy 2.4 2.54 0.08 3.8 3.87 0.06 5.2 5.33 0.07 3.8 3.53 0.06
Ho 0.5 0.57 0.02 0.76 0.80 0.01 0.99 1.00 0.01 0.73 0.67 0.01
Er 1.8 1.62 0.06 2.5 2.15 0.02 2.4 2.43 0.02 1.61 1.73 0.03

Tm 0.27 0.27 0.01 0.38 0.34 0.01 0.33 0.35 0.01 0.32 0.27 0.01
Yb 1.7 1.64 0.07 2.05 2.07 0.02 2.02 2.01 0.02 1.67 1.65 0.03
Lu 0.26 0.27 0.01 0.33 0.33 0.00 0.291 0.30 0.00 0.28 0.27 0.01
Hf 0.58 0.59 0.02 2.56 2.42 0.04 4.38 4.47 0.04 5.1 5.12 0.09
Ta 0.062 0.05 0.01 0.5 0.50 0.01 1.23 1.26 0.01 0.92 0.91 0.01

tot Pb 3.2 3.2 0.3 9.3 7.9 0.2 2.6 2.2 0.1 36 35.7 0.7
Th 0.031 0.03 0.00 2.2 2.21 0.07 1.08 1.26 0.03 6.5 6.34 0.20
U 0.01 0.01 0.00 0.53 0.49 0.01 0.42 0.42 0.01 1.89 1.87 0.06

detection detection
Accepted Accepted limit limit

PPM value value (n = 11) 1SD value value (n = 14) 1SD solid ng g-1 soln pg ml -1

Sc 22 23 1 38 38 2 212 42
Ti (wt%) 2.61 2.66 0.13 1.17 1.16 0.07 6380 1280

V 235 233 9 242 252 8 273 55
Cr 360 368.1 15.6 332 333.1 11.7 532 106

Mn (wt%) 0.2 0 0 0.167 0 0 231 46
Co 61 62 2 49 49 2 19.5 3.9
Ni 267 300.9 10.4 158 173.4 5.5 897 179
Cu 72 72 3 96 87 3 128 26
Zn 120 121 4 84 79 13
Ga 17 18 1 17 16 0 34.3 6.9
Rb 47 48.2 1.5 1.91 2.0 0.1 13.4 2.7
Sr 1370 1538 138 169.2 174 7 43 0.64
Y 30 31 1 17 21 0 20.9 4.2
Zr 265 273 5 61 56 1 25.2 5
Nb 100 117.56 1.49 5 4.33 0.06 9.72 1.9

Cs 0.8 0.75 0.04 0.24 0.02 0.04 3.79 0.8
Ba 1025 1059 24 200 178 4 111 22
La 82 82.1 1.6 5.3 5.3 0.1 3.73 0.75
Ce 152 147.9 2.2 13 12.0 0.2 12.2 2.4
Pr 16.9 17.96 0.35 2.4 1.82 0.03 2.57 0.51
Nd 70 69.9 1.1 9.6 8.9 0.1 13.2 2.6
Sm 12 12.42 0.21 2.5 2.44 0.03 2.84 0.57
Eu 3.6 3.72 0.04 1.01 0.99 0.01 1.78 0.36
Gd 9 10.18 0.19 3.2 3.12 0.08 3.01 0.6
Tb 1.3 1.33 0.02 0.52 0.54 0.01 0.3 0.06
Dy 6.29 6.41 0.08 3.4 3.42 0.05 2.12 0.42
Ho 1.03 1.09 0.01 0.81 0.74 0.01 0.4 0.08
Er 2.48 2.44 0.04 2.1 2.07 0.03 0.23 0.05

Tm 0.37 0.33 0.02 0.29 0.33 0.01 0.4 0.08
Yb 1.8 1.85 0.03 2.05 2.09 0.03 0.44 0.09
Lu 0.24 0.27 0.00 0.35 0.35 0.01 0.12 0.02
Hf 5.4 5.79 0.09 1.55 1.53 0.03 4.46 0.89
Ta 5.5 6.15 0.06 0.31 0.30 0.01 0.68 0.14

tot Pb 4 4.1 0.1 3.3 3.3 0.6 25.4 5.1
Th 11 10.72 0.28 0.33 0.35 0.02 2.73 0.55
U 2.4 2.43 0.07 0.31 0.29 0.03 0.78 0.16

Accepted standard values taken from Potts et al., 1992
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Table B.2. Comparison of trace element concentrations of the internal standard  
(KI 202) analysed over the period of study 

PPM KI 202 KI 202 KI 202 KI 202 KI 202 KI 202 KI 202 KI 202 KI 202 AVERAGE 1SD 2SD RSD

Sc 17 18 17 17 17 17 18 16 16 17 0.6 1.3 3.8
Ti (wt%) 0.75 0.85 0.82 0.81 0.82 0.82 0.82 0.72 0.76 0.80 0.0 0.1 5.3

V 179 182 179 173 176 176 177 179 166 176 4.6 9.3 2.6
Cr 2.6 2.2 1.2 2.8 2.8 2.8 2.8 2.4 1.8 2.4 0.6 1.1 23.7

Mn (wt%) 0.15 0.16 0.16 0.15 0.16 0.16 0.16 0.15 0.15 0.15 0.0 0.0 2.3
Co 37 39 39 38 38 38 38 38 36 38 1.0 2.1 2.7
Ni 4.7 4.7 4.0 4.0 3.6 3.7 3.7 4.8 4.1 4.2 0.5 1.0 11.4
Cu 38 40 38 39 39 39 40 39 36 39 1.3 2.6 3.4
Zn 62 67 67 68 70 68 71 66 63 67 2.9 5.9 4.4
Ga 17 18 18 17 17 17 17 17 17 17 0.5 1.0 2.9
Rb 62.8 72.6 72.1 71.0 70.7 70.9 71.5 71.3 66.2 69.9 3.2 6.5 4.6
Sr 342 427 429 412 411 412 412 381 387 401 27.5 55.0 6.9
Y 26 28 28 28 28 28 28 28 26 27 0.9 1.9 3.4
Zr 168 180 181 178 177 177 177 179 165 176 5.6 11.1 3.2
Nb 7.90 8.41 8.55 8.38 8.34 8.34 8.40 8.36 7.84 8.28 0.2 0.5 2.9

Cs 2.9 3.1 3.1 3.1 3.0 3.0 3.0 3.0 2.8 3.0 0.1 0.2 3.1
Ba 484 628 646 646 643 640 641 655 602 621 53.4 106.9 8.6
La 19.4 20.6 21.1 21.1 21.0 20.8 20.9 21.5 19.7 20.7 0.7 1.4 3.4
Ce 39.9 41.3 42.0 42.0 42.2 42.0 42.1 43.2 39.5 41.6 1.2 2.3 2.8
Pr 5.20 5.36 5.40 5.37 5.43 5.30 5.36 5.52 5.06 5.33 0.1 0.3 2.5
Nd 21.2 22.1 22.2 22.2 22.5 22.2 22.4 22.8 20.9 22.1 0.6 1.2 2.8
Sm 4.57 4.74 4.81 4.79 4.82 4.79 4.85 4.93 4.53 4.76 0.1 0.3 2.7
Eu 1.14 1.23 1.24 1.20 1.22 1.21 1.23 1.26 1.14 1.21 0.0 0.1 3.5
Gd 4.44 4.79 4.75 4.75 4.74 4.73 4.86 4.86 4.46 4.71 0.2 0.3 3.2
Tb 0.70 0.76 0.74 0.75 0.76 0.76 0.75 0.76 0.71 0.74 0.0 0.0 3.3
Dy 4.12 4.41 4.39 4.40 4.43 4.40 4.40 4.50 4.18 4.36 0.1 0.2 2.8
Ho 0.86 0.92 0.94 0.92 0.92 0.92 0.92 0.93 0.88 0.91 0.0 0.1 2.9
Er 2.42 2.53 2.62 2.59 2.60 2.54 2.57 2.59 2.41 2.54 0.1 0.2 3.1

Tm 0.42 0.43 0.44 0.41 0.41 0.40 0.42 0.42 0.38 0.41 0.0 0.0 3.9
Yb 2.55 2.72 2.73 2.70 2.71 2.71 2.70 2.72 2.56 2.68 0.1 0.1 2.7
Lu 0.42 0.46 0.46 0.45 0.45 0.45 0.45 0.45 0.43 0.45 0.0 0.0 3.0
Hf 4.41 4.65 4.73 4.63 4.63 4.62 4.69 4.71 4.42 4.61 0.1 0.2 2.5
Ta 0.77 0.81 0.81 0.81 0.82 0.81 0.82 0.81 0.77 0.80 0.0 0.0 2.4

tot Pb 10.4 11.5 11.6 11.6 11.6 11.6 11.6 11.7 10.5 11.3 0.5 1.0 4.6
Th 7.33 8.00 8.25 8.24 8.27 8.14 8.20 8.29 7.46 8.02 0.4 0.7 4.6
U 1.78 1.93 1.99 1.968 2.01 1.962 1.983 2.02 1.79 1.94 0.1 0.2 4.7  

 

Fig. B.1. Comparison of ICP-MS (Handley et al., 2007) versus XRF (Sitorus, 1990) 
Zr concentration data for IVC volcanic rocks. 
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Table B.3. Average reproducibility and accuracy of Nd and Hf isotope ratios for 
standard solutions measured during this study 
 

Element and Standard Ratio Accepted or # standards Mean measured Error (± 2SD Error 
reported value run value  absolute) (± 2SD ppm)

Nd (J&M - pure) 143Nd/144Nd 0.51111a 44 0.511106 0.000009 18
Nd (J&M - Sm doped) 143Nd/144Nd 0.51111a 30 0.511108 0.000009 17
Nd (J&M all) 143Nd/144Nd 0.51111a 74 0.511106 0.000010 19
Hf (JMC 475 - H-CONE) 176Hf/177Hf 0.282160b 11 0.282160 0.000008 28
Hf (JMC 475 - ARIDUS X-CONE) 176Hf/177Hf 0.282160b 51 0.282146 0.000004 15

References: a Royse et al., 1998; b Nowell et al., 1998.
Aridus and X-cone long-term average up to period of study at Durham = 0.282145, 2RSD=26 ppm, n = 79 (Nowell et al., 
2003; Pearson and Nowell, 2005).  
 
Table B.4. Inter-laboratory comparison of Guntur 143Nd/144Nd isotope data 
 
Sample 143Nd/144Nd 143Nd/144Nd 2! error difference

Edwards et al., 1993 This study This study (outside of known error)
GU1/T 0.512964a 0.512982c 0.000008 0.000010
GU5/T 0.512899a 0.512907c 0.000016 within error
GU7/T 0.512905b 0.512917c 0.000010 0.000002
GU9/T 0.512920b 0.512904c 0.000008 0.000008

Edwards et al. (1993) data are presented relative to La Jolla 143Nd/144Nd of 0.51186.
Measured at: a, Department of Terrestrial magnetism Carnegie Institute of Washington;
b, Royal Holloway College University of London; c, Arthur Holmes Isotope Geology Laboratory
at Durham University.
Guntur sample repeats in this study presented relative to J&M 143Nd/144Nd of 0.511110.
143Nd/144Nd  error information is not given in Edwards et al., 1993.  

 
References: 

Edwards, CMH, Morris, JD, Thirlwall, MF, 1993. Separating mantle from slab 
signatures in arc lavas using B/Be and radiogenic isotope systematics. Nature, 
362: 530-533. 

Handley HK, Macpherson CG, Davidson JP, Berlo K, Lowry D, 2007. Constraining 
fluid and sediment contributions to subduction-related magmatism in Indonesia: 
Ijen Volcanic Complex, Indonesia. J Petrol 48:1155-1183. 

Nowell, GM, Kempton, PD, Noble, SR, Fitton, JG, Saunders, AD, Mahoney, JJ, 
Taylor, RN, 1998. High precision Hf isotope measurements of MORB and OIB 
by thermal ionisation mass spectrometry: insights into the depleted mantle. 
Chemical Geology, 149: 211-233. 

Nowell, GM, Pearson, DG, Ottley, CJ, Schweiters, J, 2003. Long-term performance 
characteristics of a plasma ionisation multi-collector mass spectrometer 
(PIMMS): the ThermoFinnigan Neptune. Plasma Source Mass Spectrometry. 
Spec. Pub. Royal Society of Chemistry, 307-320. 



Appendix B   Additional analytical information 
   

 

 4 

Pearson, DG, Nowell, GM, 2005. Accuracy and precision in plasma ionisation multi-
collector mass spectrometry: Constraints from neodymium and hafnium isotope 
measurements. Plasma Source Mass Spectrometry, Current Trends and Future 
Developments, 284-314.  

Potts, PJ, Tindle, AG, Webb, PC, 1992. Geochemical reference material 
compositions: rocks, minerals, sediments, soils, carbonates, refractories and 
ores used in research and industry. Whittles Publishing, Caithness, U.K. 

Royse, K, Kempton, PD, Darbyshire, DPF, 1998. NERC Isotope Geosciences 
Laboratory Report Series, 121. 

Sitorus, K, 1990. Volcanic stratigraphy and geochemistry of the Idjen Caldera 
Complex, East Java, Indonesia. MSc thesis, University of Wellington, New 
Zealand. 

 


	Handley et al 2011
	Handley et al 2011
	Handley_text_revised
	Fig1.TIF
	Fig2.xls
	Fig3.xls
	Fig4.xls
	Fig5.xls
	Table 1.xls
	Table 2.xls

	Table 3.xls

	Appendix B



